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Abstract 47 

Our view of genome size distribution in Bacteria and Archaea has remained skewed as the data 48 

used to paint its picture has been dominated by genomes of microorganisms that can be 49 

cultivated under laboratory settings. However, the continuous effort to catalogue the genetic 50 

make-up of Earth’s microbiomes, specifically propelled by recent extensive work on 51 

uncultivated microorganisms, provides a unique opportunity to revise our perspective on genome 52 

size distribution. Genome size is largely a function of the expansion and contraction, by gain or 53 

loss of DNA elements. While genome expansion provides microorganisms the capability to 54 

acquire a wide repertoire of ecological functions, genome reduction increases the fitness of the 55 

microorganisms to very specific niches. Capitalizing on a recently released large catalog of tens 56 

of thousands of metagenome-assembled genomes, we here provide a comprehensive overview of 57 

genome size distributions, suggesting that the known phylogenetic diversity of environmental 58 

microorganisms possess significantly smaller genomes (aquatic bacteria average 3.1 Mb, host-59 

associated bacterial genomes average 3.0 Mb, and terrestrial bacteria average 3.8 Mb) than the 60 

collection of laboratory isolated microorganisms (average 4.4 Mb). Moreover, the variation in 61 

genome sizes across different types of environments reflects the different ecological and 62 

evolutionary strategies used by microorganisms to thrive in their native environment. Finally, the 63 

fact that genome sizes in Bacteria and Archaea remain relatively small might be a reflection of 64 

the constraints imposed by selection and an overall dominance of gene loss as a survival strategy. 65 

 66 

Introduction 67 

Genomes are dynamic databases that encode the machinery behind evolution and adaptation of 68 

living organisms to environmental settings. In brief, a genome encompasses all genetic material 69 

present in one organism and includes both its genes and its non-coding DNA. Genome size is 70 

largely a function of expansion and contraction by gain or loss of DNA fragments. The genomes 71 

of extant organisms are the result of a long evolutionary history. In eukaryotes, an organism's 72 

complexity is not directly proportional to its genome size which can have variations over 64,000-73 

fold (1, 2). However, the genome size ranges in Bacteria and Archaea are smaller and the 74 

genomes are information-rich (3), and known to range from 100 kb to 16 Mb (4, 5). While 75 

subject to genetic drift bacterial and eukaryotic genomes evolve in opposite directions. Bacteria 76 

exhibit a mutational bias that deletes superfluous sequences, whereas Eukaryotes are biased 77 

toward large insertions (6). In Bacteria and Archaea, evolutionary studies have revealed 78 

extremely rapid and highly variable flux of genes (7) with evolutionary forces acting on 79 

individual genes (8). On one hand, mechanisms for genome expansion are promoting the gain of 80 

new functions through horizontal gene transfer, de novo gene birth, and gene duplications (9, 81 

10). On the other hand, it is known that the primary driving forces for genome reduction are 82 

metabolic and spatial economy and cell multiplication speed (11, 12).  83 

 84 

Our overall view of the diversity, distribution, and genome characteristics of Bacteria and 85 

Archaea have remained biased for most of the microbial ecology history. These biases stem 86 

chiefly from the “great plate count anomaly” because for more than a decade, the genomes that 87 

were sequenced were primarily from laboratory isolates (13, 14). More than two decades have 88 

passed since the first bacterial genomes were completely sequenced (15, 16). In the first decade 89 

of genome sequencing about 300 bacterial genomes and two metagenomic projects with 90 

assembled genomes were published (17). Since then, rapid advances in metagenome sequencing 91 

and data analyses have enabled large-scale cataloging of bacterial and archaeal genomes from a 92 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.18.427069doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427069
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

wide range of environments (18-20). With all sequencing efforts the representation of number of 93 

genomes from phylogenetically diverse groups of Bacteria and Archaea has greatly increased. 94 

