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Abstract

This paper illustrates the fundamental connection between nonconvex quadratic opti-

mization and copositive optimization—a connection that allows the reformulation of

nonconvex quadratic problems as convex ones in a unified way. We focus on examples

having just a few variables or a few constraints for which the quadratic problem can be

formulated as a copositive-style problem, which itself can be recast in terms of linear,

second-order-cone, and semidefinite optimization. A particular highlight is the role

played by the geometry of the feasible set.

1 Introduction

When attempting to solve nonconvex optimization problems globally, convex optimization

frequently plays an important role. For example, mixed-integer linear programs are most

often solved by the use of linear programming relaxations, and semidefinite optimization

can be used to relax quadratic and polynomial problems. A related issue is the generation

of valid inequalities, or cuts, that tighten a given relaxation without eliminating any of

the underlying solutions of the nonconvex problem. Whether good cuts can be generated

efficiently—either in theory or in practice—is closely related to the nonconvex problem’s

inherent difficulty [16].

Many approaches try to characterize good classes of cuts, and of course, the best out-

come characterizes all the necessary cuts to tighten a convex relaxation fully. This can be

called convexifying the problem because, in principle, once all the required cuts are known,

the convex relaxation with all cuts can be solved (no local minima!) to solve the original

nonconvex problem. On the other hand, some problems are so difficult that one cannot
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expect to characterize all the required cuts, or even if one could, there would be so many

cuts that the tight relaxation would be too big to solve. Nevertheless, much can be learned

by trying to characterize all the cuts. Indeed, such attempts account for a vast swath of the

optimization literature.

Copositive optimization is a relatively new approach for analyzing the specific, difficult

case of optimizing a general nonconvex quadratic function over a polyhedron {x : Ax =

b, x ≥ 0} [9]. Briefly defined, copositive optimization is linear optimization over the convex

cone of copositive matrices, i.e., symmetric matrices Z for which the quadratic form yTZy is

nonnegative for all input vectors y ≥ 0. The dual problem is linear optimization over the cone

of completely positive matrices, i.e., symmatric matrices Y that can be expressed as a sum

Y =
∑

k y
k(yk)

T
of rank-1 matrices yk(yk)

T
, where each yk ≥ 0. Despite involving different

matrix cones, both primal and dual problems are often referred to simply as “copositive

programs.” Copositive optimization has deep connections with semidefinite and polynomial

optimization.

Relative to nonconvex quadratic optimization over {x : Ax = b, x ≥ 0}, one of the

primary insights provided by copositive optimization is that the problem can be convexified

by a class of cuts called copositive cuts, which correspond to copsitive matrices. Moreover,

copositive cuts do not depend in any way on the objective or the data (A, b). Rather, they

depend only on the condition x ≥ 0. So, in this sense, copositive cuts can be studied

independently as a key to quadratic optimization over polyhedra. Of course, characterizing

all copositive cuts will be extremely difficult, but any progress can be applied uniformly to

many different problems. This is the promise and the goal of copositive optimization.

Beyond just quadratic optimization over polyhedra, there exist extensions and applica-

tions of copositive optimization handling all sorts of objectives, e.g., ones based on polynomial

functions and ones involving uncertainty, and all sorts of constraints, e.g., polyhedra with

binary variables, ellipsoids, and sets defined by polynomial inequalities.

In this paper, we introduce the reader to copositive optimization from an atypical—yet

we hope interesting—viewpoint by investigating several specific types of nonconvex quadratic

optimization problems, each of which is characterized by the geometry of its feasible region.

Typically, either the number of variables is small or the number of constraints is small (or

both). In each case, we show exactly what cuts are required to convexify the problem. In

other words, we find the copositive-style cuts required for that particular situation. Geo-

metric insight is stressed throughout.

Throughout the paper, we reiterate a common theme of copositive optimization—that

nonconvex quadratic optimization problems can be solved by convexifying using copositive-

style cuts and, though duality, completely-positive-style matrices. In fact, the basic ideas
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found in the paper [9] for the case of polyhedra are the core required for all results in

this paper. Hence, our main contribution is a unified presentation of the various results,

and we do so from “easiest to hardest” in hopes of gently introducing the reader to the

insights provided by copositive optimization. To complete the connection with copositive

optimization, in Section 10 we recapitulate the main results of [9] for nonconvex quadratic

optimization over polytopes.

We would also like to emphasize that we do not claim to have identified the best or only

way to solve each of the various problem types—or that these are the most practically relevant

problem classes. Moreover, we do not compare with other methods, e.g., branch-and-bound

techniques, methods that exploit sparsity in the problem, or higher-order lifting approaches.

We would simply like to introduce the reader to the area of copositive optimization and to

provide interesting insights along the way. Of course, we hope that the ideas and techniques

presented will prove useful for solving quadratic problems in practice; some ideas along these

lines are mentioned in Section 11.

All results except those in Section 9 have already appeared in the literature, and we cite

the relevant papers in context. On the other hand, many of the proofs have been simplified

compared to the literature, and we have taken care to present all proofs in a unified way. We

also refer the reader to the following excellent survey papers on copositive optimization and

related issues: [2, 3, 6, 7, 8, 10, 14, 17, 19]. In addition, we remark that our approach here is

closely related to so-called domain copositive and set-semidefinite approaches; see [15, 23].

1.1 Reuse of notation

We caution the reader that this paper makes heavy reuse of notation throughout. For

example, the same symbol G has a different definition in each section. We do this partly to

keep the notation as simple as possible. However, we also hope that this reuse will actually

assist the reader in understanding the main points of the paper. This is because, while G
has a different, specific meaning in each section, it plays the same general role always. So,

for example, if the reader understands the role of G in Section 2, then he or she is prepared

to understand its role in Sections 4–10 even as the specific definition of G changes.
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2 Intervals

Consider the one-dimensional optimization

v∗ := min H11x
2

1 + 2g1x1 (int)

s.t. − 1 ≤ x1 ≤ 1

where H11, g1 ∈ R are given scalars, and let F := {x1 : −1 ≤ x1 ≤ 1} denote the feasible

set. By variable shifting and scaling, quadratic optimization over any interval can be recast

in this form. To solve (int), one can use standard calculus techniques that examine the

quadratic objective H11x
2
1 +2g1x1 at its critical points in (−1, 1) as well as at the endpoints

−1 and 1. However, here we seek a single convex optimization problem that is equivalent to

(int).

The key idea is to introduce a new variable X11 equaling x2
1:

v∗ = min H11X11 + 2g1x1 (1)

s.t. x1 ∈ F , X11 = x2

1.

Because the objective of (1) is linear, standard convex analysis allows us to express the

optimal value in a different way—as the minimization of the linear objective H11X11+2g1x1

over the closed convex hull of pairs (x1, x
2
1) with x1 ∈ F . That is, v∗ = min{H11X11+2g1x1 :

(x1, X11) ∈ G}, where
G := conv

{

(x1, x
2

1) : x1 ∈ F
}

.

In this case, we can construct an explicit characterization of G using convex inequalities in

(x1, X11); see Figure 1. So

v∗ = min H11X11 + 2g1x1

s.t. x2

1 ≤ X11 ≤ 1.

Note that the first constraint x2
1 ≤ X11 is a relaxation of x2

1 = X11, while X11 ≤ 1 is the

relaxed version of (1− x1)(x1 + 1) ≥ 0 ⇔ 1− x2
1 ≥ 0.

It is important to note that, given an optimal pair (x∗
1, X

∗
11) for the convex problem, the

scalar x∗
1 is not necessarily optimal for the original problem. For example, suppose H11 = −1

and g1 = 0. Then v∗ = −1, and (x∗
1, X

∗
11) = (0, 1) is feasible and optimal. However, x∗

1 = 0 is

not optimal for the original problem since its quadratic objective value is 0. In general, one

can see that the optimal solution set in (x1, X11) is the convex hull of the optimal solution
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Figure 1: Convexification of the set {(x1, x
2
1) : x1 ∈ F} for F = [−1, 1]. The left plot

depicts the set itself, while the right depicts its convex hull with defining convex inequalities
x2
1 ≤ X11 ≤ x1.

set in (x1, x
2
1). In our example, (x∗

1, X
∗
11) = (0, 1) = 1

2
(−1, 1) + 1

2
(1, 1), where both −1 and 1

are optimal for the original problem.

