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Abstract Several decades of research have convincingly

shown that classical human leukocyte antigen (HLA) loci

bear signatures of natural selection. Despite this conclu-

sion, many questions remain regarding the type of selective

regime acting on these loci, the time frame at which selec-

tion acts, and the functional connections between genetic

variability and natural selection. In this review, we argue

that genomic datasets, in particular those generated by next-

generation sequencing (NGS) at the population scale, are

transforming our understanding of HLA evolution. We show

that genomewide data can be used to perform robust and

powerful tests for selection, capable of identifying both pos-

itive and balancing selection at HLA genes. Importantly,

these tests have shown that natural selection can be identi-

fied at both recent and ancient timescales. We discuss how

findings from genomewide association studies impact the

evolutionary study of HLA genes, and how genomic data

can be used to survey adaptive change involving interaction

at multiple loci. We discuss the methodological develop-

ments which are necessary to correctly interpret genomic

analyses involving the HLA region. These developments

include adapting the NGS analysis framework so as to deal with
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the highly polymorphic HLA data, as well as developing

tools and theory to search for signatures of selection, quan-

tify differentiation, and measure admixture within the HLA

region. Finally, we show that high throughput analysis of

molecular phenotypes for HLA genes—namely transcrip-

tion levels—is now a feasible approach and can add another

dimension to the study of genetic variation.
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Introduction

The availability of genomic data at the scale of populations

is transforming our understanding of the processes shaping

human genetic variation. We are now able to answer ques-

tions which, little more than 15 years ago, seemed beyond

our grasp. We can construct detailed portraits of how natu-

ral selection has acted, and identify variants that increased

in frequency as a consequence of positive selection (the pro-

cess that drives advantageous variants to high frequencies)

(reviewed in Fu and Akey 2013). In some cases, it is possible

to provide mechanistic links between the favored variant and

its phenotypic effect, and to estimate the timescale of selec-

tion (for example, in the cases of variants involved in pig-

mentation (Beleza et al. 2013), lactase persistence (Coelho

et al. 2005), and adaptation to altitude (Yi et al. 2010)).

There is also increasing interest in developing meth-

ods for the cases in which the advantageous variant was

already present in the population at the time of onset of

selection (i.e., selection on standing variation) (Messer and

Petrov 2013). In addition, methods are being developed to

identify instances in which selection favors a combination
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of genetic variants (polygenic selection), instead of a single

advantageous allele (Daub et al. 2013).

Genomic data is helping understand the rate at which we are

burdened by deleterious mutations, and the importance of nega-

tive selection—which removes deleterious variants from pop-

ulations—in the human genome (Fu et al. 2013; Henn et al.

2015). Deleterious variants have been hypothesized to play an

important role in explaining phenotypic variation, particularly

that of common diseases, and population level exome and

genome sequencing are being used to tackle this question

(with their role remaining controversial, Hunt et al. 2013).

Several studies have also searched for genes under balancing

selection, which is the selective regime that maintains several

variants in a population at intermediate frequencies, making

the persistence time of each allele longer than that of neutral

ones. Under this regime, the combination of alleles at a locus

is often critical to defining fitness values, and the fitness of

an allele may vary over time (reviewed in Key et al. 2014).

Information is also increasingly available for molecular

phenotypes, helping understand the functional basis of nat-

ural selection. A particularly powerful method is RNAseq,

which relies on next generation sequencing of RNA

molecules to quantify gene expression. Using such informa-

tion, Fraser (2013) showed that episodes of recent selection

in humans are much more likely to affect gene expression

than protein sequence.

Much of the progress in our understanding of how natural

selection acts in humans is based on genomewide studies.

However, focusing on genes for which we have prior func-

tional knowledge can provide important insights on how

natural selection acts. In this review, we integrate knowledge

on the function of classical human leukocyte antigen (HLA)

genes with population genomic data. We discuss how the

genomic perspective both illuminates the study of HLA

evolution, and contributes to our understanding of natural

selection in the remainder of the genome.

HLA genes code for glycoproteins that bind peptides and

present them to T cell receptors. If the bound peptide is non-

self (i.e., possibly from a pathogen or a mutated protein),

cellular and humoral responses can be mounted (see Box

1). HLA genes also interact with other molecules involved

in innate and adaptive immunity. Among these are the killer

cell immunoglobulin-like receptors (KIR), for which some

HLA class I molecules are ligands (Trowsdale et al. 2001;

Parham 2004). When cells are infected or neoplastic, the

expression of classical class I loci may decrease, reducing

the availability of ligand for KIR molecules. This activates

cell lysis by natural killer cells (Yawata et al. 2008).

Research over the last three decades has successfully brought

together knowledge on HLA function with advances in theoreti-

cal population genetics, allowing evolutionary hypotheses

to be tested (in particular through the implementation of neutra-

lity tests, Box 2). There are now several key ideas which

are firmly established regarding HLA evolution. First, it is

undisputed that HLA genes bear the mark of balancing

selection: there are no demographic or genetic factors that

can account for the unusually high degree of polymorphism,

excess of nonsynonymous variants, or linkage disequilibrium

at these genes (Meyer and Thomson 2001; Garrigan and

Hedrick 2003; Spurgin and Richardson 2010). Second, there

are several lines of support for a role of pathogen-driven

selection in shaping HLA variation: HLA genes are associ-

ated with susceptibility and resistance to infectious disease

(Cagliani and Sironi 2013); experimental studies show that

pathogen pressure influences MHC variability (Penn et al.

2002); HLA polymorphism is correlated with pathogen

diversity (Prugnolle et al. 2005); variation is highest at sites

which define the peptide binding repertoire (Hedrick et al.

1991; Hughes and Nei 1988; Bitarello et al. 2016).

While it is clear that “documenting selection” at HLA

genes is no longer a challenge, important questions regard-

ing HLA evolution remain open, and can be addressed

using genomic data. First, while it is accepted that bal-

ancing selection increases the diversity of HLA genes,

there are several types of selection that can produce this effect.

Balancing selection is an umbrella term that encompasses

heterozygote advantage (or overdominance), selection vary-

ing over space or time, and negative frequency-dependent

selection (see Box 3). Fleshing out which of these explains

the high variability at HLA is a challenge (Spurgin and

Richardson 2010), and we discuss the contributions of novel

analytical methods and genomewide studies.

Second, the timescale of selection remains an open question.

Tests of neutrality used before genomic data became available

were only well-powered to detect long-term selection (Garri-

gan and Hedrick 2003), whereas newer approaches—which

rely on dense genetic data spanning thousands of sites—can

also detect recent selection (Field et al. 2016; Albrechtsen

et al. 2010; Guan 2014). We discuss the findings brought by

these approaches, and argue that they indicate that selection

on HLA genes can be identified at various timescales.

Third, the increasing understanding of HLA function

shows that interactions of HLA genes with other loci—

and not just their immediate role in peptide binding—must

also be considered in evolutionary studies (Trowsdale and

Knight 2013). Further, phenotypic information, including

expression levels of the HLA genes, has rarely been incor-

porated into evolutionary analyses. We discuss the chal-

lenges associated to bringing these functional perspectives

to the study of HLA evolution.

HLA variation in the age of genome sequencing

Several generations of methods have been used to identify

the alleles carried by an individual: PCR-RFLP, SSOP,
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immobilized probes, PCR-SSP, and Sanger sequencing

(reviewed in Erlich 2012; Carapito et al. 2016). The move to

next-generation sequencing (NGS) is actively taking place,

and in recent years many protocols have been described for

HLA typing and SNP calling (Erlich et al. 2011; Lank et al.

2012; Wang et al. 2012; Danzer et al. 2013; Cao et al. 2013;

Major et al. 2013; Langer et al. 2014; Monos and Maiers

2015; Norman et al. 2016; Zhou et al. 2016a).

When deep-sequencing data are available, which is usu-

ally the case for HLA-targeted protocols, the tiling of over-

lapped reads can provide phase information and thus HLA

allele sequences (Hosomichi et al. 2013). However, when

polymorphisms are on different and non-overlapping reads,

statistical approaches to phasing must be used (Castelli

et al. 2015, 2017; Lima et al. 2016). Mayor et al. (2015)

presented a solution to both the genotype ambiguity and

phasing issues by using the PacBio single molecule real

time (SMRT) sequencing technology, which generates long

reads spanning the entire sequence of individual HLA Class

I genes. The method provided accurate and unambiguous

HLA genotype calls, representing a promising prospect.

However, an understanding of the role of selection

in shaping HLA variation also requires placing it in a

genomewide context, so that selective and demographic fac-

tors can be disentangled, and genomewide significance test-

ing can be performed. In practice, this requires extracting

information on HLA variation from datasets with sequence

information for the entire genome. Such data are increas-

ingly generated by exome or whole-genome sequencing, as

well as high density SNPs arrays (e.g., The 1000 Genomes

Project Consortium 2010; Fu and Akey 2013).