The Genome Taxonomy Database (GTDB) include 194,600 genomes, with 31,910 of those 95 

being species representatives and 8,792 of those species representatives are based on published 96 

named species (21). Genome catalogs such as Genomes from Earth’s Microbiomes (GEMs) 97 

contain ~52,500 genomes all of them being metagenome-assembled genomes. Using these novel 98 

resources, it is now possible to obtain an updated view of microbial genome characteristics, 99 

diversity, and distribution of microbes in the environment. 100 

 101 

Genome size and its evolution has been studied by many researchers who each focused on 102 

different taxonomic lineages or different ecological or evolutionary backgrounds (8, 12, 22-25). 103 

As microbial researchers, how do we define what is a small genome or a big genome? Perhaps, 104 

researchers working on model organisms such as Escherichia coli with a genome size of ~5 Mb 105 

(26), would define 'big' or 'small' very differently to researchers working on Prochlorococcus 106 

with a genome size of ~2 Mb (27), soil-dwelling Minicystis rosea with a genome size of 16 Mb 107 

(5) or bacterial endosymbionts of insects that may have genomes merely larger than 100 kb (4). 108 

The recently published expanded database of environmental bacterial and archaeal genomes (18) 109 

allows us to revisit and acquire a more complete understanding of genome size distribution 110 

across different environments in higher resolution. In this review, we provide an overview of the 111 

evolutionary and ecological drivers behind the different genome sizes of Bacteria and Archaea. 112 

Moreover, we offer an overview of the distribution of genome sizes of all known bacterial and 113 

archaeal phyla across different environments. We found that while there are phyla with 114 

consistently smaller genome sizes (< 2 Mb), such as Caldisericota, Aenigmarchaeota, 115 

Micrarchaeota, Nanohaloarchaeota, and Ianarchaeota, 78.4% of bacterial and archaeal genomes 116 

recovered through genome-resolved metagenomics represent estimated genome sizes below 4 117 

Mb.  118 

 119 

Extant genome size distribution in the environment 120 
The current state of environmental sequencing, assembly, and binning technologies allows us to 121 

review and renew our view of bacterial and archaeal genome size distribution on Earth (18). To 122 

minimize representation biases (28), from the ~52,500 genomes we included one representative 123 

per mOTU, defined by 95% average nucleotide identity (ANI), from the GEMs environmental 124 

MAGs resulting in ~15,000 MAGs (Figure 1A). We complemented these data by adding ~8,000 125 

species cluster representatives from >90% complete genomes of isolates from GTDB (Figure 1). 126 

GEMs reported that MAGs in the same species than isolate genomes were consistent in size 127 

(average estimated genome length per OTU MAGs = -0.17 + 1.01 average estimated genome 128 

length per OTU isolates, r=0.95) (18).While this suggests that there is not a big bias in 129 

metagenome assembly and binning it is important to keep in mind that MAG assembly might 130 

discriminate against ribosomal RNAs, transfer RNAs, mobile element functions and genes of 131 

unknown function (29).  132 

 133 

Furthermore, we compared the genome size distribution of all environmental MAGs versus that 134 

of their taxonomic relatives from cultivated isolates, as derived from the GTDB. The genomes 135 

from bacterial isolates have the average genome size of 4.4 Mb. When comparing this genome 136 

size distribution from isolates with that of the environmental MAGs, the first striking observation 137 

is that environmental MAGs have significantly lower genome sizes (t-test Bacteria p>2e-16 138 
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Archaea p>2e-16). Environmental aquatic bacteria average 3.1 Mb, host-associated 139 

metagenome-assembled bacterial genomes average 3.0 Mb, and terrestrial bacteria average 3.8 140 

Mb (Figure 1A). A reason for the difference in genome size between isolates and environmental 141 

microorganisms might be the tendency to sample different types of microorganisms with culture 142 

dependent and independent methods (30). For example, it is known that current cultivation 143 

techniques with rich media bias cultivation towards copiotroph microorganisms (31). Moreover, 144 

microorganisms in nature do not live in isolation but instead have coevolved with other 145 

microorganisms and might have specific requirements that are hard to meet in batch-culture 146 

standard-media isolation techniques (32). Other reasons for biases in cultivation include slow 147 

growth of microorganisms (33), host dependence (34), dormancy (35), and microorganisms with 148 

very limited metabolic capacity (36) among others. Innovations to culturing the uncultured 149 

microbial majority might help breach this genome size gap in the future (37). 150 