A sufficient condition for an optimal (x∗
1, X

∗
11) to yield an optimal x∗

1 for the original

problem is the equation X∗
11 = (x∗

1)
2, which simply recovers the nonconvex condition X11 =

x2
1 that was relaxed in the convexification process. It is analogous to recovering an integer

solution from a linear relaxation in integer optimization. This is the rank-1 condition, that

we will see many times throughout the paper.

3 Triangles (and Tetrahedra)

Whereas we have considered quadratic optimization over intervals in Section 2, we now

consider the two-dimensional optimization problem

v∗ := min
x∈R2

H11x
2

1 + 2H21x1x2 +H22x
2

2 + 2g1x1 + 2g2x2 (tri)

s.t. Ax ≤ b

where H11, H21, H22, g1, g2 ∈ R are given scalars and the feasible set F := {x ∈ R
2 : Ax ≤ b}

with A ∈ R
3×2 and b ∈ R

3 defines a proper triangle in the plane. By proper triangle, we

mean that F is a three-sided, bounded polygon with interior.

Analogous to the optimization (1) for intervals, we can introduce three new variables and
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three quadratic equations to linearize the objective in (tri):

v∗ := min
x∈R2

H11X11 + 2H21X21 +H22X22 + 2g1x1 + 2g2x2

s.t. Ax ≤ b, X11 = x2

1, X21 = x1x2, X22 = x2

2.

By defining the symmetric 2 × 2 matrices H = (Hij) and X = (Xij), we can simplify the

notation to

v∗ := min
x∈R2

〈H,X〉+ 2〈g, x〉 (2)

s.t. Ax ≤ b, X = xxT ,

where 〈H,X〉 :=∑2

i=1

∑

2

j=1
HijXij is the inner product between symmetric matrices, 〈g, x〉

is the usual vector inner product. Note that xxT is symmetric, positive semidefinite, and

rank-1 and that, due to symmetry, the 2×2 matrix equation includes two equivalent equations

X21 = x1x2 and X12 = x1x2. As with intervals in the previous section, we would like to

convexify the set {(x, xxT ) : x ∈ F}. If we can provide a compact, explicit description of

this convex hull, then we can optimize any quadratic over a triangle using a single convex

optimization problem. Indeed, Theorem 1 below provides the description, which was first

proved in [1].

So define G := conv{(x, xxT ) : x ∈ F}, where conv denotes the closure of the convex

hull. Our goal is to provide an explicit description of G, but to do so, we first examine a

related, yet different, convex hull. Let C := (b,−A) ∈ R
3×3 be the horizontal concatenation

of b and −A, so that the vector inequality Cy ≥ 0 with y ∈ R
3 defines a polyhedral cone in

R
3. We investigate

K := conv{yyT : Cy ≥ 0} ⊆ S3

where S3 denotes symmetric matrices of size 3× 3. Note that, since Cy ≥ 0 defines a cone,

K also equals the closed conic hull of matrices yyT with Cy ≥ 0, that is, the closure of all

possible sums of such matrices yyT .

The following lemmas help us characterize K in Proposition 1 and also G in Theorem 1.

Lemma 1. Regarding (tri), the cone {x : Ax ≤ 0} equals {0}, the set {x : Ax ≤ −b} is

empty, and the matrix C := (b,−A) ∈ R
3×3 is invertible.

Proof. By standard polyhedral theory, the boundedness of the nonempty F is equivalent to

{x : Ax ≤ 0} = {0}. Moreover, since F is a proper triangle, the set {x : Ax = b} is empty,

i.e., no point x satisfies all three inequalities simultaneously, and rank(A) = 2. It follows

that C is invertible; if not, then b = Ay for some y ∈ R
2, a contradiction. In addition, the
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system Ax ≤ −b is infeasible; if not, then x ∈ F and Ay ≤ −b imply A(x + y) ≤ 0, which

in turn implies y = −x and A(−x) ≤ −b. Then Ax = b, a contradiction.

Lemma 2 ([20]). Let d ≤ 4, and let Sd be the space of d×d symmetric matrices. If Z ∈ Sd is

positive semidefinite with nonnegative entries, then there exists a collection of d-dimensional

nonnegative vectors {zk} such that Z =
∑

k z
k(zk)

T
.

We remark that Lemma 2 equates completely positive matrices (see the Introduction and

Section 10) with matrices that are positive semidefinite and component-wise nonnegative—

the so-called doubly nonnegative matrices . It establishes a fundamental connection between

copositive programming with linear and semidefinite programming in low dimensions.

In the following proposition, Y � 0 means that Y is symmetric positive semidefinite, and

the constraint CY CT ≥ 0 indicates that the matrix CY CT has all nonnegative entries.

Proposition 1. Regarding (tri), K := conv{yyT : Cy ≥ 0} =
{

Y � 0 : CY CT ≥ 0
}

, where

C := (b,−A).

Proof. For ease of reference, define R :=
{

Y � 0 : CY CT ≥ 0
}

, which we note is closed and

convex. We first argue K ⊆ R. Because K is the closure of the convex hull of matrices

yyT with Cy ≥ 0 and because R is closed and convex, it suffices to show that such rank-1

matrices yyT are in R. So take Y = yyT with Cy ≥ 0. Then clearly Y � 0, and the matrix

of linear inequalities CY CT ≥ 0 holds because CY CT equals the rank-1 product (Cy)(Cy)T .

To show the reverse containment, let Y ∈ R. Note that Y � 0 implies CY CT � 0. Then,

by Lemma 2, since CY CT ∈ S3 is both positive semidefinite and nonnegative, we can write

CY CT =
∑

k z
k(zk)

T
with zk ≥ 0. Defining yk := C−1zk, where C−1 exists by Lemma 1,

this implies Y =
∑

k y
k(yk)

T
with Cyk ≥ 0, showing Y ∈ conv{yyT : Cy ≥ 0} ⊆ K.

We remark that the proof could be expressed in a slightly different way. The first step is to

show conv{yyT : Cy ≥ 0} ⊆ R by arguing yyT ∈ R, and the second is to show the reverse

containment by appealing to Lemma 2. Then conv{yyT : Cy ≥ 0} = R, and since R is

closed, it must hold further that the convex hull equals the closed convex hull, which proves

the proposition. This relationship between the convex hull and its closure occurs multiple

times throughout the paper.

To state the characterization of G in Theorem 1, we introduce some notation that we will

use throughout the rest of the paper. For any d, given (x,X) ∈ R
d × Sd, define

Y (x,X) :=

(

1 xT

x X

)

∈ Sd+1. (3)
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In words, Y (x,X) is the matrix that positions x and X within a symmetric (d+1)× (d+1)

matrix with leading entry 1, trailing block X, and border x.

Theorem 1. Regarding (tri), it holds that

G := conv{(x, xxT ) : x ∈ F}

= {(x,X) : Y (x,X) ∈ K} =

{

(x,X) :
Y = Y (x,X)

Y � 0, CY CT ≥ 0

}

with Y (x,X) given by (3) and C := (b,−A).

Proof. For ease of reference, define

R :=

{

(x,X) :
Y = Y (x,X)

Y � 0, CY CT ≥ 0

}

,

which we note is closed and convex. As in the proof of Proposition 1, the containment G ⊆ R
holds easily. To prove the reverse containment, let (x,X) ∈ R, and define Y := Y (x,X). By

Proposition 1, we can write Y =
∑

k y
k(yk)

T
with each nonzero yk ∈ R

3 satisfying Cyk ≥ 0.

Decomposing
(

νk
wk

)

:= yk with νk ∈ R and wk ∈ R
2, we see Awk ≤ bνk. It cannot hold

that νk < 0; otherwise, wk/|νk| would be a solution of the system Ax ≤ −b, contradicting

Lemma 1. If νk = 0, then wk = 0 by Lemma 1. So in fact every νk is positive. Define

xk := wk/νk. Then

Y =
∑

k

νk
2

(

1

xk

)(

1

xk

)T

with Axk ≤ b ⇔ xk ∈ F .

Since the top-left entry of Y equals 1, we have
∑

k νk
2 = 1. So Y is a convex combination of

rank-1 matrices
(

1

xk

)(

1

xk

)T
with xk ∈ F . This proves Y ∈ G as desired.

Theorem 1 can be easily extended to tetrahedra in R
3, i.e., when x ∈ R

3 and F = {x :

Ax ≤ b} defines a four-sided polyhedron with triangular faces. The extension simply relies

on the fact that Lemma 2 also works for d = 4. On the other hand, Theorem 1 cannot be

extended verbatim to simplices in R
4 or higher precisely because Lemma 2 does not hold for

d ≥ 5.