Many genomewide studies, such as Phase I of the 1000

genomes project (The 1000 Genomes Project Consortium

2010), have analyzed HLA polymorphism using standard

sequencing pipelines. Given the importance of the 1000

genomes project data to evolutionary research, we previ-

ously assessed the reliability of SNP calls which they pro-

vide (Brandt et al. 2015). We found that although frequency

estimates for HLA SNPs are relatively robust (absolute fre-

quency difference less than 0.1 for 75% of the SNPs), the

SNP genotype calls within the HLA loci have alarmingly

high error rates (18.6% of calls are incorrect) and are biased

toward over-representing the alleles present in the reference

genome.

This bias occurs because HLA genes are highly polymor-

phic, and standard methods align short reads (50 to 250 bp)

to a single reference genome. Thus, individuals which are

heterozygous at a site, but have one allele which is closer

to the reference genome, are likely to only map that variant,

with the other one failing to align (Fig. 1). The fact that HLA

genes are members of a multi-gene family further compli-

cates the sequencing, since reads from one locus can be

incorrectly mapped to another.

An increasingly used strategy to address these chal-

lenges is to map short reads, generated by NGS, to multi-

ple MHC/HLA references (e.g., IPD-IMGT/HLA database

(http://www.ebi.ac.uk/ipd/imgt/hla/)), as opposed to a sin-

gle reference genome. Recent methods have implemented

this idea to efficiently provide more reliable alignments

(Castelli et al. 2015, 2017; Lima et al. 2016), HLA allele

calls (see Hosomichi et al. 2015 for a review and Bauer

et al. (2016) for an evaluation of 12 computational meth-

ods), HLA expression estimates (Boegel et al. 2012), or to

assemble individual genomes for the MHC region (Dilthey

et al. 2015). Encouragingly, Phase III of the 1000 genomes

project (The 1000 Genomes Project Consortium 2015) has

used this strategy, allowing reads to align to 500 known

HLA sequences, in addition to the human reference genome.

A more general solution is to perform genomic align-

ment using indices which account for the variation across

the whole genome, including the MHC. These indices can

be built in the form of genome graphs (Novak et al. 2017),

an efficient strategy to summarize population-level variation

in a graph structure, appropriate for subsequent short-read

mapping. Application of such graph indices improves SNP

calling in the MHC (Dilthey et al. 2015; Novak et al. 2017),

and will likely supplant the use of a single linear reference

index in the future. Overall, it appears that a more accu-

rate assessment of HLA variability will come from both

the development of new bioinformatic tools, as well as the

generation of new data (in particular with long sequencing

reads).

Another development is the imputation of HLA alle-

les based on dense SNP data. Imputation involves using a

training set—for which both MHC region SNPs and HLA

allele calls are available—to infer the HLA alleles carried by

an individual with unknown HLA genotype, but for which

SNP data is available (Dilthey et al. 2011; Zheng et al.

2013; Zhou et al. 2016a; Leslie et al. 2008). Zhou et al.

(2016a) showed that the concordance rate between imputed

HLA alleles and sequencing-based calls can reach 0.93

when using a large reference panel. Imputation is proving

to be important in the context of association studies, since

it allows an individual’s HLA genotype to be included as a

variable (Sanchez-Mazas and Meyer 2014), or even to infer

specific amino-acids and amino-acid motifs, and quantify

their contribution to overall associations (Jia et al. 2013).

However, imputation-based estimates will be uninforma-

tive with respect to novel variants, or those at very low

frequencies. When interest is in identifying novel vari-

ants (Klitz et al. 2012), deep sequencing associated with

mapping methods that account for variation will be required.

In addition, imputation accuracy depends on the availabil-

ity of reference panels with shared ancestry to the target

population, representing an important challenge for studies

of highly admixed populations with ancestral components

http://www.ebi.ac.uk/ipd/imgt/hla/
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Fig. 1 How genotyping errors arise from the mapping of reads to

a single reference genome. The left panel represents a case where

sequence reads come from an individual who is heterozygous at a SNP,

but the rest of the gene is similar to the reference for both haplotypes.

The reads from both haplotypes can be aligned to the reference, and the

SNP genotype is called correctly (i.e., determined by the analysis soft-

ware). The panel on the right shows a case where one of the haplotypes

is different from the reference sequence at more positions than the

mismatch threshold (in this simple example, only one mismatch is

allowed). Reads from this haplotype will not align to the reference

sequence and the genotype will be incorrectly called as homozygous at

the SNP of interest. Modified from the Genes to Genomes blog, http://

genestogenomes.org/the-trouble-with-hla-diversity/

which are relatively poorly studied (Levin et al. 2014; Nunes

et al. 2016).

In conclusion, we now have access to a wide array of options

for uncovering HLA variation. Whereas genomewide

sequencing based on alignment to a reference genome

generates biased allele frequency estimates, pipelines that

account for known HLA diversity can generate accurate infor-

mation (Dilthey et al. 2015). Importantly, whole genome

sequencing places HLA data in a genomewide context,

an ideal scenario for separating demographic and selective

contributions to variation, as we discuss in the next section.

Genome scans for balancing selection

The early work on selection at HLA loci was carried out

in the “candidate gene” framework, wherein specific HLA

loci were tested for selection (see Box 2) (e.g., Hedrick

and Thomson 1983, 1986; Hughes and Nei 1988). With

genomewide data, on the other hand, it is no longer neces-

sary to a priori define which loci will be queried for selec-

tion, allowing us to investigate how extreme the evidence

for selection at HLA loci is with respect to the remainder of

the genome.

Most genomewide scans for selection search for genes

that underwent positive selection. The main signatures of

this mode of selection are: low variability coupled with

extended linkage disequilibrium, caused by the increase in

frequency of a favored variant; high population differentia-

tion, due to selection favoring locally adaptive alleles; and

an abundance of low frequency variants, due to mutations

introducing novel variants into a region recently homoge-

nized by selection (reviewed in Fu and Akey 2013) (see Box

2). Because many of these signatures can also result from

non-selective events such as population expansions and bot-

tlenecks, it has become standard for tests of selection to

explicitly control for demographic history (e.g., by simu-

lating null distributions under realistic scenarios) (Nielsen

et al. 2005). These simulations are parametrized by esti-

mates of the demographic history based on the genomewide

data itself. In this way, sets of genes under positive selection

have been identified in a robust manner (Akey 2009).

Although there was strong support for positive selection

on genes related to immunity (e.g., Nielsen et al. 2005; Tang

et al. 2007b; Carlson et al. 2005), few genomic scans found

evidence for it in the extended MHC region. Exceptions

are the studies of de Bakker et al. (2006) and Sabeti et al.

(2006), which identified long range haplotypes in the MHC

http://genestogenomes.org/the-trouble-with-hla-diversity/
http://genestogenomes.org/the-trouble-with-hla-diversity/
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region. The weak support for selection on HLA genes across

several genomewide studies (Akey 2009) is largely a con-

sequence of the fact that they used tests designed to detect

positive—and not balancing—selection (Box 2).

In order to detect balancing selection, it is necessary

to develop statistics sensitive to deviations expected under

this selective regime. Appropriate tests include search-

ing the genome for regions with ancient shared polymor-

phisms (e.g., Leffler et al. 2013; Teixeira et al. 2015),

extreme patterns of polymorphism relative to divergence

(e.g., DeGiorgio et al. 2014; Andrés et al. 2009; Bitarello

et al. 2017), an excess of intermediate frequency variants

(DeGiorgio et al. 2014; Andrés et al. 2009; Bitarello et al.

2017; Hedrick and Thomson 1983), an excess of identity

by descent (IBD) (Albrechtsen et al. 2010), or unusually

low differentiation between populations (Hofer et al. 2012;

Sanchez-Mazas 2007) (Box 2).

Tests using these approaches have been implemented,

and the findings for HLA genes are summarized in Table 1.

All studies show hits in the MHC region, with HLA-B

appearing in five out of the six scans (Andrés et al. 2009;

DeGiorgio et al. 2014; Leffler et al. 2013; Teixeira et al.

2015; Hofer et al. 2012; Bitarello et al. 2017). In addition,

HLA genes show the most extreme evidence of balancing

selection in tests based on ancient shared polymorphisms

(Klein et al. 1993; Teixeira et al. 2015; Leffler et al. 2013),

and are highly enriched for extreme p-values in tests based

on polymorphism and divergence (e.g., DeGiorgio et al.

2014; Andrés et al. 2009; Bitarello et al. 2017). This not

only confirms that HLA genes have been under long-term

balancing selection but also shows that they are extreme in

their patterns of diversity, compared to non-HLA loci.

The MHC region is also the most extreme in a test based

on identity-by-descent (IBD), which identifies genomic

regions with extensive identity among individuals, consis-

tent with the hypothesis that they descend from an advan-

tageous ancestral variant (Albrechtsen et al. 2010). This

signature supports very recent selection (<500 generations,

or 10,000 years), which can be positive or balancing. Inter-

estingly, Albrechtsen et al. (2010) showed that the increase

in IBD is not expected under heterozygote advantage, lead-

ing them to argue that selection at HLA loci may be

frequency-dependent, or to fluctuate over time, possibly

tracking changes in the evolving pool of pathogens that

individuals are exposed to.