 151 

Placing bacterial and archaeal genome sizes in the context of a phylogenetic tree (Figure 2 and 3) 152 

shows that the distribution of representative genomes and its sizes vary widely not only between 153 

different phyla but widely within different phyla. To this view, we want to bring into the 154 

discussion the biphasic model of evolution (25). In this model it is discussed that genome 155 

evolution occurs in two phases. One phase involves gene gains that occur in bursts and are 156 

associated with the emergence of novel microbial groups. The other phase involves gene loss 157 

that occurs gradually. In the extant phylogenetic tree of Bacteria and Archaea it is noticeable 158 

how closely related species are shaped by the different genetic processes that influence genome 159 

size (Figure 2 and 3). 160 

 161 

Genetic processes that shape genome size 162 

The variability in genome size that we observe across different microbial taxa is the result of the 163 

reached equilibrium between gains and losses of genetic information (Figure 4). The 164 

evolutionary events that drive these changes are diverse. Some lineages follow a highly 165 

mutational mode of evolution (38) while other lineages have recombination as a stronger 166 

evolutionary force (39-42). The acquisition of new genetic information and metabolic capacities 167 

is often accompanied by the expansion of gene families. In silico studies indicate that the 168 

acquisition of new genes could have a vital role in adaptation (43). Moreover, a strong 169 

correlation has been observed between genome size with gene family expansions and length of 170 

non-coding sequences in complex cyanobacteria (44). The most important evolutionary events 171 

involved in genome expansion processes are de novo gene birth, the duplication of genes, and 172 

Lateral/Horizontal Gene Transfer (LGT/HGT). De novo gene birth is the process by which new 173 

genes emerge from non-genic DNA sequences (45). However, most of the known examples of 174 

this process are found in eukaryotes. Furthermore, comparative genomics of some bacterial 175 

taxonomic lineages has suggested that HGT is more relevant on the expansion of bacterial 176 

metabolic networks than gene duplications (46). HGT can foster the acquisition of new functions 177 

while duplications relate to a higher gene dosage (47). However, phylogenomic analysis of other 178 

lineages such as Nitrososphaerales (Thermoproteota) indicate a predominant role of gene 179 

duplications over HGT (48). These examples highlight how HGT and duplications aid 180 

microorganisms into adaptation to their niches. For example, different Archaea have shown 181 

modifications in their metabolic potential through these genome expansion processes (49-51). In 182 

a nutshell, genome expansion processes can influence gene dosage, acquisition of new ecological 183 

capacities and adaptation in both, Archaea and Bacteria.  184 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.18.427069doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427069
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

Conversely, genome reduction fosters the development of more compact genomes (Figure 4). 185 

There are three main processes involved in gene loss: genetic drift, pseudogenization and 186 

streamlining. Genetic drift describes stochastic changes on the gene repertoire variants. 187 

Mutations which are biased towards deletions over time promote genome reduction (8). Genetic 188 

drift is more pronounced in species that have a small effective population size such as host-189 

associated endosymbiotic microorganisms. As an example, endosymbiotic lineages of 190 

Gammaproteobacteria such as in Buchnera aphidicola have lost ample genes that have already 191 

reached stasis (52). When a gene loses its original function, it is often turned into a pseudogene 192 

(53). A pseudogene is a derived form of regular genes that might present a different function or 193 

turn obsolete. Comparative analyses of archaeal genomes show that up to 8.6% of their genomes 194 

are constituted by pseudogenes which usually present at least one inactivating mutation (54). 195 

Moreover, pseudogenization has been suggested to be a special type of gene loss when 196 

adaptation to new ecological niches is needed. In the Roseobacter lineage (class 197 