As discussed, a primary consequence of Theorem 1 is that any two-variable quadratic

(nonconvex or otherwise) can be optimized over a triangle in the plane by solving a single,

explicit convex program. We now investigate this convex program in a bit more detail,

especially to shed light on how it relates to the geometry of the triangle.
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Considering (tri) and Theorem 1 together, we know v∗ = min{〈H,X〉 + 2〈g, x〉 :

Y (x,X) ∈ K}. Keeping the emphasis on (x,X), we expand this as

v∗ = min 〈H,X〉+ 2〈g, x〉
s.t. bbT − AxbT − bxTAT + AXAT ≥ 0

(

1 xT

x X

)

� 0.

Letting the i-th constraint ofAx ≤ b be denoted as 〈ai, x〉 ≤ bi, we can separate the constraint

bbT −AxbT −bxTAT +AXAT ≥ 0 into its 9 = 32 individual entries bibj−bj〈ai, x〉−bi〈aj, x〉+
〈ai, Xaj〉 ≥ 0. Symmetry of X implies that three entries are redundant, and X � 0 implies

that, when i = j, the left-hand side b2i − 2bi〈ai, x〉 + 〈ai, Xai〉 ≥ b2i − 2bi〈ai, x〉 + 〈ai, x〉2 =

(bi − 〈ai, x〉)2 is already nonnegative due to the fact that X � xxT . So our problem reduces

to

v∗ = min 〈H,X〉+ 2〈g, x〉
s.t. b1b2 − b2〈a1, x〉 − b1〈a2, x〉+ 〈a1, Xa2〉 ≥ 0

b1b3 − b3〈a1, x〉 − b1〈a3, x〉+ 〈a1, Xa3〉 ≥ 0

b2b3 − b3〈a2, x〉 − b2〈a3, x〉+ 〈a2, Xa3〉 ≥ 0
(

1 xT

x X

)

� 0,

a convex problem with a single SDP constraint, three linear inequalities, and a single equality

(which sets the top-left matrix entry to 1).

The linear inequality bibj−bj〈ai, x〉−bi〈aj, x〉+ 〈ai, Xaj〉 ≥ 0 has a geometric interpreta-

tion relative to the triangle F in R
2. To see this, imagine that the rank-1 condition X = xxT

holds. Then the linear inequality becomes

0 ≤ bibj − bj〈ai, x〉 − bi〈aj, x〉+ 〈ai, x〉〈aj, x〉 = (bi − 〈ai, x〉)(bj − 〈aj, x〉),

which is a nonconvex quadratic inequality that is valid on F because the linear inequalities

〈ai, x〉 ≤ bi and 〈aj, x〉 ≤ bj define two facets of F . So the linear inequalities in (x,X) can

be viewed as relaxed quadratic inequalities, one for each pair of sides of F . These types of

constraints are often called RLT constraints after the reformulation-linearization technique

of [22]; see also [21]. Figure 2 depicts these three quadratic, nonconvex inequalities relative

to F .

9



Figure 2: Convexification of the set {(x, xxT ) : x ∈ F} when F is a triangle requires a
positive semidefiniteness constraint, a single equality constraint, and three linear inequality
constraints. The inequality constraints are relaxed versions of nonconvex quadratic con-
straints of the form (bi − 〈ai, x〉)(bj − 〈aj, x〉) ≥ 0, where 〈ai, x〉 ≤ bi and 〈aj, x〉 ≤ bj define
facets of F . Depicted here are the three quadratics in relation to the triangle F . The
lightly shaded regions satisfy the quadratics, and the quadratics’ level curves are plotted for
reference.

4 Convex Quadrilaterals

Similar to (tri), we consider the two-dimensional optimization problem

v∗ := min
x∈R2

〈x,Hx〉+ 2〈g, x〉 (quad)

s.t. Ax ≤ b

where H ∈ S2 and g ∈ R
2. Here, however, we assume A ∈ R

4×2 and b ∈ R
4 define the

feasible set F := {x ∈ R
2 : Ax ≤ b}, which is a proper convex quadrilateral in the plane,

i.e., F is a four-sided, bounded polygon with interior. As before, we would like to determine

an explicit description of G := conv{(x, xxT ) : x ∈ F}. Theorem 2 below was proven for a

rectangular F in [1].

As one might suspect, the description and corresponding proof for G are quite similar to

the previous case for triangles. Indeed, we have the following three results (proofs discussed

below):

Lemma 3. Regarding (quad), the cone {x : Ax ≤ 0} equals {0}, the set {x : Ax ≤ −b} is

empty, and the matrix C := (b,−A) ∈ R
4×3 has full column rank.

Proposition 2. Regarding (quad), K := conv{yyT : Cy ≥ 0} =
{

Y � 0 : CY CT ≥ 0
}

,

where C := (b,−A).
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Theorem 2. Regarding (quad), it holds that

G := conv{(x, xxT ) : x ∈ F}

= {(x,X) : Y (x,X) ∈ K} =

{

(x,X) :
Y = Y (x,X)

Y � 0, CY CT ≥ 0

}

with Y (x,X) given by (3) and C := (b,−A).

The proof of Lemma 3 is completely analogous to the proof of Lemma 1, and Theorem 2

is proved exactly like Theorem 1 (except that it is based on Lemma 3 and Proposition 2).

Only the proof of Proposition 2 takes some additional care.

Proof of Proposition 2. Let α ∈ R
4 be any vector such that Â := (A,α) makes Ĉ := (b,−Â)

invertible. Note that {y ∈ R
3 : Cy ≥ 0} is the projection of the cone {ŷ ∈ R

4 : Ĉŷ ≥ 0, ŷ4 =

0} onto the variables (ŷ1, ŷ2, ŷ3).

We first prove

K̂ := conv{ŷŷT : Ĉŷ ≥ 0, ŷ4 = 0} = {Ŷ � 0 : ĈŶ ĈT ≥ 0, Ŷ44 = 0} =: R̂.

Note that R̂ is closed and convex. The containment K̂ ⊆ R̂ is clear. So let Ŷ ∈ R̂. Since

ĈŶ ĈT ∈ S4 is both positive semidefinite and entry-wise nonnegative, we can use Lemma 2 to

write ĈŶ ĈT =
∑

k ẑ
k(ẑk)

T
with ẑk ≥ 0. Defining ŷk := Ĉ−1ẑk, this implies Ŷ =

∑

k ŷ
k(ŷk)

T

with Ĉŷk ≥ 0. In addition, 0 = Ŷ44 =
∑

k (ŷ
k
4)

2
ensures ŷk4 = 0 for each k. In total, this

establishes Ŷ ∈ K̂.

To prove K =
{

Y � 0 : CY CT ≥ 0
}

, again the containment ⊆ is clear. For the reverse,

Y � 0 with CY CT ≥ 0 can be embedded in Ŷ ∈ R̂ by appending a zero row and a zero

column. Then, by the previous paragraph, Ŷ is the sum of terms ŷk(ŷk)
T
with Ĉŷk ≥ 0 and

ŷk4 = 0. By the projection mentioned in the first paragraph of this proof, Y is thus the sum

of terms yk(yk)
T
with Cyk ≥ 0. So Y ∈ K.

Similar to the case for triangles, Theorem 2 implies that (quad) can be solved by a

convex program with one positive semidefinite constraint, one equality constraint (setting

the top-left matrix entry to 1), and several linear inequality constraints that are derived

from nonconvex quadratic inequality constraints. Each of those quadratic constraints is

(bi − 〈ai, x〉)(bj − 〈aj, x〉) ≥ 0 for two facets of the quadrilateral. In this case, there are six

such quadratics, which are depicted in Figure 3.
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Figure 3: Convexification of the set {(x, xxT ) : x ∈ F} when F is a convex quadrilateral
requires six linear inequalities derived from quadratics (bi − 〈ai, x〉)(bj − 〈aj, x〉) ≥ 0, where
〈ai, x〉 ≤ bi and 〈aj, x〉 ≤ bj define facets of F . Depicted here are the six quadratics in
relation to F .
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5 Ellipsoids (in Any Dimension)

Thus far in Sections 2–4, we have considered several types of polytopes in R, R2, and R
3

(intervals, triangles, tetrahedra, and convex quadrilaterals). We now consider a different

type of shape in R
n, that of an ellipsoid. Relying on an affine transformation, we may

assume the ellipsoid is simply the unit ball defined by the inequality ‖x‖ ≤ 1, where ‖ · ‖ is

the Euclidean norm. Then consider the n-dimensional optimization problem

v∗ := min
x∈Rn

〈x,Hx〉+ 2〈g, x〉 (ell)

s.t. ‖x‖ ≤ 1

where H ∈ Sn, g ∈ R
n, and the feasible set F := {x ∈ R

n : ‖x‖ ≤ 1} is the unit ball in

R
n. We wish to describe the set G := conv{(x, xxT ) : x ∈ F}. Problem (ell) is equivalent

to the trust-region subproblem studied in nonlinear programming (see [13] for example), and

the specific results in this section first appeared in [23].