Important developments in our understanding of HLA

evolution have also come from two recent technological

breakthroughs: the ability to sequence ancient samples and

the genomic analysis of extremely large samples. Using

over 200 ancient genomes, Mathieson et al. (2015) found

several loci in modern Europeans which experienced greater

changes in allele frequencies (with respect to their pre-

sumed ancestors, as inferred using the ancient samples),

than expected under drift alone. Within the MHC region of

Europeans there are at least seven independent signals for

selective changes (consistent with both balancing selection

or the occurrence of multiple sweeps). New findings also

came from the study of Field et al. (2016) which used the

theoretical prediction that recently selected variants should

be associated with a less diverse genetic neighborhood than

the non-selected variants. Leveraged by very large samples

of sequence data, they identified genomic regions where

selection has driven advantageous alleles to high frequen-

cies in a time frame as recent as 2 000 years, and found that

at least three independent SNPs within the extended MHC

region were among the most significant targets (Field et al.

2016). This test is designed to detect recent positive selec-

tion, implying that balancing selection should not be seen as

the only regime relevant to HLA evolution.

Finally, a recent study sequenced genomes of an extant

population from the Northwest coast of North America,

along with ancient genomes of individuals presumably from

the same group, but from before contact with Europeans

(Lindo et al. 2016). The study found that at HLA-DQA1

there was a shift from past positive to recent negative

selection, bringing about marked allele frequency changes.

The authors conjecture that this may have resulted from

environmental or social changes.

In summary, genomic scans for selection have revealed

two important patterns. First, when tests designed to iden-

tify balancing selection are used, evidence for selection at

HLA genes is strong and extreme with respect to the remain-

der of the genome, confirming what was known based on

candidate gene approaches. Second, two studies have iden-

tified selection within the MHC region that is consistent

with regimes other than heterozygote advantage, and involv-

ing very recent time frames (Albrechtsen et al. 2010; Field

et al. 2016). According to these studies, and also a recent

ancient-DNA study of Lindo et al. (2016), selection drove

recent changes in allele frequencies (e.g., via frequency-

dependent selection, or selection in a fluctuating selective

environment). This supports the view that several selective

regimes account for the patterns of variation of HLA genes.

Disease associations

Identifying HLA variants that contribute to resistance to

infectious diseases has important evolutionary implications.

Simply put, alleles conferring disease resistance are com-

pelling evidence for past and ongoing selection.

A standard approach for identifying genetic variants that

contribute to disease phenotypes is to carry out association

studies. These compare the frequencies of genetic variants in

groups that differ in a phenotype of interest, such as the

occurrence of a specific disease. Thus, for example, if a variant
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Table 1 Findings for HLA genes in genome scans for balancing selection

Reference Method Selection timescaled Selection at HLA

Andrés et al. (2009) SFS and polymorphism/divergence ratio Ancient HLA-Ba

Albrechtsen et al. (2010) Excess IBD regionsb Recent Entire MHC region

Leffler et al. (2013) Long-term shared polymorphism Ancient HLA-Bc, HLA-DQA1,

HLA-DQB1, HLA-DPB1

DeGiorgio et al. (2014) Composite likelihood Long-term HLA-A, HLA-B, HLA-C,

HLA-DRA, HLA-DRB1,

HLA-DRB5, HLA-DQA1,

HLA-DQB1, HLA-DPB1

Teixeira et al. (2015) Long-term shared polymorphism Ancient HLA-C, HLA-DQA1, HLA-DPB1

Bitarello et al. (2017) SFS and polymorphism/divergence ratio Long-term HLA-B, HLA-C, HLA-DPA1,

HLA-DQA1, HLA-DPB1,

HLA-DRB1, HLA-DRB5,

HLA-DQB2, HLA-DQB1, HLA-G

IBD identity-by-descent, SFS site-frequency spectrum
aOut of five HLA genes analyzed

bA signature compatible with both positive and balancing selection

cThe shared polymorphism falling in this gene is a CpG site (has higher mutation rate and could reflect recurrent mutation)
dLong-term: more than 1 million years ago; ancient: greater than species-divergence time (6 million years, for humans and chimps)

is significantly less common among those with the disease

than those without it, it is said to be associated with protection

from the disease (provided that case and control groups

are carefully controlled for possible confounding variables).

Through much of the 1980s and 1990s, HLA variants were

tested for association with resistance or susceptibility to

infectious diseases. These studies revealed a large number

of associations with infectious diseases, some of the most

studied being leprosy, malaria, chronic viral hepatitis, and

further into the 90s, HIV/AIDS (see Blackwell et al. 2009,

for a thorough review). However, these early studies carried

important limitations: samples sizes were modest, typically

on the order of hundreds, and a priori selected candidate

genes were investigated, making it difficult to differenti-

ate between associations which were causal or driven by

linkage disequilibrium.

The explosion of data that has occurred in the last decade

has brought about important changes. Millions of genetic

markers are now queried in extremely large samples, allow-

ing genomewide association studies (GWAS) to identify

genes or genomic regions associated with diseases, with-

out having to define beforehand the candidate loci to be

queried. These association studies are bringing important

contributions to our understanding of how genetic variation

at HLA genes is related to response to pathogens. Below, we

highlight four insights.

First, the recent generation of GWAS have confirmed that

variation at HLA genes is directly associated with the out-

come of many infectious diseases. Among these are HIV

(Fellay et al. 2007), leprosy (Zhang et al. 2009), hepatitis

(Kamatani et al. 2009), and tuberculosis (Sveinbjornsson

et al. 2016).

Second, diseases which until recently were impractical to

study in a GWAS setting can now be investigated. A remark-

able example is the analysis led by the personal genomics

company 23andMe, which performed an association study

for infectious diseases in a sample of 200,000 customers

which had volunteered information on various medical con-

ditions (Tian et al. 2016). The study found that variation

at HLA genes or within the MHC region is associated

with viral (chickenpox, shingles, cold sores, mononucleo-

sis, mumps, warts caused by papillomavirus, strep throat,

scarlet fever, pneumonia) and bacterial (tonsil infections, ear

infections) diseases.

Third, because GWAS query SNPs throughout the entire

MHC region, it is possible to fine-map associations, i.e.,

identify associations within a narrower region of the

genome. This has shown that several associations involve

sites with regulatory function. For example, AIDS pro-

gression is associated with a 5’ UTR regulatory variant of

HLA-C (Kulkarni et al. 2011) and hepatitis B recovery is

associated with variation at a 3’ UTR site which modulates

-DPB1 expression (Thomas et al. 2012). From an evolution-

ary perspective, this indicates that selection on HLA genes

is not restricted to the structural domains involved in peptide

binding, but also involves regulatory variants.

Fourth, dense SNP data allows HLA alleles to be imputed

(see Section 3) and thus the amino acid sequence coded
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by HLA genes to be inferred. In this way, it is possible to

study associations at the molecular level, identifying specific

changes in a protein that are associated with disease resistance

or susceptibility (Nishida et al. 2016; Tian et al. 2016).

Even more activity has taken place in the study of genetic

associations with autoimmune diseases. Samples of tens

of thousands have routinely been assembled, and copious

associations with the MHC region or specific HLA genes

have been firmly established, including diabetes, arthritis,

celiac disease, lupus, ankylosing spondylitis, multiple scle-

rosis, psoriasis, and Crohn’s disease (reviewed in Trowsdale

and Knight 2013). From an evolutionary perspective, the

existence of autoimmune conditions associated with rela-

tively common HLA alleles poses an important question:

if the disease reduces an individual’s chances of survival

and reproduction, why have the underlying alleles not been

driven to low frequencies?

To answer this question, an influential working hypoth-

esis that the same alleles which conferred resistance to

infectious diseases and rose in frequency are also asso-

ciated with autoimmune conditions (Corona et al. 2010;

Sams and Hawks 2014; Abadie et al. 2011). This suggests

a trade-off occurs, where the benefits brought by disease

resistance outweigh the fitness costs of autoimmunity. A

formal test involves asking whether alleles that are associ-

ated with autoimmune disease risk have increased evidence

of having experienced selection. In the context of non-HLA

variants, Fumagalli et al. (2011) found a correlation between

the abundance of autoimmune disease predisposing vari-

ants and pathogen abundance, an indirect support for the

trade-off hypothesis. Specifically for HLA, Abadie et al.

(2011) examined whether the HLA-DQA1 variant which

predisposes to celiac disease showed evidence of past selec-

tion, but found no support. Corona et al. (2010) surveyed

GWAS for complex diseases, and found that for type 1 dia-

betes strongly predisposing SNPs are also those with strong

evidence for positive selection.

Although this approach has not yet delivered a clear pic-

ture, the strong evidence of pathogen-driven selection at

HLA genes, coupled with the extreme abundance of HLA

involvement in autoimmunity, call for further development

of evolutionary approaches investigating the possibility that

there is a causal connection between evolutionary response

to infectious diseases and autoimmunity.

Multilocus effects: epistasis and hitchhiking

There is increasing awareness that many adaptive traits are

polygenic, and that searching for allele frequency changes

at multiple loci is an important improvement over “sin-

gle locus” approaches (Daub et al. 2013; Berg and Coop

2014). There are several reasons why we expect adaptation

involving HLA genes to be polygenic, which we discuss

below.