Alphaproteobacteria), this process was correlated to switches in resource recovery, energy 198 

conservation, stress tolerance and different metabolic pathways (55). Finally, streamlining is the 199 

process of gene loss through selection and it is mainly observed in free-living microorganisms 200 

with high effective population sizes. Streamlining creates a series of distinct patterns, such as 201 

increase in nutritional connectivity between individuals, reduction of genome size, lower GC 202 

content and higher coding gene density (12). Aquatic microorganisms have been used as 203 

exemplary cases of streamlining in which many have gone through community adaptive 204 

selections and gene loss (56). In fact, their gene loss goes so far  that these free-living aquatic 205 

microorganisms depend on community associations and thus thrive in functional cohorts (57). 206 

The renewed view of genome sizes and characteristics confirms that genomes from aquatic 207 

microorganisms have a higher coding density compared to those from other ecosystems (Figure 208 

1).  209 

Both genome expansion and reduction have a vital role in the evolution of microorganisms. 210 

However, these two processes are not in perfect equilibrium. While genome expansion might 211 

allow cells to become highly flexible in terms of developmental capacities and physiological 212 

performance, gene loss allows cells to become highly successful in particular niches (44). 213 

Moreover, gene loss dominates in the evolutionary history of Bacteria and Archaea (25). For 214 

example, in silico studies of 34 bacterial genera and one archaeal genus show that the rate of 215 

gene gains is three times lower than that of gene loss (7). In the same study, highly dynamic 216 

genomes were found presenting these evolutionary events 25 times more often than the most 217 

stable genomes. This tendency that gene loss is more prevalent than gene gain has also been 218 

described in short term in host-associated Pseudomonas aeruginosa (Gammaproteobacteria) 219 

(58). There, clinical isolates of P. aeruginosa indicate gene loss rates six times greater than gene 220 

acquisition during the first year of a chronical infection as an adaptive strategy to avoid the 221 

host’s immune response. Even evolutionary reconstructions of the Last Common Ancestor of 222 

Archaea show that genomes of early Archaea were more complex and thus gene loss played 223 

likely a critical role in their evolution (59, 60). In summary, these examples illustrate the synergy 224 

of both evolutionary processes, with genome expansion providing microorganisms the capability 225 

to acquire a wide repertoire of ecological adaptations and genome reduction increasing the 226 

fitness of the microorganisms to very specific niches (Figure 4). 227 

 228 

 229 
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Environmental impact on genome size in different taxonomic lineages 230 

The most up-to-date view of genome sizes on Earth provided here shows that the distribution of 231 

genomes from terrestrial environments average at size of 3.8 Mb (Figure 1). The sub-ecosystems 232 

considered in this view are soil, and deep subsurface among others (Figure 5). Terrestrial 233 

microorganism’s genome size is larger than what is commonly found in aquatic and host-234 

associated ecosystems. However, it is smaller than expected based on previous metagenomic 235 

predictions which placed the genome size of soil bacteria at 4.74 Mb (61). Trends of larger 236 

genome sizes in soil have been hypothesized to be related to scarcity and diversity of nutrients, 237 

fluctuating environment combined with little penalty for the slow growth rate (23, 62, 63). In 238 

fact, although terrestrial or soil environments are physically structured, they are generally 239 

characterized by two to three orders of magnitude greater variations (in temperature and 240 

currents) than marine environments (64). In silico studies predict that large genome sizes could 241 

be the result of higher environmental variability (65). A recent example showed that isolates of 242 

terrestrial Cyanobacteria have larger genomes (6.0-8.0. Mb), as compared to their freshwater 243 

counterparts (4.0-6.0 Mb) and their relatives originating from the marine environment (1.5-2.5 244 

Mb) (62). The general theory of genome expansion states that the genetic repertoire increases to 245 

allow microorganisms to gain adaptive capacities to face perturbations and survive in variable 246 

environments. Despite these general trends showing larger genome sizes in terrestrial 247 

environments, it is worth noting that streamlined microorganisms such Patescibacteria (Fig 1B) 248 

as ‘Candidatus Udaeobacter copiosus’ (Verrucomicrobiota) are abundant in soils (66).  249 