We first introduce the second-order (or Lorentz) cone in R
n+1:

L :=

{

y ∈ R
n+1 :

√

y22 + · · ·+ y2n+1 ≤ y1

}

=
{

y ∈ R
n+1 : y1 ≥ 0, y22 + · · ·+ y2n+1 ≤ y21

}

=
{

y ∈ R
n+1 : y1 ≥ 0, 〈y, Ly〉 ≥ 0

}

where the matrix L ∈ Sn+1 is a diagonal matrix with entries (1,−1, . . . ,−1). The next result

characterizes the convex hull of matrices yyT with y ∈ L.

Proposition 3. Regarding (ell), K := conv
{

yyT : y ∈ L
}

= {Y � 0 : 〈L, Y 〉 ≥ 0}.

Proof. For ease of reference, define R := {Y � 0 : 〈L, Y 〉 ≥ 0}, which we note is a closed,

convex cone. The containment K ⊆ R is clear. To prove the reverse, let Y be an extreme

ray of R. We will show that Y is rank-1, that is, Y = yyT for some y, which will establish

Y ∈ K.

The spectral decomposition of Y provides a factorization Y =
∑

k y
k(yk)

T
. By negating

yk if necessary, we may assume yk1 ≥ 0. Then, if 〈yk, Lyk〉 ≥ 0 for each k, we see Y ∈ K. On

the other hand, if some yi 6∈ L, then the cumulative inequality 0 ≤ 〈L, Y 〉 = ∑k 〈yk, Lyk〉
implies that some yj ∈ int(L). In other words, some 〈yj, Lyj〉 > 0 must balance 〈yi, Lyi〉 < 0.

Let z be a (non-trivial) convex combination of yi and yj such that z ∈ bd(L)—that is, z

satisfies 〈z, Lz〉 = 0. Note that: z 6= 0 because z1 > 0 due to the fact that yi1 ≥ 0 and yj1 > 0;

and z ∈ Range(Y ) because both yi and yj are in Range(Y ).
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Consider Yǫ := Y − ǫ zzT for ǫ > 0. Because Y � 0 and z ∈ Range(Y ), it is well known

that Yǫ � 0 for small ǫ. In addition, 〈L, Yǫ〉 = 〈L, Y 〉 − ǫ 〈z, Lz〉 = 〈L, Y 〉 ≥ 0. So Yǫ ∈ R
for ǫ small. Note that z ∈ bd(L) implies zzT ∈ R also. Then Y = Yǫ + ǫ zzT where both Yǫ

and zzT are nonzero elements in R. Because Y is an extreme ray of R, it must be the case

that Yǫ is parallel to zzT , and hence Y is a positive multiple of zzT . So Y is rank-1.

We can now use Proposition 3 to characterize G, the convex hull of terms (x, xxT ) for

x ∈ F .

Theorem 3. Regarding (ell),

G := conv{(x, xxT ) : x ∈ F}

= {(x,X) : Y (x,X) ∈ K} =

{

(x,X) :
Y = Y (x,X)

Y � 0, 〈L, Y 〉 ≥ 0

}

.

with Y (x,X) given by (3) and L := Diag(1,−1, . . . ,−1) ∈ Sn+1.

Proof. For ease of reference, define

R :=

{

(x,X) :
Y = Y (x,X)

Y � 0, 〈L, Y 〉 ≥ 0

}

,

which is closed and convex. The containment G ⊆ R is clear, and so to prove the reverse,

let Y ∈ R. By Proposition 3, we can write Y =
∑

k y
k(yk)

T
with each nonzero yk ∈ L.

Decomposing
(

νk
wk

)

:= yk with νk ∈ R and wk ∈ R
n, we see ‖wk‖ ≤ νk. If νk = 0, then

wk = 0. So in fact every νk is positive. Define xk := wk/νk. Then

Y =
∑

k

νk
2

(

1

xk

)(

1

xk

)T

with ‖xk‖ ≤ 1.

Since the top-left entry of Y equals 1 via the equation Y = Y (x,X), we have
∑

k νk
2 = 1.

So Y is a convex combination of rank-1 matrices
(

1

xk

)(

1

xk

)T
with xk ∈ F . This proves Y ∈ G

as desired.

Focusing on x and X, an alternative expression for G is

G :=

{

(x,X) :

(

1 xT

x X

)

� 0, tr(X) ≤ 1

}

,

where the linear inequality tr(X) ≤ 1 is a relaxed version of ‖x‖ ≤ 1 ⇔ tr(xxT ) = 〈x, x〉 ≤ 1.
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Figure 4: An ellipsoid in R
3 missing three separate caps.

6 Ellipsoids Without Caps (in Any Dimension)

This section integrates—at least partially—the polyhedral aspects of Sections 2–4 with the

non-polyhedral features of Section 5. The geometric object that we study is an ellipsoid

without caps, i.e., a full-dimensional ellipsoid in R
n from which one or more caps are removed.

An important assumption, which holds throughout the section, is that the caps themselves

do not intersect; see Figure 4. This yields an object that locally looks like either an ellipsoid,

a halfspace, or the intersection of an ellipsoid with a single halfspace. Nowhere does it locally

look like the intersection of two or more halfspaces. Related papers include [5, 11, 12, 18,

23, 25]. In particular, [11] establishes that the non-intersecting assumption on the caps is

necessary for the results of this section to hold, and [5] shows the solvability of such quadratic

problems via an approach that does not make use of convex relaxation.

In Section 6.1, we examine the case of a single missing cap, while Section 6.2 considers

the case of multiple missing caps.

6.1 Missing one cap

Consider the n-dimensional optimization problem

v∗ := min
x∈Rn

〈x,Hx〉+ 2〈g, x〉 (cap)

s.t. ‖x‖ ≤ 1

〈a1, x〉 ≤ b1

15



where H ∈ Sn, g ∈ R
n, a1 ∈ R

n, and b1 ∈ R. The feasible set F := {x ∈ R
n : ‖x‖ ≤

1, 〈a1, x〉 ≤ b1} is the unit ball in R
n with a single cap deleted. After an affine transformation,

any quadratic over an ellipsoid without a cap can be modeled this way.

As usual, we want to characterize G := conv{(x, xxT ) : x ∈ F}, and the proof style

matches earlier sections. Proposition 4 is the key result necessary for Theorem 4 below.

These results first appeared in [23].

Proposition 4. Regarding (cap),

K := conv

{

yyT :
y ∈ L

〈c1, y〉 ≥ 0

}

=

{

Y � 0 :
〈L, Y 〉 ≥ 0

Y c1 ∈ L

}

,

where L := Diag(1,−1, . . . ,−1) ∈ Sn+1 and c1 :=
(

b1
−a1

)

.

Proof. For ease of reference, define

R :=

{

Y � 0 :
〈L, Y 〉 ≥ 0

Y c1 ∈ L

}

,

which is closed and convex, and for notational convenience, define c := c1. The containment

K ⊆ R holds because yyT � 0, 〈L, yyT 〉 = 〈y, Ly〉 ≥ 0, and (yyT )c = 〈c, y〉 y ∈ L.
So we need to prove the reverse. Let Y be an extreme ray of R. We argue that Y must

be rank-1 by considering three cases. For the first case, suppose Y c ∈ int(L). Then Y is

also extreme for the cone {Y � 0 : 〈L, Y 〉 ≥ 0}, and hence Y is rank-1 by Proposition 3.

For the second case, suppose 〈c, Y c〉 = 0, and let Y =
∑

k y
k(yk)

T
be a decomposition

provided by Proposition 3, i.e., with every yk ∈ L. Then 0 = 〈c, Y c〉 = ∑k 〈c, yk〉
2
, and so

every yk satisfies 〈c, yk〉 = 0 as well. It follows that each yk(yk)
T
is an element of K. Since

Y is extreme, all yk(yk)
T
must be parallel, and Y is rank-1.

For the last case, suppose z := Y c ∈ bd(L) with 〈c, z〉 = 〈c, Y c〉 > 0; in particular, z 6= 0.