There is support for epistatic interactions between vari-

ants at distinct HLA loci, driving advantageous haplotypes

to higher frequencies than expected by chance, and thus

explaining the high linkage disequilibrium in the MHC.

One reason why a haplotype may be favored is that it car-

ries a combination of alleles that presents a broader range

of pathogenic peptides than expected for a random pair of

alleles. This hypothesis was recently supported by a theo-

retical model, as well as data analyses showing that alleles

in linkage disequilibrium on average have a lower overlap

in the peptide binding repertoire than expected by chance

(Penman et al. 2013). Using a simulation-based approach,

van Oosterhout (2009) also illustrated that epistasis among

HLA loci can play an important role in shaping extant

patterns of diversity. Finally, GWAS for HLA loci found

multi-locus effects, as is the case of the association of

the DR2 haplotype (DRB1*1501 and DRB5*0101) with

multiple sclerosis (Gregersen et al. 2006).

Second, multi-locus interactions have also been docu-

mented between HLA genes and those outside the extended

MHC (see Box 1). For example, Kirino et al. (2013) found

a strong epistatic interaction between HLA-B*51 and the

ERAP1 locus, with one specific genotype greatly increas-

ing the susceptibility to Behçet’s disease. ERAP1 codes

for the protein responsible for trimming the pathogens to

be loaded and presented by HLA class I molecules, making

interactions between it and HLA genes functionally plausible.

Another case of epistasis involves the interaction

between HLA and KIR. KIR molecules can recognize HLA

class I molecules carrying HLA-A3, -A11, -Bw4, -B27,

-C1, or -C2 epitopes, as well as HLA-F and possibly HLA-G

(reviewed in Parham et al. 2012). In a study of 30 human

populations, Single et al. (2007) found a strong negative

correlation between the frequency of HLA-B alleles of the

Bw4 group, which carry an isoleucine at position 80, and

the presence of KIR3DS1 gene. Because Bw4 alleles are lig-

ands for KIR3DS1, which is an “activator” (a gene whose

protein product initiates a cytotoxic response), the combina-

tion of high frequencies of ligand and receptors would result

in an abundance of excessively activating genotypes, which

are prone to autoimmunity. At the other extreme, combi-

nations of low frequencies of ligand and KIR3DS1 would

result in an excessively weak KIR response, increasing the

susceptibility to infection. Selection against genotypes at

these extremes could account for the observed correlations

seen in Single et al. (2007). Using a similar approach,

Hollenbach et al. (2013) found strong (r > 0.79) and signif-

icant correlations between the frequencies of KIR2DL3 and

HLA-C1 in 45 populations.

Support for these interactions also comes from the study

of specific populations. In the African KhoeSan, the C2
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allotype occurs at an unusually high frequency (63%),

whereas in the Yucpa of South America it is the C1 allotype

that is common (83%) (Hilton et al. 2015; Gendzekhadze

et al. 2009). Strikingly, in both populations, the receptors

for these common allotypes show evidence of having been

recently selected and driven to high frequencies, with the

mutant forms having reduced or complete lack of function.

In both cases, these population-specific variants may have

been favored due to their ability to restore a balance between

C1, C2, and the KIR inhibitory allotypes, providing the ben-

efits of reducing the chances of originating preeclampsia

predisposing genotypes (see below). Functional studies pro-

vide further support for epistasis, showing that homozygotes

for HLA-C1 respond more intensely to a viral infection

than those carrying HLA-C2 alleles (Ahlenstiel et al. 2008,

see also Augusto et al. 2015, for an example involving the

autoimmune disease pemphigus).

The epistatic interactions between KIR and HLA also

influence reproduction. For example, mothers homozygous

for the KIR haplotype from group A (defined by the

presence of four framework genes—KIR2DL4, KIR3DL2,

KIR3DL3, and KIR3DP1—and KIR2DL1, KIR2DL3,

KIR2DS4, and KIR3DL1) have an increased rate of miscar-

riage, pre-eclampsia, and weight restriction at birth when

they also carry an HLA-C1 allele and the fetus has an HLA-

C2 allele. This results from a less effective remodeling of

blood vessels, necessary for placentation (Penman et al.

2016; Hiby et al. 2014; Hiby et al. 2004). On the other

hand, individuals with group A KIR haplotypes and HLA-

C1 alleles respond to viral infections more efficiently than

individuals with group B haplotypes (which carry genes

encoding KIRs with decreased or no binding to HLA class

I molecules, such as KIR2DS2, KIR2DS3, and KIR2DS5) in

combination with HLA-C2 alleles (e.g., hepatitis C and HIV

clearance). This tradeoff may result in alternating episodes

of reproductive and pathogen-driven selection, explaining

the maintenance of polymorphism for KIR haplotypes and

for the HLA-C1 and -C2 group alleles in many human

populations. This scenario was supported by computer sim-

ulations (Penman et al. 2016) and is consistent with patterns

of HLA and KIR polymorphism in many human popula-

tions (see details in Trowsdale and Moffett 2008; Parham

and Moffett 2013; Augusto and Petzl-Erler 2016).

Strong selection at a locus can also influence variation at

linked sites through genetic hitchhiking. Under pathogen-

driven selection an advantageous variant is driven to higher

frequencies at a greater speed than would be expected under

drift, and can thus drag linked variants (Charlesworth 2006).

This selective regime can increase the frequency of slightly de-

leterious mutations near the selected gene. Accordingly,

Chun and Fay (2011) showed that for regions in the neigh-

borhood of sites with strong evidence for positive selection,

there is an enrichment for deleterious polymorphism.

In the context of the MHC region, a natural hypothe-

sis is that genes close to the classical HLA loci will show

an enrichment of deleterious variants, with respect to the

expectations based on genomewide controls. Mendes (2013)

investigated this hypothesis, and in an analysis of the 1000

Genomes data (The 1000 Genomes Project Consortium

2010) found that genes that hitchhike with HLA loci have

an increased proportion of putatively deleterious variants

(Fig. 2). This hypothesis was also tested by Lenz et al.

(2016), who used a larger exome-based dataset to show an

excess of intermediate frequency deleterious polymorphism

within the MHC. Further, these authors used simulations

to show that strong balancing selection—comparable in

strength to that seen at HLA genes—makes deleterious vari-

ants more common than would be expected without the

hitchhiking effect.

These findings are particularly important given the large

number of disease associations in the MHC region (includ-

ing the flanking non-HLA loci), suggesting that balancing

selection in HLA genes may drive the accumulation of

deleterious variants in their neighborhood, contributing to

the associations with disease phenotypes.

To conclude, we emphasize that ongoing research recom-

mends that variation at HLA genes be studied with reference

to both the genes they interact with, as well as considering

how physical linkage leads to changes in polymorphism at

neighboring sites. Placing HLA variation in a genomewide

context will be essential in order to achieve these goals.

Fig. 2 The value of ψ , a statistic that measures the proportion of

deleterious variants, in three sets of SNPs. The statistic is defined by

ψ =
LS .PN

LN .(PS+1)
, where P represents the number of polymorphic sites,

L represents the number of potentially mutable sites, and S and N

subscripts refer to synonymous and nonsynonymous sites. Higher val-

ues of ψ indicate a greater proportion of deleterious (or functional, in

the case of the SNPs from the classical HLA genes) variants. Values

are shown for exons of classical HLA genes, genes in the immediate

neighborhood of the HLA genes (“peri-HLA”), and genes outside the

MHC region. Values were computed for sites with a minor allele fre-

quency (MAF) greater than 0.05, to avoid the effect of rare deleterious

variants, which are overrepresented in the control set. The peri-HLA

genes have higher load (ψ) than the controls
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Population differentiation

If distinct populations are under a regime of selection favor-

ing HLA heterozygotes, population differentiation, mea-

sured by FST , is expected to be lower at HLA than at neutral

loci (Schierup et al. 2000). This is because balancing selec-

tion maintains alleles segregating in populations for longer

than expected under neutrality, reducing FST (Box 2).

An alternative scenario is that selection favors different

alleles in distinct populations, driving locally adaptive HLA

alleles to higher frequencies, increasing population differen-

tiation.This expectation is consistent with pathogen-driven

selection at HLA, for which there is theoretical (Borghans et al.

2004; Hedrick 2002) and empirical support (e.g., Prugnolle

et al. 2005; Hedrick 2006). Given the premise that pathogen

populations differ between regions, pathogen-driven selection

could drive locally adaptive HLA alleles to higher frequencies,

and thus cause an increase in population differentiation.

Surprisingly, support for both of these markedly different

expectations has been found (Table 2), with some studies

showing HLA to be unusually highly differentiated, and oth-

ers reporting unusually low differentiation at HLA. What

is the cause for the inconsistency among studies? Analyses

using FST are sensitive to various aspects of the methodology,

all of which can influence the results, as we discuss below.

First, studies which compare different markers, such as

HLA alleles and microsatellites, are sensitive to the effects

of the mutational mechanism and mean heterozygosity on

FST , making direct contrasts between HLA and non-HLA

markers unreliable (a challenge for the studies of Meyer

et al. 2006; Sanchez-Mazas 2007). Second, the statistical tests

used to define extreme FST differ among studies, including

outlier approaches, tree-based tests, simulation under an

various demographic models, among others (Table 2).