 250 

Some of the most numerically abundant and streamlined microorganisms known to date, such as 251 

Pelagibacter (class Alphaproteobacteria) (12), marine methylotrophs (class 252 

Gammaproteobacteria) (67), Prochlorococcus (phylum Cyanobacteria) (27) Thermoproteota (68) 253 

and Patescibacteria (69) are commonly found in aquatic niches. This is well reflected in the 254 

MAG data, illustrating that genomes from aquatic sites are among the smallest (Figure 1). 255 

Aquatic environments are less physically structured than soils. However, there is some vertical 256 

structure in physicochemical parameters connected to depth variables such as light penetration, 257 

temperature, oxygen, and nutrient gradients, as well as microscale spatial structure due to the 258 

presence of heterogeneous particles. Aquatic structures are drivers of the genetic repertoire of 259 

aquatic microorganisms. For instance, metagenomic sequencing reported the increase of genome 260 

sizes for Bacteria and Archaea with increasing depths (70). While several hypotheses have been 261 

proposed as drivers of such evolutionary trends, nutrient limitation might be one of the central 262 

factors determining genomic properties (71) (Table 1). Temperature might be as important, for 263 

example, a study based on twenty-one Thermoproteota and Euryarchaeota fosmids 264 

(Euryarchaetoa is now reclassified into Methanobacteriota, Halobacteriota and 265 

Nanohaloarchaeota) showed high rates of gene gains through HGT to adapt to cold and nutrient-266 

depleted marine environments (72). Moreover, aquatic hyperthermophilic microbes show 267 

reduced genomes compared to those of microorganisms adapted to very cold environments (73-268 

75) supporting this negative relation between temperature and genome size. One last driver we 269 

want to point out in aquatic environments is light which decreases with depth. Photosynthetic 270 

bacteria such as Prochlorococcus spp. are well differentiated into a high-light adapted ecotype 271 

with smaller genome sizes (average 1.6 Mb), and a low-light-adapted ecotype with slightly 272 

bigger genome size (average 1.9 Mb) (76).  273 

 274 

In host-associated microbiomes, microorganisms are shaped in their ecological and evolutionary 275 
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history by the differing levels of intimacy they might have with their host. For example, within 276 

the Chlamydiaceae family there are lineages that have evolved intracellular associations with 277 

eukaryotes (77, 78). Recent metagenomic studies uncovered that extensive metabolic capabilities 278 

were present in the common ancestor of environmental Chlamydiia (class) and subsequently lost 279 

in Chlamydiaceae (79). Moreover, host-associated bacterial genomes show a variation in size 280 

depending on the type of host (plant, animal, etc.) and the type of association they have with the 281 

host (endosymbiotic, ectobiotic or epibiotic). Generally, microorganisms associated with 282 

Arthropoda (52), humans (80) and other mammals show smaller genomes whereas protist- and 283 

plant-associated bacteria present bigger genomes (81) (Figure 5). In silico studies of 284 

Alphaproteobacteria show massive genome expansions diversifying plant-associated Rhizobiales 285 

and extreme gene losses in the ancestor of the intracellular lineages Rickettsia, Wolbachia, 286 

Bartonella and Brucella that are animal- and human-associated (82). Within the Chloroflexota, 287 

genomes associated with plants or algae range between 4.75 and 7.5 Mb, and genomes 288 

associated with Arthropoda range between 0.75 and 1.75 Mb (Figure S1). Although 289 

microorganisms that are host-associated are widely known for their reduced genomes, the 290 

characteristics of metagenomic host-associated bacterial genomes show lower coding density 291 

than streamlined genomes in aquatic environments in the genome sizes ranged 1 – 4 Mb (Figure 292 

1F). However, at size range below 1 Mb the MAGs and available genomes of endosymbionts are 293 

often reduced and at same time have high coding density of ~91% (Figure 1F) (83).  294 

 295 

Table 1 296 

 297 
Chemical, physical or biological variable influencing genome 

size 

Taxa References 

Temperature Literature review indicates a negative correlation between genome size and temperature. 