Mimicking the proof of Proposition 3, we can show Yǫ := Y − ǫ zzT satisfies Yǫ � 0 and

〈L, Yǫ〉 ≥ 0 for small ǫ > 0. In addition,

Yǫ c = (Y − ǫ zzT )c = Y c− ǫ〈c, z〉z = (1− ǫ〈c, z〉)z ∈ bd(L).

We have thus shown Yǫ ∈ R for sufficiently small ǫ > 0. As in the proof of Proposition 3,

this establishes rank(Y ) = 1.
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Theorem 4. Regarding (cap),

G := conv{(x, xxT ) : x ∈ F}

= {(x,X) : Y (x,X) ∈ K} =











(x,X) :

Y = Y (x,X)

Y � 0, 〈L, Y 〉 ≥ 0

Y c1 ∈ L











with Y (x,X) given by (3), L := Diag(1,−1, . . . ,−1) ∈ Sn+1, and c1 :=
(

b1
−a1

)

.

Proof. The proof matches exactly the proof of Theorem 3.

It is instructive to write the constraints definining G in terms of x and X only:

(

1 xT

x X

)

� 0

tr(X) ≤ 1

‖b1x−Xa1‖ ≤ b1 − 〈a1, x〉.

So G is described by one semidefinite constraint, one linear inequality, one linear equality

(setting the top-left matrix entry to 1), and one second-order-cone constraint. As discussed

in Section 5, tr(X) ≤ 1 is the relaxed version of the convex quadratic constraint 〈x, x〉 ≤ 1.

For the second-order-cone constraint, which is new in this section, reintroducing xxT for X,

we see that it is a relaxed version of

‖(b1 − 〈a1, x〉)x‖ ≤ b1 − 〈a1, x〉,

which is valid because it is the multiplication of ‖x‖ ≤ 1 with b1−〈a1, x〉 ≥ 0. This constraint,

called an SOCRLT constraint in [11], is highly nonlinear in x but convex in (x,X) after xxT

is relaxed to X. Figure 5 depicts the constraints 〈x, x〉 ≤ 1 and ‖(b1−〈a1, x〉)x‖ ≤ b1−〈a1, x〉
relative to F in R

2.

6.2 Missing multiple caps

Extending Section 6.1, now consider the n-dimensional optimization problem

v∗ := min
x∈Rn

〈x,Hx〉+ 2〈g, x〉 (caps)

s.t. ‖x‖ ≤ 1

Ax ≤ b
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Figure 5: Convexification of the set {(x, xxT ) : x ∈ F}, when F is an ellipsoid without a cap,
requires four constraints: one positive-semidefinite, one linear equality, one linear inequality,
and one second-order-cone. The linear inequality is a relaxed version of 〈x, x〉 ≤ 1, which
is depicted in the left picture. The second-order-cone constraint is a relaxed version of the
valid nonconvex constraint ‖(b1 − 〈a1, x〉)x‖ ≤ b1 − 〈a1, x〉, depicted on the right.

where H ∈ Sn, g ∈ R
n, A ∈ R

m×n, and b ∈ R
m. The feasible set F := {x ∈ R

n : ‖x‖ ≤
1, Ax ≤ b} is the unit ball in R

n with m caps deleted. As mentioned at the beginning of

Section 6, we assume that the deleted caps are themselves non-intersecting; see Figure 4.

Breaking Ax ≤ b into its individual constraints 〈ai, x〉 ≤ bi, we also assume that no 〈ai, x〉 ≤
bi is redundant on F . Geometrically, this allows us to state the following condition.

Condition 1. If x ∈ R
n satisfies ‖x‖ ≤ 1 and 〈ai, x〉 = bi for some i, then x ∈ F .

To characterize G := conv{(x, xxT ) : x ∈ F}, we first analyze K := conv{yyT : y ∈
L, Cy ≥ 0} ⊆ Sn+1, where C := (b,−A). Also define ci :=

(

bi
−ai

)

. We need to restate

Condition 1 in terms of y and prove two lemmas in preparation for Proposition 5 and

Theorem 5 below.

Condition 2. If y ∈ R
n+1 satisfies y ∈ L and 〈ci, y〉 = 0 for some i, then Cy ≥ 0.

Lemma 4. If y ∈ int(L), then under Condition 2, at most one term 〈ci, y〉 equals 0.

Proof. Suppose 〈ci, y〉 = 〈cj, y〉 = 0 for i 6= j, and let d be any vector with 〈ci, d〉 < 0 and

〈cj, d〉 = 0. Such a d exists because ci and cj are linearly independent as we have assumed

that the constraints 〈ai, x〉 ≤ bi and 〈aj, x〉 ≤ bj are not redundant for F . Then, for small

ǫ > 0, yǫ := y + ǫ d satisfies yǫ ∈ L and 〈cj, yǫ〉 = 0, and yet Cyǫ 6≥ 0 because 〈ci, yǫ〉 < 0.

This violates Condition 2.
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The following result is a generic result about convex cones in any dimension. It will be

applied in the proof of Proposition 5 for matrix cones, but the proof uses lower-case vector

notation.

Lemma 5. Let P be a closed convex cone, and let Q be a half-space containing the origin.

Every extreme ray of P ∩Q is either an extreme ray of P or can be expressed as the sum of

two extreme rays of P.

Proof. Suppose Q is defined by 〈q, x〉 ≥ 0, and let x̄ be an extreme ray of P ∩ Q. Since

x̄ ∈ P , we can write x̄ =
∑

k x̄
k, where each x̄k is an extreme ray of P .

For a vector variable λ = (λk), define x(λ) :=
∑

k λkx̄
k. For example, x(e) = x̄, where e

is the all-ones vector. Also define the polyhedral cone Λ := {λ ≥ 0 : 〈q, x(λ)〉 ≥ 0}, which
satisfies x(Λ) ⊆ P ∩Q by construction. In addition, standard polyhedral theory guarantees

that every extreme ray λ ∈ Λ has at most two positive entries.

As noted, e ∈ Λ. Hence, we can write e =
∑

j λ
j, where each λj is an extreme ray of Λ.

Expanding x̄ = x(e), we have x̄ =
∑

j x(λ
j) with each x(λj) ∈ P ∩ Q. Since x̄ is extreme

in P ∩ Q by assumption, every x(λj) is a positive multiple of x̄. Since λj has at most two

positive entries, this completes the proof.

Proposition 5. Regarding (caps),

K := conv

{

yyT :
y ∈ L
Cy ≥ 0

}

=











Y � 0 :

〈L, Y 〉 ≥ 0

CY CT ≥ 0

Y ci ∈ L ∀ i











.

with L := Diag(1,−1, . . . ,−1) ∈ Sn+1, C := (b,−A) and ci :=
(

bi
−ai

)

for all i = 1, . . . ,m.

Proof. The proof is by induction. Proposition 4 covers the base case when only one cap is

missing, and we suppose the result holds for m− 1 caps. Then for m caps, let

R :=











Y � 0 :

〈L, Y 〉 ≥ 0

CY CT ≥ 0

Y ci ∈ L ∀ i











,

which is closed and convex. As usual, we have K ⊆ R. We need to prove K ⊇ R. So let

Y ∈ R be extreme; our goal is to show that Y is rank-1. Also define zi := Y ci ∈ L for each

i, and note that the i-th column of the matrix constraint CY CT ≥ 0 equivalently expresses

Czi ≥ 0. We consider two primary cases: (i) zi ∈ bd(L) for some i; and (ii) zi ∈ int(L) for
all i.
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For case (i), suppose first that zi = 0, and take i = m without loss of generality. Then

〈cm, Y cm〉 = 〈cm, zm〉 = 0. Based on Y � 0 and 〈L, Y 〉 ≥ 0, we use Proposition 3 to write

Y =
∑

k y
k(yk)

T
with yk ∈ L. Then 〈cm, Y cm〉 = 0 implies 〈cm, yk〉 = 0 for each k. So

Cyk ≥ 0 by Condition 2, and thus Y ∈ K. Now suppose 0 6= zi ∈ bd(L), but this time take

i = 1 without loss of generality. Then Proposition 4 implies

Y =
∑

k

yk(yk)
T

with 〈c1, yk〉 ≥ 0, yk ∈ L

which implies z1 = Y c1 =
∑

k 〈c1, yk〉 yk. For a given k, if 〈c1, yk〉 > 0, then yk must be

a positive multiple of z1 as z1 is a nonzero element of the boundary of L. Otherwise, if

〈c1, yk〉 = 0, then Cyk ≥ 0 by Condition 2. Either way, we have yk(yk)
T ∈ K ⊆ R. Since Y

is extreme in R, this implies that every yk(yk)
T
is a positive multiple of Y , which in turn

shows that Y is rank-1.