Third, the power to detect balancing selection may vary

depending on the timescale of separation of populations,

and features of their demographic histories (reduced HLA

differentiation being harder to detect in admixed popula-

tions, for which genomewide FST is lower). Fourth, SNPs

with low heterozygosities are constrained to low FST ,

implying that HLA and non-HLA SNPs must be compared

in a way that accounts for this effect (Bhatia et al. 2013).

In order to overcome these issues, we analyzed HLA dif-

ferentiation among major continental groups, accounting for

these effects (Brandt 2015) (Fig. 3). Marker-type effects are

accounted for by only analyzing SNP data. The non-HLA

SNPs provide expectations due to demographic processes,

allowing a statistical assessment of how extreme the dif-

ferentiation is for SNPs within HLA loci. FST values for

SNPs in the HLA and non-HLA groups are averaged using

an approach that controls for the differing heterozygosity

distributions in those groups (Reynolds et al. 1983; Bhatia

et al. 2013). With these methodological controls in place,

the results in Fig. 3 show that SNPs within HLA genes

have lower FST than genomewide SNPs when we com-

pare highly diverged populations (i.e., those from different

continents). Population pairs from the same continent have

higher differentiation for SNPs in the HLA genes compared

to other genomic regions.

How do these findings compare to those of previous studies?

Low differentiation among HLA SNPs is consistent with the

findings of Hofer et al. (2012), which detected a similar pattern

in a dataset including highly divergent human populations.

The increased differentiation seen by Bhatia et al. (2011)

among African populations is also consistent with this

result, since that study analyzed closely related populations.

Table 2 Population differentiation at HLA genes relative to neutral markers

Reference Neutral marker HLA marker Method FST in HLA

Akey et al. (2002) SNP SNP (genomewide Empirical outlier Not an outlier

scan)

Meyer et al. (2006) Microsatellites HLA allelea Empirical outlier Not an outlier

Sanchez-Mazas (2007) Microsatellites HLA allelea Empirical outlier Lower in HLA

and RFLPs

Bhatia et al. (2011) SNP SNP (genomewide Tree-based test Higher in HLA

scan)

Nunes (2011) Microsatellites Microsatellites Simulation Higher in HLA

Hofer et al. (2012) SNP SNP (genomewide Simulation Lower around HLA-C

scan)

Colonna et al. (2014) SNP SNP (genomewide Empirical outlier + clustering Not an outlier

scan)

Brandt (2015) SNP SNP and HLA alleles Empirical outlier Lower for HLA SNPs;

HLA alleles are not outliers

aSee Box 1 for the definition of HLA allele
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Also, one of the SNPs driving the high differentiation

reported in Bhatia et al. (2011) was linked to HLA-DPA1,

a locus we excluded because it did not show strong evi-

dence of balancing selection in previous studies (Solberg

et al. 2008; Begovich et al. 2001), and showed instances

of directional selection (Hollenbach et al. 2001). Indeed,

for HLA-DPA1 population differentiation was higher than

genomewide in our data as well, consistent with local pos-

itive selection. Interestingly, HLA-DPA1 has one of the

strongest signatures of long term balancing selection in

Bitarello et al. (2017). A plausible scenario is that HLA-

DPA1 is under a selective regime that varies through time,

leaving a signature of past balancing selection and more

recent local positive selection.

Given the overall result that natural selection on HLA genes,

over long periods of time, results in decreased population

differentiation (Fig. 3, y-axis), it is natural to consider how

to reconcile this with the expectation that pathogens would

drive local adaptation, making populations more different

from one another at HLA genes. There are two possible

ways in which low differentiation at HLA SNPs can be

reconciled with a model of local adaptation of HLA alleles.

First, the signal of local adaptation (high differentiation)

may only be detectable when comparing closely related

populations, such as the ones in the same continent. Indeed,

previous studies have detected high differentiation in HLA

alleles between populations within the same continent (Cao

et al. 2004; Qian et al. 2013), and we have detected higher

FST at HLA SNPs than genomewide SNPs for pairs of

populations in the same continent (Fig. 3).

Second, low differentiation at SNPs and high differenti-

ation at HLA alleles may be expected if we consider that

HLA alleles are defined by multiple SNPs, and that most

SNPs are shared between two or more alleles. The impor-

tant role that intragenic recombination and gene conversion

play in generating HLA allele diversity also contributes to

the sharing of SNPs among different HLA alleles (Parham

and Ohta 1996). Thus, a plausible scenario is that individual

SNPs have low FST , but the haplotypes which they define

may show high divergence. Biologically this amounts to

considering that balancing selection favors the maintenance

of polymorphism at specific sites, key to defining peptide

binding specificities (Bitarello et al. 2016). However, the

specific combinations of variants (i.e., the HLA alleles)

that become more frequent differ among populations as a

function of the pathogens driving the selection.

Selection and admixture

Individuals in admixed populations have genomes which

are a mosaic of different ancestries (Winkler et al. 2010).

The size and ancestry of segments is determined by fac-

tors which are demographic (e.g., proportion of ancestors

from each ancestry, timing of admixture) and genetic (e.g.,

recombination rates). If genetic variants from one of the

Fig. 3 FST among pairs of populations. Each point depicts the mean

FST for non-HLA (x-axis) and HLA (y-axis) SNPs between pairs of

populations in each continent (AFR: Africa; EAS: East Asia; EUR:

Europe; SAS: Southeast Asia). Pairs of populations from the same

continent are represented by white-filled points, and pairs of popula-

tions from different continents, by solid black points. SNP data was

acquired from the 1000 Genomes data phase III (The 1000 Genomes

Project Consortium 2015), and HLA SNPs were filtered according to

Brandt et al. (2015) to avoid errors due to mapping bias. FST values

were weighted by allele frequency, so that the excess of rare variants

in the non-HLA SNPs does not cause a reduction of mean FST in that

class. Notice that HLA differentiation is higher than genomewide for

population pairs from the same continent, and lower than genomewide

when populations from different continents are compared
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Fig. 4 Deviation from average genomewide ancestry in four admixed

populations along chromosome 6. The degree to which local ances-

try deviates from genomewide averages is shown for African ancestry

(black lines). The region encompassing the MHC region is indicated

by gray shading. Ancestral and admixed populations are from the

1000 genomes project (African and European; ftp://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/release/20110521/), except for the ancestral Native

American sample, which is from the HGDP-CEPH (http://www.cephb.

fr/hgdp/index.php). Local ancestries were estimated using RFMIX

(Maples et al. 2013). The ancestry deviation measure is the differ-

ence between ancestry at a given genomic position with respect to

the genomewide average, normalized by the standard deviation of the

ancestry estimate (thus providing a measure of the number of standard

deviations each ancestry departs from its genomewide average)

parental populations are advantageous to individuals in the

admixed population, they will rise in frequency and thus

cause an over-representation of a specific parental ances-

try in the genomic region under selection. Thus, regions

of the genome exhibiting ancestry proportions that deviate

from the genomewide average provide evidence for recent

selection.

To illustrate the power of this approach in understanding

selection at HLA genes, we calculated local ancestries (i.e.,

the ancestry of a specific position of the genome) for indi-

viduals from four admixed populations (The 1000 Genomes

Project Consortium 2010). For each position in the genome,

we quantified how much the ancestry proportions differed

from the genomewide average, within each population. For

chromosome 6, we find that two of the populations (Colom-

bian and Mexican) have an excess of African ancestry in

the MHC region (the threshold of significance set at 4.4

standard deviations, following Seldin et al. 2011) (Fig. 4).

To explore this pattern further, we reviewed the findings of

eight studies that investigated the distribution of local ancestries

and recorded how often the MHC showed unusual ancestry

proportions with respect to genomewide averages. In total, six

out of eight studies report an excess of African ancestry in the

MHC region for at least one admixed population (Table 3).

Interestingly, this effect is seen in populations with different

admixture histories, distinct African parental populations

and proportion of contributions, and using different methods

to estimate local ancestry. Overall, the support for deviation

Table 3 Ancestry proportions in the MHC region vs genomewide

Reference Admixed population Method Observation

Tang et al. (2007a) Puerto Rican Frape Excess African

Johnson et al. (2011) Mexicans SABER+ Excess European

Brisbin et al. (2012) Four Latino populationsa PCAdmix Excess African in Colombian, Puerto Rican and Ecuadorian

Bhatia et al. (2014) African Americans RFmix non-significant increase in African

Guan (2014) Mexican ELAI Excess African

Rishishwar et al. (2015) Colombian SUPORTMix Excess African

Zhou et al. (2016b) Mexican ELAI Excess African

Deng et al. (2016) Seven Latino populationsb Structure and Z-test Excess African

aDominican Republic, Colombian, Puerto Rican, Ecuadorian

bMexican, Guatemalan, Costa Rican, Colombian, Chilean, Argentinean, Brazilian

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
http://www.cephb.fr/hgdp/index.php
http://www.cephb.fr/hgdp/index.php
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in local ancestry for the MHC region is strong and recurrent,

prompting us to consider both its possible biological basis

as well as the likelihood of methodological artifacts.