Comparative genomic of genomes of 

hyperthermophilic microorganisms shows 

average genome sizes of about 2.3 Mb with 

very active horizontal gene transfer (HGT) 

mechanisms 

Thermus thermophilus (phylum 

Deinococcota) 

Thermus spp. 

(73, 74) 

Metagenomics suggest that gene gains would 

have played an important role in adaptation 

to low temperature and oligotrophic deep 

marine environments 

Thermoproteota and Euryarchaeota 

(phyla) 

(72) 

Comparative genomics of isolates in one 

genus indicate larger genomes in colder 

environments. 

Janthinobacterium spp. (class 

Gammaproteobacteria) 

(75) 

Environmental samples indicate that 

hypersaline environments could increase 

gene gain via HGT, whereas thermal 

environments decrease it.  

Halobacteria and Thermoproteia 

(class) 

(84) 

Nutrients When talking about nutrients, diversity and quantity of nutrients are two factors that drive ecology and 

evolution. Some literature present conflicting results on how these two dimensions of nutrient influence 

genome sizes.  

Metagenomics indicate dominance of 

reduced genomes in the Baikal Lake. Small 

genomes are thought to reflect the extremely 

oligotrophic conditions.  

Actinobacteria, Bacteroidetes, 

Cyanobacteria Verrucomicrobia and 

Thermoproteota 

 

(85) 

Online databases indicate that larger 70 closely related bacterial (23)  
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genome-sized species may dominate 

environments where resources are scarce but 

diverse. 

genomes 

Phylogenomics of isolates show gene loss in 

functions like resource scavenging and energy 

acquisition when adapting to nutrient-rich 

environments in algae and corals. 

Roseobacter spp. (class 

Alphaproteobacteria) 

(55) 

Oceanic metagenomic data show positive 

correlation between nutrient concentration 

and genome size. 

Different bacteria phyla (86) 

Metagenomics indicates small genomes in 

mesopelagic environments are the result of 

adaptation to energy scarcity. 

Some Thermoproteota (phylum) (68) 

Whole-genome shotgun sequencing indicated 

that deep oligotrophic marine environments 

are dominated by large genomes with high 

GC content. 

Lactobacillales (phylum Firmicutes) (87) 

Oceanic metagenomic samples suggest that 

deeper areas with more nitrate and 

phosphate as nutrients are dominated by 

large genomes and high GC content. 

Bacteria (SAR11, Prochlorococcus 

spp., Roseobacter spp., etc.,) and 

Archaea (Thermoproteota and 

Euryarchaeota) 

(70) 

Light In oxygenic phototrophs there is negative correlation between light irradiance and the genome size. 

Genomes of cultures and single cells show 

high-light-adapted ecotypes with smaller 

genome sizes and low-light-adapted ecotypes 

with bigger genomes. 

Prochlorococcus spp. (phylum 

Cyanobacteria) 

(27, 76, 88) 

Particles Microorganisms with particle associated lifestyle tend to have larger genome sizes. 

Comparison of metagenomes in coastal 

ecosystems show larger genome sizes for 

particle associated microorganisms than free-

living. 

Metagenomic data (89) 

Particle associated microbes have larger 

genome sizes than free-living bacteria. 

Cyanobacteria and Bacteroidetes (86) 

Host-association Host-associated bacterial genomes show a variation in size depending on the type of host (plant, animal, 

etc.) and the type of association they have with the host (endosymbiotic, ectobiotic or epibiotic) 

In silico studies indicate massive genome 

expansions in plant-associated bacteria.  

 

Alphaproteobacteria (class) (82) 

Isolates from sugarcane (Saccharum sp.) 

rhizosphere and endophytic roots and stalks 

show 26 individual genomes of associated 

bacteria whose genomes ranged from 3.9 to 

7.5 Mbp. 

Diverse bacterial taxa 

(Burkholderiaceae, Rhizobiaceae, 

Caulobacteraceae, 

Xanthomonadaceae, etc.) 