For case (ii) with zi ∈ int(L) for all i, suppose CY CT > 0. Then Y is extreme for

the cone {Y � 0 : 〈L, Y 〉 ≥ 0} and hence rank-1 by Proposition 3. So suppose some

〈ci, Y cj〉 = 〈ci, zj〉 = 〈zi, cj〉 = 0. Without loss of generality, we may assume i 6= j. If not,

then a diagonal entry of CY CT � 0 equals 0, and hence an entire row equals 0 from which

we may choose an entry. Moreover, by a simple relabeling of indices, take i = 1 and j = m

and for ease of notation, define s := c1 and t := cm.

By Lemma 4, we know that i = 1 is the only index satisfying 〈ci, zm〉 = 0. Similarly,

j = m is the only index satisfying 〈z1, cj〉 = 0. In particular, 〈s, Y s〉 = 〈s, z1〉 > 0 and

〈t, Y t〉 = 〈t, zm〉 > 0. Defining

P :=











Y � 0 :

〈L, Y 〉 ≥ 0

〈ci, Y cj〉 ≥ 0 ∀ i, j ≤ m− 1

Y ci ∈ L ∀ i ≤ m− 1











, Q := {Y : 〈c1, Y cm〉 ≥ 0},

we also see that Y is extreme in P∩Q. Applying the induction hypothesis on P and Lemma 5

on P ∩ Q, we conclude that rank(Y ) ≤ 2. If the rank equals 1, we are done. So assume

rank(Y ) = 2. We derive a contradiction to complete the proof. Consider the equation

W :=







sT

tT

I






Y
(

s t I
)

=







〈s, Y s〉 〈s, Y t〉 sTY

〈t, Y s〉 〈t, Y t〉 tTY

Y s Y t Y






=







〈s, Y s〉 0 (z1)
T

0 〈t, Y t〉 (zm)T

z1 zm Y






.

It holds that W � 0 with rank(W ) ≤ rank(Y ) = 2, and the Schur complement theorem

impliesM := Y−σz1(z1)
T−τzm(zm)T � 0, where σ := (sTY s)

−1
> 0 and τ := (tTY t)

−1
> 0,
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with rank(M) = rank(W ) − 2. So rank(M) ≤ 0 and M = 0, that is, Y = σz1(z1)
T
+

τzm(zm)T , contradicting the assumption that Y is extreme.

Theorem 5. Regarding (caps),

G := conv{(x, xxT ) : x ∈ F}

= {(x,X) : Y (x,X) ∈ K} =























(x,X) :

Y = Y (x,X)

Y � 0, 〈L, Y 〉 ≥ 0

CY CT ≥ 0

Y ci ∈ L ∀ i























with Y (x,X) given by (3), L := Diag(1,−1, . . . ,−1) ∈ Sn+1, C := (b,−A), and ci :=
(

bi
−ai

)

for all i = 1, . . . ,m.

Proof. Based on Proposition 5, the proof follows exactly the proof of Theorem 3.

Theorem 5 first appeared in [12]. However, we remark that, in that paper, the base case of

the induction proof was incorrectly stated to correspond to m = 0 linear constraints. As

written here, the correct base case is m = 1, and the result of [12] can be fixed by simply

changing m = 0 to m = 1.

7 Elliptic Convex Polygons

An elliptic convex polygon in R
2 is a convex polygon whose vertices all lie on a single ellipse

(the boundary of an ellipsoid in R
2). Said differently, an elliptic convex polygon is one that

is inscribed in an ellipsoid. After an affine transformation, every elliptic convex polygon is

equivalent to a cyclic convex polygon, i.e., one inscribed in the unit ball. The results of

Section 6—and of Theorem 5 in particular—can be specialized to cover this case; see [12].

Consider the 2-dimensional optimization problem

v∗ := min
x∈R2

〈x,Hx〉+ 2〈g, x〉 (insc)

s.t. Ax ≤ b

where H ∈ S2, g ∈ R
2, A ∈ R

m×2, and b ∈ R
m, and the feasible set F := {x ∈ R

2 : Ax ≤ b}
defines a cyclic convex polygon. Note that that the constraint ‖x‖ ≤ 1 is redundant for F
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and that F satisfies Condition 1 in Section 6.2. As a result, Theorem 5 applies and

G := conv{(x, xxT ) : x ∈ F} =























(x,X) :

Y = Y (x,X)

Y � 0, 〈L, Y 〉 ≥ 0

CY CT ≥ 0

Y ci ∈ L ∀ i























.

However, the redundancy of ‖x‖ ≤ 1 allows one to streamline the description of G.

Theorem 6. Regarding (insc),

G := conv{(x, xxT ) : x ∈ F} =











(x,X) :

Y = Y (x,X)

Y � 0, 〈L, Y 〉 ≥ 0

CY CT ≥ 0











with Y (x,X) given by (3), L := Diag(1,−1,−1) ∈ S3, and C := (b,−A).

Proof. For ease of reference, define

R :=











(x,X) :

Y = Y (x,X)

Y � 0, 〈L, Y 〉 ≥ 0

CY CT ≥ 0











which we note is closed and convex. Based on the discussion preceding the theorem, we

need only show that (x,X) ∈ R implies zi := Y ci ∈ L, where Y = Y (x,X). So let

Y = Y (x,X) � 0 satisfy 〈L, Y 〉 ≥ 0 and CTY C ≥ 0. The i-th column of CY CT ≥ 0 is

equivalent to Czi ≥ 0. Decomposing
(

νi
wi

)

:= zi, we thus see Awi ≤ νib. Similar to the proofs

of Theorems 1 and 2, we must have νi ≥ 0. If νi = 0, then wi = 0 and zi ∈ L. If νi > 0,

then define xi := wi/νi so that Axi ≤ b, which implies ‖xi‖ ≤ 1, which in turn shows that

zi ∈ L.

8 Intersections of Two Ellipsoids (in Dimension 2)

Sections 2–6 have examined geometries arising from polyhedral and ellipsoidal constraints.

Although we have examined several linear constraints at a time, so far we have only included

at most one ellipsoidal constraint. In this section, we summarize (but do not prove) recent

progress that has been made on characterizing G := conv{(x, xxT ) : x ∈ F} when F is the

intersection of two ellipsoids in R
2. These results come from [24]. By an affine transformation,

we can assume that one of the ellipsoids is the unit ball.
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Consider the 2-dimensional optimization problem

v∗ := min
x∈R2

〈x,Hx〉+ 2〈g, x〉 (ell2)

s.t. ‖x‖ ≤ 1

‖D(x− d)‖ ≤ 1

where H ∈ S2, g ∈ R
2, d ∈ R

2, and D ∈ S2 is positive definite. So the feasible set F is

the intersection of two ellipsoids, where in particular d is the center of the second ellipsoid.

We remark that the paper [4] establishes the polynomial-time solvability of (ell2) and its

extension to general n via techniques that do not require convex relaxation. It will be helpful

to write the optimization in homogenized form:

v∗ := min
y∈R3

〈y, Ĥy〉

s.t. y ∈ L := {y ∈ R
3 : y1 ≥ 0, 〈y, Ly〉 ≥ 0}

y ∈ M := {y ∈ R
3 : y1 ≥ 0, 〈y,My〉 ≥ 0}

y1 = 1

where L := Diag(1,−1,−1) ∈ S3,

M :=

(

1− ‖Dd‖2 (D2d)
T

D2d −D2

)

∈ S3, Ĥ :=

(

0 gT

g H

)

∈ S3.

Define K := conv{yyT : y ∈ L ∩M}. It is clear that Y � 0, 〈L, Y 〉 ≥ 0, and 〈M,Y 〉 ≥ 0

are valid for K. In addition, for any (possibly infinite) collection of valid linear inequalities

Cy ≥ 0 for L ∩M, we know that CY CT ≥ 0 is valid for K. For an individual valid linear

inequality 〈c, y〉 ≥ 0, the cone constraint Y c ∈ L ∩ M is also valid for K. These are the

types of valid inequalities that we have seen in Sections 2–7, but as it turns out, they are

not enough to capture K. We need something stronger.