A basic concern is whether local ancestry methods are

biased by features of the MHC region (other than a true

shift in ancestry proportions). For example, Price et al.

(2008) pointed out that most deviations in ancestry reported

by Tang et al. (2007a) (both within and outside the MHC

region) were associated with regions of high linkage dis-

equilibrium (LD). However, new methods for detecting

local ancestry control for LD, but still detect an excess of

African ancestry in the MHC (Guan 2014; Brisbin et al.

2012) (Table 3). An additional concern is that some ances-

try inference methods require phased data, something that

is challenging for the MHC, given the high polymorphism.

However, ancestry results are consistent across methods that

do (e.g., Brisbin et al. 2012) and do not (Guan 2014) require

phased data, suggesting this is not the factor driving the findings.

Further problems for local ancestry estimation were raised by

Pasaniuc et al. (2013), who found that loci with increased devi-

ation in local ancestry show high polymorphism and increased

rates of mendelian inconsistency. These authors also showed

that inappropriate parental reference panels (e.g., distantly

related from the true parental populations) can introduce errors

in the analysis. This fact is of extreme relevance since samples

from the true parental populations are not always available.

Further studies will be needed so as to evaluate whether

technical artifacts underlie the shifts in ancestry propor-

tions in the MHC region. In this sense, a promising result

was reported by Deng et al. (2016), who used simulations

under a human demographic model to show that the ances-

try deviation in the MHC of Latin American populations is

not expected in the absence of selection. In addition, Tang

et al. (2007a) showed that an unusual African ancestry pro-

portion in the MHC region of Puerto Rican individuals is

found using local ancestry analysis based on SNPs, as well

as more traditional admixture estimates using classical HLA

markers and microsatellites, providing additional evidence

that the shifts in ancestry are not a feature observed with one

type of marker or inference method.

Ancestry deviations place the MHC as a striking example

of a genomic region under strong recent selection. Neverthe-

less, even if this general picture is confirmed in new studies,

several questions remain to be addressed. First, how many

and which HLA alleles are favored by selection, causing the

deviation in local ancestry? Second, is the recurrent finding

of excess African ancestry explained by higher genomewide

diversity in Africans (which indirectly could lead to the har-

boring of more advantageous variants)? Clearly, a biological

understanding of these patterns is still lacking.

Selection favoring alleles of a specific ancestry can also be

seen through the analysis of archaic genomes. These studies

found evidence for adaptive introgression from archaic

groups (Denisova and Neanderthal) into modern humans

(reviewed in Racimo et al. 2015), including in the MHC

region. Abi-Rached et al. (2011) suggested that a highly

divergent allele, HLA-vB*73, entered the modern human

gene pool through introgression from archaic hominins. In mod-

ern populations, HLA-B*73 is practically absent everywhere

except West Asia, and almost all haplotypes carrying HLA-

B*73 also carry HLA-C*15:05, which only reaches appreciable

frequencies in Asia (Abi-Rached et al. 2011). Simulations

showed that introgression from archaic hominins provides a bet-

ter fit to the data than a model in which the allele arose in Africa

before the Out-of-Africa event (Abi-Rached et al. 2011).

Yasukochi and Ohashi (2016) argue that this evidence

is circumstancial, noting that B*73 was not found in

any archaic genome and that strong long-term balanc-

ing selection could maintain the alleles independently in

both species. Also, if Denisova introgression into modern

humans occurred in Southeast Asia, that is where HLA-

B*73 should have higher frequency.

On the other hand, Abi-Rached et al. (2011) found even

more compelling evidence for adaptive introgression coming

from the HLA-A*11 allele, which occurs at high frequencies in

Papua New Guinea and China (but is absent from Sub-Saharan

African) and is found in long haplotypes with HLA-C*15

and HLA-C*12, both of which exhibit higher diversity in Asia

than in Africa. A likely explanation is that all HLA-A*11

found in modern humans came from Denisovan introgression,

followed by a rise in frequency in Asia. In brief, it may well be

that when humans left Africa, they encountered new selective

pressures to which archaic hominins were better adapted on a

local scale, and strong selection favored those adaptive variants

acquired through introgression. However, current evidence

for adaptive introgression of HLA alleles should be inter-

preted with caution because of the technical difficulties in

assessing variability of HLA genes, and small sample sizes

of archaic species. Also, apparent introgression might result

from incomplete lineage sorting, which is particularly likely

in the MHC region, where long-term balancing selection

results in trans-specific polymorphisms (Klein et al. 1993;

Teixeira et al. 2015; Leffler et al. 2013).

From genome to transcriptome

While most studies on selection at HLA genes focus on pep-

tide binding properties, expression levels are also important

in determining phenotypes related to disease progression,

both for infection and cancer (Blais et al. 2012; Thomas

et al. 2012; Apps et al. 2013; Boegel et al. 2014). For exam-

ple, high expression of HLA-C enhances an individual’s

ability to respond to HIV infection, whereas low expression

confers protection against Crohn’s disease (Blais et al. 2012;

Apps et al. 2013). Additionally, expression varies broadly
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Fig. 5 Fold change in expression estimates obtained by kallisto (Bray

et al. 2016) using a supplemented index relative to a standard refer-

ence index (y = 0). Results are presented for genotypes with different

degrees of similarity to the reference genome (bar colors). We used 48

CEU individuals for which RNAseq data are available from the Geu-

vadis consortium (Lappalainen et al. 2013) and HLA genotypes were

determined by Sanger sequencing (Gourraud et al. 2014). Genotypes

at each locus were divided according to quartiles of differences from the ref-

erence allele at that locus. “Most similar” and “Most different” correspond

to the first and fourth quartiles respectively (12 individuals each).

among tumor types, ranging from loss/downregulation to

high expression (Boegel et al. 2014). Such opposing effects

of expression levels may account for the selective maintenance

of differential expression across HLA alleles or haplotypes.

Despite the potential importance of HLA expression to

evolutionary and medical studies, few datasets with this

information have been generated. To a large degree, this

results from the the difficulty in quantifying expression for

genes which show an unusually high polymorphism and are

members of a multi-gene family. For highly polymorphic

genes, array-based expression requires probes that avoid

polymorphic regions, which if not accounted for can cause

differential binding due to genetic variation, biasing expres-

sion estimates. The same difficulty applies to quantitative

PCR, which needs primers that can bind the entire range

of alleles of a specific locus, posing an important challenge

when developing the experimental design.

To overcome these difficulties, customized arrays

(Vandiedonck et al. 2011) and qPCR primer sets (Ramsuran

et al. 2015) have been developed. These account for polymor-

phism and can provide locus-level expression estimates.

However, these studies are limited in the number of samples

and population diversity surveyed, and the requirement of

custom arrays or primer sets makes repetition of surveys

on additional populations and extension to other HLA loci

challenging. Further, the expression of each allele can-

not be directly estimated, and is instead imputed from the

locus-level expression of homozygotes (Ramsuran et al.

2015). This places the quantification of HLA expression as

an enterprise still in its infancy, although the studies carried

out to date show that HLA expression varies between alle-

les, loci, and tissues (Boegel et al. 2012; Boegel et al. 2014;

Ramsuran et al. 2015; Melé et al. 2015).

The RNAseq technology, which quantifies expression

using NGS, is increasingly being used in genomewide stud-

ies and has the potential to provide large-scale information

on HLA expression, but also has challenges. The technology

relies on the mapping of short reads (generated by sequencing

the transcriptome) to an index, so as to quantify the abun-

dance of mRNA originating from each gene or exon. In the

event that the surveyed individual is highly divergent from

the sequences in the index (as is often the case due to the

high polymorphism of HLA genes), it is likely that many

reads will be discarded due to large numbers of mismatches,

failing to document expression, and biasing the estimates

toward the overexpression of variants which are more simi-

lar to the one in the index. This results in inaccurate and/or

biased gene expression estimates and can cause spurious

eQTLs to be identified (Panousis et al. 2014). This problem

is similar to that of read mapping for HLA genes in NGS,

discussed in Section 3 (Brandt et al. 2015).

As a consequence, large studies which surveyed the whole-

transcriptome in many individuals (e.g., Lappalainen et al.

2013; Battle et al. 2014) using high-throughput technologies

do not provide reliable estimates for the expression of HLA

genes. An alternative is the development of bioinformatic tools

that use whole-transcriptome RNAseq data to accurately esti-

mate HLA expression. This has the benefit of placing the HLA

expression data within the context of genomewide expression

levels, and allows the use of RNAseq datasets that are already

available (Lappalainen et al. 2013; Battle et al. 2014; Melé

et al. 2015).

A promising approach is to use of an index with thousands of

HLA sequences reported in databases such as IPD-IMGT/HLA,

instead of relying on a single reference genome. For example,

seq2HLA is a pipeline proposed by Boegel et al. (2012)
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which uses a form of in silico genotyping to both infer the geno-

types at HLA genes as well as estimate the expression of

each HLA allele at a locus. Such allele-specific estimates are not

obtained when RNAseq data is processed by standard

pipelines, which provide expression estimates at the level of

genomic features such as annotated genes, exons or isoforms.