(90) 

Genomic comparison of 3837 bacterial 

genomes identified thousands of plant-

associated gene clusters and found genomes 

of plant associated microorganisms tended to 

be larger 

Diverse bacterial taxa (81) 

Intense genome reduction in isolates of 

microbes associated with aphids 

(Arthropoda). 

Buchnera aphidicola (class 

Gammaproteobacteria) 

(52) 
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In vitro cultures and metagenomic datasets 

indicate reduced genome sizes in microbes 

associated with humans and other 

mammmals 

Salmonella enterica (class 

Gammaproteobacteria) 

Patescibacteria (phylum) 

(80, 91) 

 

Environmental samples indicate that 

symbionts and epibionts of other microbes 

present highly reduced genomes.  

 Bacteria of the CPR clade (such as 

Vampirococcus lugosii) and Archaea 

of the DPANN 

(92, 93) 

Viruses  Marine isolates support the “Cryptic Escape 

Theory”. In here small cell size is a strategy to 

minimize viral predation. This article also 

finds a correlation between genome size and 

cell size. 

Different bacteria lineages 

(Cyanobacteria, Proteobacteria, 

Actinobacteria, among others) 

(94) 

 298 

Conclusion 299 
Since the sequencing of the first isolate bacterial genomes in 1995, profound improvements in 300 

both sequencing technologies and bioinformatic analysis tools have accelerated our access to the 301 

genetic make-up of the uncultivated majority. This allowed us for the first time to provide a more 302 

global view of the distribution of bacterial and archaeal genomes from a wide array of 303 

microbiomes on Earth. In this review, we offer an overview where genomes obtained from 304 

environmental samples show to be smaller than those obtained from laboratory isolates. This is 305 

not because isolates and MAGs from the same species differed in size but because cultivation 306 

methods bias the sampling of nature towards obtaining copiotrophs, fast growers, and more 307 

metabolically independent microorganisms. Moreover, we find the distribution of genome sizes 308 

across the phylogenetic tree of Bacteria and Archaea reflects that genome evolution occurs in a 309 

gene gain phase and gene loss phase, as the biphasic model theory suggests. Finally, we review 310 

the ecological and evolutionary effectors causing the varying sizes of genomes in different 311 

environments. Soils might have the microorganisms with the bigger genome sizes due to higher 312 

environmental variability. Genomes in aquatic environments might be shaped by vertical 313 

stratification in nutrients, particles, and light penetration. Host-associations might shape genomes 314 

differentially based on the kind of relationship between the microorganisms and the host. We 315 

expect that as the microbial ecology field keeps moving forward, we get a deeper resolution on 316 

physicochemical, spatial, and biological drivers of bacterial and archaeal genome sizes. 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

Figures 331 

 332 
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 333 
 334 

Figure 1.  Overview of the genome size distribution across Earth’s microbiomes. Genome size 335 

distribution of Bacteria [A] and Archaea [C] from different environmental sources and across 336 

different bacterial [B] and archaeal [D] phyla is shown for a total of 23,186 genomes. The coding 337 

density [E] and GC content (%) [F] is shown for the bacterial MAGs across different 338 

environments and isolates. Pair-wise t-test was performed in all variables of panel E and F and if 339 

the pair-wise comparison was significant (p < 0.05) it is shown in panel G in black. The figure 340 

was constructed in R (95) using representative isolate genomes from GTDB database as well as 341 

MAGs (metagenome assembled genomes) from GEMs catalog. The GEMs genomes available 342 
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were clustered into mOTUs (metagenomic operational taxonomic unit) at the threshold of the 343 

operational definition of species (95% ANI). To eliminate over-representation biases for some 344 

mOTUs, we used only one representative genome per mOTU from the GEMs catalog in the 345 

plots. We addressed the same bias for the GTDB database by selecting the representative isolate 346 

genome per species cluster that were circumscribed based on the ANI (>=95%) and alignment 347 

fraction ((AF) >65%) between genomes (21). To construct the figures, we plotted the estimated 348 

genome sizes which was calculated based on the genome assembly size and completeness 349 

estimation provided. In panel B, ‘other’ includes 45 phyla all with less than 5 genomes. For a 350 

complete list of bacterial phyla please see Figure S2. In panel D, ‘other’ includes 2 phyla all with 351 

less than 5 genomes. For a complete list of archaeal phyla please see Figure 3. 352 