To describe what is needed for K, we first note that all constraints of the types CY CT ≥ 0

and Y c ∈ L ∩M just mentioned can be reduced to a single type of constraint. Let L∗ and

M∗ be the dual cones, and consider (p, q) ∈ L∗ × M∗ so that the quadratic inequality

〈p, y〉〈q, y〉 ≥ 0 is valid on L∩M. Then it is not difficult to see that 〈pqT , Y 〉 ≥ 0 is valid for

K and that the entire collection of constraints {〈pqT , Y 〉 ≥ 0 : (p, q) ∈ L∗ ×M∗} captures

ones such as CY CT ≥ 0 and Y c ∈ L ∩M.

Given (p, q) ∈ L∗ × M∗, we are interested in valid quadratics on L ∩ M of the form

〈p, y〉〈q, y〉 ≥ 〈r, y〉2, where r ∈ R
3. It is not initially clear that such valid constraints actually
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exist with r 6= 0, but if they do, then they clearly imply the constraints 〈p, y〉〈q, y〉 ≥ 0 of

the previous paragraph. To establish notation, define

V :=

{

(p, q, r) ∈ L∗ ×M∗ × R
3 :

〈p, y〉〈q, y〉 ≥ 〈r, y〉2

is valid for L ∩M

}

.

It is interesting to note that, although a constraint 〈p, y〉〈q, y〉 ≥ 〈r, y〉2 is generally nonconvex
over y ∈ R

3, it is actually convex over y ∈ L∩M. This is because y ∈ L∩M implies 〈p, y〉 ≥ 0

and 〈q, y〉 ≥ 0, in which case the quadratic can be modeled using a rotated second-order

cone.

It turns out that V does indeed provide an interesting, non-trivial class of valid inequalities

that strengthen the previously known simpler ones 〈p, y〉〈q, y〉 ≥ 0. In addition, the resulting

valid inequalities 〈pqT , Y 〉 ≥ 〈rrT , Y 〉 for K are precisely what is needed to capture K. This

leads to the following description for G (see corollary 1 and the surrounding discussion in [24]):

Theorem 7. Regarding (ell2),

G := conv{(x, xxT ) : x ∈ F} =











(x,X) :

Y = Y (x,X), Y � 0

〈L, Y 〉 ≥ 0, 〈M,Y 〉 ≥ 0

〈pqT − rrT , Y 〉 ≥ 0 ∀ (p, q, r) ∈ V











.

In practice, to solve (ell2), the separation problem over the constraints indexed by V
is critical since V is semi-infinite and cannot be listed explicitly. Indeed, this separation can

be handled reasonably well in computation even in higher dimensions (i.e., when n ≥ 2).

One important observation is that, for a fixed (p, q, r) ∈ L∗ ×M∗ ×R
3 not necessarily in V ,

there is always a maximum λ ≥ 0, say λmax, such that (p, q,
√
λr) is in V . In essence, λmax

corresponds to the strongest valid constraint of the form 〈p, y〉〈q, y〉 ≥ λ〈r, y〉2. In practice,

it is critical to identify valid triples (p, q,
√
λmaxr) to get the strongest cuts.

As an example (completely in terms of x ∈ R
2, not y ∈ R

3), consider the intersection of

the two ellipsoids defined by x2
1 + x2

2 ≤ 1 and 2x2
1 +

1

2
x2
2 ≤ 1, which is depicted in Figure 6.

The feasible point x1 :=
(

0

1

)

is supported by the valid inequality x2 ≤ 1, and the feasible

point x2 :=
(

1/
√
2

0

)

is supported by the valid inequality x1 ≤ 1√
2
. Moreover, the line defined

by
√
2x + y = 1 passes through both points x1 and x2. For λ ≥ 0, consider the quadratic

inequality

(1− x2)(
1√
2
− x1) ≥ λ(1−

√
2x1 − x2)

2

.

Related to the discussion above, 1−x2 plays the role of 〈p, y〉, 1√
2
−x1 plays the role of 〈q, y〉,

and 1 −
√
2x1 − x2 plays the role of 〈r, y〉. One can determine numerically that the above

24



Figure 6: Convexification of the set {(x, xxT ) : x ∈ F}, when F is the intersection of two
ellipsoids, requires a semidefiniteness constraint, a linear equality constraint, two constraints
based on the defining convex quadratics (first two plots), and an entire family of linear
constraints derived from valid quadratic inequalities that “hug” the feasible region (final
four plots).
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quadratic inequality is valid on F up until a maximum value of approximately λmax = 0.07.

It is also worth mentioning that, given our choice of x1 and x2 above, we had to choose

1−
√
2x1−x2 for the right-hand-side quadratic (or a scaled version of it) in order to achieve

a positive λmax. This is because the zeros of the right-hand side must contain the zeros of

the left-hand side; otherwise, λmax will be zero.

In Figure 6, we depict six valid quadratic inequalities relative to F . Proceeding left-

to-right and top-to-bottom, the first two pictures show the quadratics x2
1 + x2

2 ≤ 1 and

2x2
1 +

1

2
x2
2 ≤ 1, respectively. The next four show the quadratic of the previous paragraph for

the following increasingly larger choices of λ: 0, 1

16
λmax,

1

4
λmax, and λmax. One can see how

the quadratic “hugs” the feasible region F tighter and tighter as λ increases.

9 Cuts for the Case of General Convex Polygons

In the preceding Sections 2–8, we have explored many examples of geometries F—most in

R
2, some in R

n—for which we can describe the convex hull G := conv{(x, xxT ) : x ∈ F},
thus allowing us to optimize arbitrary quadratic functions over F . Except for the case of

the intersection of two ellipsoids, the description of G has been efficient in the sense that it

can be written explicitly using a polynomial number of semidefinite, second-order-cone, and

linear constraints. For the intersection of two ellipsoids, G requires a semi-infinite class of

linear inequalities that exploit the special, curved geometry of F .

In this section, we attempt to tackle general convex polygons in R
2 using the insight

gained thus far. So consider

v∗ := min
x∈R2

〈x,Hx〉+ 2〈g, x〉 (poly)

s.t. Ax ≤ b

where H ∈ S2, g ∈ S2, A ∈ R
m×2, and b ∈ R

m. We assume that F := {x ∈ R
2 : Ax ≤ b} is

m-sided and bounded with interior. To describe G, we will certainly need Y = Y (x,X) � 0

and CY CT ≥ 0, where C := (b,−A). As we saw in Sections 3 and 4, these are enough to

handle triangles (m = 3) and quadrilaterals (m = 4). On the other hand, Section 7 tells us

that more is needed when m ≥ 5. For example, if we know that F is inscribed in an ellipsoid

defined by ‖D(x− d)‖ ≤ 1, then adding the constraint

〈D2, X〉 − 2〈D2d, x〉 ≤ 1− ‖Dd‖2

captures G. So the question remains: what additional constraints are necessary for general
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polygons F that are not inscribed in an ellipsoid?

We propose to search for quadratic constraints valid on F that define shapes H in which

F is partially inscribed. By partially inscribed, we mean that F ⊆ H and some of the vertices

of F lie in bd(H). For example, we might find an ellipsoid H ⊇ F such that F has four

vertices in bd(H), or we might find a hyperbolic region H such that one branch contains F
with three vertices in its boundary.

Suppose that a shape H partially inscribing F is defined by the quadratic 〈x, Sx〉 +
2〈s, x〉 ≤ σ. The containment F ⊆ H ensures 〈S,X〉+2〈s, x〉+σ ≤ 0 is valid for G, and the

fact that F is partially inscribed in H lessens the chance that 〈x, Sx〉 + 2〈s, x〉 ≤ σ could

be strengthened. For example, if F ⊆ int(H), then σ could be decreased to tighten the

constraint, a type of situation we would like to avoid.

In particular, our search is motivated by the types of quadratics discussed in Section 8.

Let x1 and x2 be two distinct vertices of F , and let 〈α1, x〉 ≤ β1 and 〈α2, x〉 ≤ β2 be any two

inequalities valid for F , which support x1 and x2, respectively. For example, 〈αj, x〉 ≤ βj

may be a proper convex combination of the two original constraints of the form 〈ai, x〉 ≤ bi

supporting xj. Also let 〈γ, x〉 = δ be the equation of the line connecting x1 and x2 in R
2,

which is unique up to scaling. We then consider the class of quadratic constraints qλ(x) ≥ 0,

where λ ≥ 0 and

qλ(x) := (β1 − 〈α1, x〉)(β2 − 〈α2, x〉)− λ(〈γ, x〉 − δ)2.