The work by Boegel et al. (2012) showed that the use of

an appropriate index (i.e., the set of reference sequences to

which the short reads generated by the NGS will be aligned)

is the key element for the improvement in the estimates.

The benefits of this approach are shown in Fig. 5: expres-

sion estimates increase when using indices supplemented

with many HLA sequences, relative to expression estimated

using the single reference genome. This effect is more pro-

nounced for individuals carrying alleles which are most

different from the reference. This is expected, since these

are the cases where the use of the reference genome leads to

the greatest underestimation of expression.

This result suggests that bioinformatic methods tailored

to deal with HLA diversity can bring important changes to

expression estimates and thus to eQTLs mapped, providing

new hypotheses for functional elements which drive HLA

expression variation. Promising candidates will include

UTR sites, promoter/enhancer polymorphism, transcription

factor binding sites, etc, all of which have been documented

as enriched categories of eQTLs in standard genomewide

studies (e.g., Lappalainen et al. 2013).

It will also be possible to further explore initial findings

regarding expression differences among genes and alleles

(revealed by qPCR studies). In particular, the pattern of rel-

atively even expression among HLA-B alleles (Ramsuran

et al. 2017), and variable expression levels among lineages

at HLA-A (Ramsuran et al. 2015) and HLA-C (Apps et al.

2013) will be amenable to investigation on a wider scale.

Conclusions

Our current knowledge of HLA evolution differs with

respect to that of a decade ago in many ways. To a large

degree, this results from our ability to place HLA variation

within the context of the entire genome. Genomewide studies

have contributed to our understanding of selection by

increasing the power of tests (thanks to the large number

of samples and genetic markers) and by allowing variation

from the entire genome to be used as a control for complicating

factors, including population history. We now have evidence that

selection on classical HLA genes extends beyond the het-

erozygote advantage model and has operated from ancient

to very recent timescales (Albrechtsen et al. 2010; Field

et al. 2016; Tang et al. 2007a; Mathieson et al. 2015).

By comparing genetic differentiation at HLA genes to that of

the remainder of the genome, we have found instances of dec-

reased differentiation (e.g., Hofer et al. 2012), as well as of

increased differentiation (Bhatia et al. 2011). Such studies

will help investigate which HLA variants represent adapta-

tions to local selective pressures, and which are shared exten-

sively at global scale, as an outcome of long-term balancing

selection. We are now also able to investigate patterns of admix-

ture in HLA genes (Tang et al. 2007a; Guan 2014), providing

insights into the time frame and mode of selection that occurs

when populations of different ancestries meet and interbreed.

We can increasingly test co-evolutionary hypotheses,

such as the relation between KIR and HLA polymorphism

(e.g., Single et al. 2007), and test hypotheses of epistatic

interactions. Genomic data also allows us to test the effect

of strong selection on HLA upon linked variants, a pro-

cess which may be driving the accumulation of deleterious

mutations near HLA genes (e.g., Lenz et al. 2016).

A whole new layer of information, namely expression levels,

can be generated on a large scale, and integrated with information

on genetic variation. This will contribute to association stud-

ies, by incorporating a key cellular phenotype—expression

level—as a covariate. Such approaches will also help bring

functional information to the investigation of HLA evolu-

tion (for example, in the form of allelic lineages (Bitarello

et al. 2016) or supertype grouping (Francisco et al. 2015)).

Our perspective is that, increasingly, we will see the

immunogenetics community working closely with researchers

in genomics. Placing HLA within the genomic context is

key to understanding HLA genes; complementarily, immu-

nogenetics expertise will be key to interpreting genomewide

studies, within which HLA genes are frequent and striking

findings (be it in GWAS, selection, admixture or expression

studies). In addition, lessons and challenges associated with

studying a highly polymorphic region under intense balancing

selection, as is the case for the MHC, can be carried over

to the study of other genes or genomic regions under bal-

ancing selection (Leffler et al. 2013; Teixeira et al. 2015;

DeGiorgio et al. 2014; Bitarello et al. 2017).
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Appendix

BOX 1. HLA terminology

The vocabulary within the immunogenetic literature is often quite challenging to

non-specialists. Here is a brief summary of key terms used in this review.

MHC region. The MHC (Major Histocompatibility Complex) genomic region, lo-

cated on the short arm of chromosome 6 (6p21.3), which contains the HLA (Human

Leukocyte Antigen) genes, as well as at least 200 other genes (approximately 40%

of which are involved in some aspect of the immune response), spanning around 4

Mb (reviewed in Shiina et al, 2009). It is the most gene-dense region of the genome

(with on average one gene every 16 kb) and, due to the presence of HLA loci, shows

unusually high levels of polymorphism. It is also referred to as the HLA region, in

humans.

Extended MHC region. The extended MHC comprises around 8 Mb of chromosome

6, containing over 250 protein-coding genes. This region expands the MHC borders

to segments with high linkage disequilibrium with the MHC and contains additional

genes involved in the immune response (Horton et al, 2004; Shiina et al, 2009).

HLA genes (or loci). Classical HLA genes are the highly polymorphic loci that

code for the proteins that present peptides to the T-cell receptors (HLA-A, -B, -C,

-DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRA1), and distinguish themselves from

the Non-Classical genes, which have reduced polymorphism and do not have a role

in peptide presentation.

HLA allele. This refers to a specific DNA sequence at an HLA gene, and can be

thought of as a haplotype of SNP variants. There are extraordinarily large numbers

of HLA alleles, with more than 12,000 for class I alleles and more than 4,000 for

class II. (see details in http://www.ebi.ac.uk/ipd/imgt/hla/stats.html).

HLA haplotype. The combination of alleles at several HLA genes on a single chro-

mosome of a given individual.

HLA function. HLA class I molecules, expressed in most cells, bind peptides of

intracellular origin and present them on the cell surface to the T-cell receptors of

CD8+ T-cells, initiating a cytotoxic response if they are recognized as foreign. HLA

class II molecules, expressed in antigen presenting cells, typically bind peptides

of extracellular origin and present them to the TCRs of CD4+ cells, triggering a

signaling process that leads to the multiplication of T-helper cells, leading to the

stimulation of B-cells, which produce antibodies to the antigen that triggered the

response.
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BOX 2. Detecting genomic regions with signatures of natural selection

What are "neutrality tests"?

Since the proposition of the neutral theory of molecular evolution, a myriad of

tests have been proposed for the null hypothesis of neutrality (i.e., that evolutionary

change results exclusively from mutation and genetic drift). When the neutral model

is rejected, plausible alternative hypotheses include positive or balancing selection.

Because the null hypothesis is based on the neutral model of evolution, these tests

are called ’neutrality tests’.

Tests based on differentiation among populations. If the intensity of positive selec-

tion at a locus varies among populations, an allele can become common exclusively

in the population where it is advantageous. As a consequence, differentiation at

this selected locus will be greater than for the rest of the genome (Lewontin and

Krakauer, 1973). However, for loci under balancing selection, differentiation is ex-

pected to be reduced because variants will be kept at intermediate frequencies in all

populations. Tests based on population differentiation typically use FST to compare

differentiation at focal loci to simulated expectations or genomic controls (i.e., all

other genes). These tests can detect relatively recent selection.

Tests based on linkage disequilibrium and diversity. Variants under strong positive

selection rise in frequency rapidly, reducing diversity at neutral loci in their vicinity.

For balancing selection, because two or more variants are maintained, local genetic

variation increases in the region. These tests are powerful to detect recent and strong

positive selection, and less powerful for long-term balancing selection.

Tests based on patterns of allelic frequency distribution (or "Site Frequency Spec-

trum", SFS). These tests compare the distribution of observed allelic frequencies

to those expected under neutrality. These include Tajima’s D, Fu and Li’s D, Fu

and Li’s F, Fay and Wu’s H tests, the T2 test (DeGiorgio et al, 2014) and the NCD

statistics (Bitarello et al, 2017). Positive selection is expected to increase the num-

ber of low frequency variants, whereas balancing selection increases the number

of intermediate frequency variants around the selected site. These tests can detect

selection at comparatively deeper timescales than those based on LD or FST and

are influenced by demographic parameters. For example, a bottleneck will prefer-

entially remove low frequency variants, thus shifting the SFS to more intermediate

frequencies even in the absence of balancing selection (Gattepaille et al, 2013). A

crucial point of SFS-based tests is that the expectations should be evaluated for a

neutral scenario that includes demographic parameters, since various demographic

trajectories can mimic the effects of selection (e.g., population structure results in

many of the signatures expected under balancing selection).
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Tests contrasting intra and inter-specific variation. These include the dN/dS (non-

synonymous to synonymous substitution rates ratio), HKA and MK tests, as well

as the T1 and T2 tests (DeGiorgio et al, 2014) and the NCD2 statistic (Bitarello

et al, 2017). While both positive and balancing selection are compatible with ele-

vated dN/dS levels, they produce opposing signatures for HKA and MK tests (both

of which compare polymorphism and divergence levels): positive selection causes

lower polymorphism levels compared to divergence within the target species, bal-

ancing selection causes higher polymorphism relative to divergence. These tests are

most powerful to detect long-term (>  1 million years) selection in humans.