 353 
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 383 
 384 

Figure 2. Phylogenetic tree of bacterial representative genomes shows variation in genome size 385 

between and within phyla. Tree was constructed using GTDB-tk and aligned concatenated set of 386 

120 single copy marker proteins for Bacteria (96). Estimated genome size shows distribution of 387 

larger and smaller genomes sizes are non-monophyletic. The tree shows origin of the genomes: 388 

aquatic, terrestrial and host-associated genomes are MAGs from GEMs database. The backbone 389 

genomes were added by GTDB-tk and it consists of their representative genomes. Estimated 390 

genome size scale is from 0 Mb to 14 Mb. Phyla are color-coded and legend includes the phyla 391 

with most representatives. Phyla with less than 50 genomes are not included in the legend. For 392 

full legend please refer to Figure S2. Burkholderiales is the Order with most genomes.  393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

Proteobacteria (10614)

Bacteroidota (4997)

Actinobacteriota (4297)

Firmicutes_A (3189)

Firmicutes (2245)

Patescibacteria (2148)

Cyanobacteria (847)

Chloroflexota (843)

Verrucomicrobiota (840)

Acidobacteriota (716)
Planctomycetota (645)

Desulfobacterota (554)

Spirochaetota (415)

Campylobacterota (410)

Firmicutes_I (331)

Firmicutes_C (271)

Myxococcota (242)
Firmicutes_B (212)

Omnitrophota (181)

Nitrospirota (172)

Gemmatimonadota (164)

Marinisomatota (158)

Desulfobacterota_A (155)

Bdellovibrionota (143)

Desulfuromonadota (121)

Armatimonadota (103)

Verrucomicrobiota_A (99)

Elusimicrobiota (99)

Fusobacteriota (94)

Deinococcota (93)

Thermotogota (83)

Fibrobacterota (82)

Eremiobacterota (75)

Synergistota (64)Dependentiae (58)

Binatota (57)

Chloroflexota_A (52)

Estimated genome size

Gammaproteobacteria (6541)

Alphaproteobacteria (4036)

Burkholderiales (1902)

Phyla

aquatic (7305)

host-associated (4505)

terrestrial (1930)
Origin of genomes

Phyla

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.18.427069doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427069
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

 401 

 402 

 403 
 404 

Figure 3. Phylogenetic tree of archaeal representative genomes shows variation in genome size 405 

between and within phyla. Tree was constructed using GTDB-tk and aligned concatenated set of 406 

122 single copy marker proteins for Archaea (96). Estimated genome size shows distribution of 407 

larger and smaller genomes sizes are non-monophyletic. The tree shows origin of the genomes: 408 

aquatic, terrestrial and host-associated genomes are MAGs from GEMs database. The backbone 409 

genomes were added by GTDB-tk and it consists of their representative genomes. Estimated 410 

genome size scale is from 0 Mb to 6 Mb. Phyla are color-coded.  411 

 412 
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 413 
 414 

Figure 4. Conceptual figure of the evolutionary forces driving the expansion and reduction of 415 

genome sizes. Gene loss is represented with a bigger arrow because it dominates the 416 

evolutionary history we know based on extant microorganisms. 417 
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 424 
 425 

Figure 5. Genome size distribution in different sub-categories of environments. [A] Aquatic 426 

archaeal genomes, [B] aquatic bacterial genomes, [C] terrestrial archaeal genomes, [D] terrestrial 427 

bacterial genomes, [E] hos-associated archaeal genomes and [F] host-associated bacterial 428 

genomes. Inside the parenthesis is stated the number of MAGs per sub-environment.  429 
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