Shared polymorphisms between species. If species divergence is not extremely re-

cent and population sizes are not extremely large, we expect lineages to share their

most recent common ancestor with other lineages from the same species. In the

case of humans, the probability that two lineages do not coalesce before the split

between humans and chimpanzees from their common ancestor, in the absence of

selection, is on the order of 10− 4 (Leffler et al, 2013). Considering the size of the

human genome, one would still expect to find 100 of such sites. However, by also

requiring the same to occur for chimpanzees, this sharing is extremely unlikely for

neutrally evolving sites, thus providing the basis for a test of neutrality (Klein et al,

1993). If a polymorphism is maintained by balancing selection for a sufficiently long

time, it may be found in two sister species, such as human and chimpanzee. This

test is appropriate to detect ancient balancing selection, operating at a deeper

timescale than the divergence between humans and the sister species (e.g. 6 myr

for humans and chimpanzees).

"Outlier" vs "model-based" approaches

Commonly, summary statistics are calculated for genomic windows or bio-

logically defined entities (such as genes). There are two main strategies that the

statistic can be used to assess if this genomic region conforms to neutral expectations.

Simulation-based tests. Using simulations that assume neutral evolution, a null dis-

tribution is generated for the test statistic. Empirical data that are extreme with

respect to this distribution are considered to reject the null hypothesis of neutrality.

This approach relies on an appropriate demographic model, and allows the quan-

tification of the proportion of the genome that has extreme signatures of selection

compared to neutral expectations.

Empirical outliers. In this approach the genomic regions with the most extreme

values for the chosen test-statistic are regarded as regions of interest, which are

potentially under selection. While this approach allows the exploration of a few,

very extreme, candidate regions/genes, it does not allow the quantification of the

pervasiveness of extreme signatures in the genome.
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BOX 3. Mechanisms of balancing selection

Balancing selection is a term that encompasses a broad range of selective regimes, all

of which generate high levels of adaptive genetic variation. An important challenge

in the study of HLA genes is teasing apart which of these forms of selection is

operating.

Heterozygote advantage (or overdominance). Occurs whenever the fitness of the

heterozygous genotype is higher than that of both homozygous genotypes. Under

this scenario, two or more alleles can be maintained indefinitely in a population,

eventually reaching a frequency equilibrium. Assuming genotype fitnesses are constant

through time and that marginal frequencies are the same, a polymorphic equilibrium

can be achieved, with both alleles being kept in a population. This has been proposed

as one (non-exclusive) biologically plausible mechanism through which variants are

maintained in the HLA class I and class II classical loci because heterozygote

individuals would be able to present a vaster repertoire of antigens than homozygote

individuals (Doherty and Zinkernagel, 1975).

Variable selection (over time and space). If selection coefficients (and hence the

fitnesses of the genotypes) vary over time or space, a population may maintain

levels of polymorphism which are greater than those expected under neutrality. The

observed levels of diversity may be similar to those expected under heterozygote

advantage, even if the heterozygote is not constantly the fittest genotype. Instead,

the time or space-averaged fitness of heterozygotes must be higher than that of

homozygotes (Gillespie, 2004).

Negative frequency-dependent selection. Under this selective regime the fitness of

a genotype is inversely proportional to its frequency in the population. This model

is biologically plausible, since pathogens are likely to evolve escape mutations to

the most common HLA alleles. This reduces these HLA alleles’ fitness, and thus

their frequency. Relaxation of selection upon the pathogen may make this variant

once again capable of conferring resistance, causing it to rise in frequency, thus

driving a cycle which results in the maintenance of a polymorphic state (Spurgin

and Richardson, 2010).

References

Abadie V, Sollid LM, Barreiro LB, Jabri B (2011) Integration of gene-

tic and immunological insights into a model of celiac disease patho-

genesis. Annu Rev Immunol 29:493–525. doi:10.1146/annurev-

immunol-040210-092915

Abi-Rached L, Jobin MJ, Kulkarni S et al (2011) The shaping of

modern human immune systems by multiregional admixture with

archaic humans. Science 334(6052):89–94. doi:10.1126/science.

1209202

Ahlenstiel G, Martin MP, Gao X, Carrington M, Rehermann B

(2008) Distinct KIR/HLA compound genotypes affect the kinet-

ics of human antiviral natural killer cell responses. J Clin Invest

188(2):1017–1026. doi:10.1172/JCI32400

Akey JM (2009) Constructing genomic maps of positive selection in

humans: where do we go from here? Genome Res 19(5):711–722.

doi:10.1101/gr.086652.108

Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a

high-density SNP map for signatures of natural selection. Genome

Res 12(12):1805–1814. doi:10.1101/gr.631202

http://dx.doi.org/10.1146/annurev-immunol-040210-092915
http://dx.doi.org/10.1146/annurev-immunol-040210-092915
http://dx.doi.org/10.1126/science.1209202
http://dx.doi.org/10.1126/science.1209202
http://dx.doi.org/10.1172/JCI32400
http://dx.doi.org/10.1101/gr.086652.108
http://dx.doi.org/10.1101/gr.631202


Immunogenetics (2018) 70:5–27 23

Albrechtsen A, Moltke I, Nielsen R (2010) Natural selection and the

distribution of identity-by-descent in the human genome. Genetics

186(1):295–308. doi:10.1534/genetics.110.113977

Andrés AM, Hubisz MJ, Indap A et al (2009) Targets of balancing

selection in the human genome. Mol Biol Evol 26(12):2755–2764.

doi:10.1093/molbev/msp190

Apps R, Qi Y, Carlson JM et al (2013) Influence of HLA-c expression

level on HIV control. Science 340(6128):87–91. doi:10.1126/sci-

ence.1232685

Augusto DG, Petzl-Erler ML (2016) KIR And HLA under pressure:

evidences of coevolution across worldwide populations. Hum

Genet 134(9):929–940. doi:10.1007/s00439-015-1579-9

Augusto DG, O’Connor GM, Lobo-Alves SC et al (2015) Pemphigus

is associated with KIR3DL2 expression levels and provides evi-

dence that KIR3DL2 may bind HLA-a3 and a11 in vivo. Eur J

Immunol 45(7):2052–2060. doi:10.1002/eji.201445324

de Bakker PI, McVean G, Sabeti PC et al (2006) A high-resolution

HLA and SNP haplotype map for disease association studies in the

extended human MHC. Nat Genet 38(10):1166–1172. doi:10.1038/

ng1885

Battle A, Mostafavi S, Zhu X et al (2014) Characterizing the genetic

basis of transcriptome diversity through RNA-sequencing of 922 indi-

viduals. Genome Res 24(1):14–24. doi:10.1101/gr.155192.113

Bauer DC, Zadoorian A, Wilson LO, The Melbourne Genomics

Health Alliance, Thorne NP (2016) Evaluation of computational

programs to predict HLA genotypes from genomic sequenc-

ing data. Briefings in Bioinformatics Epub ahead of print:1–9.

doi:10.1093/bib/bbw097

Begovich A, Moonsamy P, Mack S et al (2001) Genetic variability

and linkage disequilibrium within the HLA-DP region: analy-

sis of 15 different populations. Tissue Antigens 57(5):424–439.

doi:10.1034/j.1399-0039.2001.057005424.x

Beleza S, Santos AM, McEvoy B et al (2013) The timing of pig-

mentation lightening in Europeans. Mol Biol Evol 30(1):24–35.

doi:10.1093/molbev/mss207

Berg JJ, Coop G (2014) A population genetic signal of polygenic adapta-

tion. PLoS Genet 10(8):1–25. doi:10.1371/journal.pgen.1004412

Bhatia G, Pasaniuc B, Zaitlen N et al (2011) Genome-wide compari-

son of African-ancestry populations from CARe and other cohorts

reveals signals of natural selection. Am J Hum Genet 89(3):368–

381. doi:10.1016/j.ajhg.2011.07.025

Bhatia G, Patterson N, Sankararaman S, Price AL (2013) Estimating

and interpreting FST: the impact of rare variants. Genome Res

23(9):1514–1521. doi:10.1101/gr.154831.113

Bhatia G, Tandon A, Patterson N et al (2014) Genome-wide scan of

29,141 African Americans finds no evidence of directional selection

since admixture. Am J Hum Genet 95(4):437–444. doi:10.1016/j.

ajhg.2014.08.011

Bitarello BD, Francisco RdS, Meyer D (2016) Heterogeneity of

dN/dS ratios at the classical HLA class I genes over divergence

time and across the allelic phylogeny. J Mol Evol 82(1):38–50.

doi:10.1007/s00239-015-9713-9

Bitarello BD, de Filippo C, Teixeira JC et al (2017) Signatures

of long-term balancing selection in human genomes. BiorXiv

doi:10.1101/119529

Blackwell JM, Jamieson SE, Burgner D (2009) HLA And infectious

diseases. Clin Microbiol Rev 22(2):370–385. doi:10.1128/CMR.

00048-08

Blais ME, Zhang Y, Rostron T et al (2012) High frequency of HIV

mutations associated with HLA-c suggests enhanced HLA-c–res-

tricted CTL selective pressure associated with an AIDS-protective

polymorphism. J Immunol 188(9):4663–4670. doi:10.4049/jimm-

unol.1103472
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