Also define the shape Hλ := {x ∈ R
2 : qλ(x) ≥ 0}. For illustration, Figure 7 depicts a

polygon F , the three lines defining the quadratic qλ(x), and a particular shape Hλ in which

F is partially inscribed. In this case, Hλ is an ellipsoid and two vertices of F lie in bd(Hλ).

By construction, F is partially inscribed in H0, and only the vertices x1 and x2 are in

bd(H0). Indeed, x1 and x2 are in bd(Hλ) for all λ. On the other hand, one can see that

increasing λ eventually violates F ⊆ Hλ. Using the continuity of Sλ in λ (not difficult to

prove), it follows that there exists a largest λmax such that F is partially inscribed in Hλmax
.

In addition, as discussed in Section 8, quadratic inequalities such as qλ(x) ≥ 0 are convex

on F . This means that Hλmax
must necessarily contain a third vertex xj in its boundary.

Indeed, this observation allows us to deduce the following formula for λmax:

λmax := min

{

(β1 − 〈α1, xj〉)(β2 − 〈α2, xj〉)
(〈γ, xj〉 − δ)2

:
xj is a vertex of F ,

not equal to x1 or x2

}

.

The minimizing vertex xj in this definition is the third vertex in bd(Hλmax
), but there can

be more vertices if there are multiple vertex minimizers. Note that the specific λ in Figure 7
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Figure 7: A depiction of the three lines that are used to construct a quadratically defined
shape in which F is partially inscribed. Two lines support two vertices, while the third
connects the vertices.

is less than λmax because only x1 and x2 are in the boundary of Hλ.

Summarizing, our search for a single valid quadratic relies on the specification of 〈α1, x〉 ≤
β1 supporting x1, 〈α2, x〉 ≤ β2 supporting x2, and 〈γ, x〉 = δ connecting x1 and x2. Then

λmax is calculated using the other vertices, which gives the valid qλmax
(x) ≥ 0 and the

shape Hλmax
in which F is partially inscribed at three or more vertices. We can also search

for multiple valid quadratics by considering multiple combinations of x1, x2, 〈α1, x〉 ≤ β1,

and 〈α2, x〉 ≤ β2. We do not claim that searching for multiple valid quadratics is efficient

in a theoretical sense, but it can be automated quite easily in practice given the defining

inequalities and vertices of F .

At this time, we do not have a proof that all valid quadratics of the type described

are enough to capture G, but we conjecture that they are. To support this conjecture,

we randomly generated 6,000 instances of (poly). The values for m were taken from

{5, 6, 7, 8, 9, 10}, and each value of m had 1,000 instances. In addition, for each instance,

both the objective 〈x,Hx〉+2〈g, x〉 and constraints Ax ≤ b were generated randomly, i.e., no

objectives or feasible sets were repeated from one instance to another. We then solved each

instance using just the constraints Y = Y (x,X) � 0 and CY CT ≥ 0, where C := (b,−A).

We considered an instance globally solved if the optimal Y of the relaxation was numerically

rank-1. Otherwise, the instance was globally unsolved. This left 4,835 globally unsolved

instances.

For those 4,835 unsolved instances, we then re-solved each instance, but this time sep-

arating the quadratics discussed above. (Again, we do not claim that our separation was
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Figure 8: An instance of (poly) with m = 5. The first two pictures show the quadratic
objective plotted over the feasible region in 3D (both top and side views). The final three
pictures show in 2D the shapes of the three cuts required to solve this instance globally.

efficient in theory, but it was quick and thorough in practice.) We found that all 4,835

instances were globally solved by this procedure, and a large majority (85% of the 4,835)

required just 1 or 2 cuts, although one instance did require 10 cuts. In Figure 8, we illustrate

one of the instances with m = 5, showing both the function and the shapes of the three cuts

required to globally solve this instance.

10 Polytopes (in Any Dimension)

To complete the connection of the prior sections of this paper with the field of copositive op-

timization, we now recapitulate the main—but here simplified—result of [9], which considers

the n-dimensional optimization problem

v∗ := min
x∈Rn

〈x,Hx〉+ 2〈g, x〉 (tope)

s.t. Ax = b

x ≥ 0,
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where H ∈ Sn, g ∈ R
n, A ∈ R

m×n, and b ∈ R
m. We assume that the feasible set F := {x ∈

R
n : Ax = b, x ≥ 0} is nonempty and bounded, i.e., F is a non-trivial polytope. As before,

we would like to determine an explicit description of G := conv{(x, xxT ) : x ∈ F}, which
will allow us to calculate v∗ as the optimal value of a convex optimization problem.

In this case, however, we will need more than just linear, second-order-cone, and semidef-

inite programmming. Let Sn denote the set of n× n symmetric matrices and R
n
+ the set of

all nonnegative n-dimensional column vectors, and define

COP :=
{

Z ∈ Sn : yTZy ≥ 0 for all y ∈ R
n
+

}

,

CP :=

{

Y ∈ Sn : Y =
∑

k

yk(yk)
T
for some finite collection {yk}k ⊆ R

n
+ \ {0}

}

,

which are, respectively, the set of copostive and completely positive matrices mentioned in

the Introduction. Although the results below use only CP explicitly, we define COP as well

because CP and COP are dual cones and because copositive optimization gets its name from

the copositive matrices.

As we have done in Sections 2–9, we first prove a proposition for K involving the homog-

enization of the feasible set F , which directly leads to the main theorem classifying G for

F .

Proposition 6. Regarding (tope),

K := conv{yyT : Cy = 0, y ≥ 0} =
{

Y ∈ CP : CY CT = 0
}

,

where C := (b,−A).

Proof. For ease of reference, define R :=
{

Y ∈ CP : CY CT = 0
}

, which we note is closed

and convex. We first argue K ⊆ R. Because K is the closure of the convex hull of matrices

yyT with Cy = 0, y ≥ 0 and because R is closed and convex, it suffices to show that such

rank-1 matrices yyT are in R. So take Y = yyT with Cy = 0, y ≥ 0. Then clearly Y ∈ CP ,

and the matrix of linear inequalities CY CT = 0 holds because CY CT equals the rank-1

product (Cy)(Cy)T .

To show the reverse containment, let Y ∈ R. Note that Y ∈ CP implies Y =
∑

k y
k(yk)

T

for some collection of vectors {yk} with each yk ≥ 0. In addition, the equation CY CT = 0

is equivalent to
∑

k(Cyk)(Cyk)
T
= 0, which implies each Cyk = 0 since (Cyk)(Cyk)

T � 0.

So every yk(yk)
T ∈ K, and thus Y ∈ K.

We remark that, for Y ∈ CP , the matrix condition CY CT = 0 is equivalent to the vector

30



equation diag(CY CT ) = 0 because Y ∈ CP implies Y � 0, which in turn implies CY CT � 0.

The use of diag(CY CT ) = 0 is closer to the original development in [9].

Theorem 8. Regarding (tope), it holds that

G := conv{(x, xxT ) : x ∈ F}

= {(x,X) : Y (x,X) ∈ K} =

{

(x,X) :
Y = Y (x,X)

Y ∈ CP , CY CT = 0

}

with Y (x,X) given by (3) and C := (b,−A).

Proof. For ease of reference, define

R :=

{

(x,X) :
Y = Y (x,X)

Y ∈ CP , CY CT = 0

}

,

which we note is closed and convex. As in the proof of Proposition 6, the containment G ⊆ R
holds easily. To prove the reverse containment, let (x,X) ∈ R, and define Y := Y (x,X).

By Proposition 6, we can write Y =
∑

k y
k(yk)

T
with each nonzero yk ∈ R

n+1 satisfying

Cyk = 0, yk ≥ 0. Decomposing
(

νk
wk

)

:= yk with scalar νk ≥ 0 and vector wk ≥ 0, we see

Awk = bνk. If νk = 0, then wk = 0 because the system {x ≥ 0 : Ax = 0} = {0} because F
is nonempty and bounded. So in fact every νk > 0. Define xk := wk/νk. Then

Y =
∑

k

ν2

k

(

1

xk

)(

1

xk

)T

with Axk ≤ b ⇔ xk ∈ F .

Since the top-left entry of Y equals 1, we have
∑

k ν
2
k = 1. So Y is a convex combination of

rank-1 matrices
(

1

xk

)(

1

xk

)T
with xk ∈ F . This proves Y ∈ G as desired.

11 Conclusion

In this paper, we have introduced and illustrated some of the basic ideas of copositive op-

timization using a number of specific examples, and we have tried to demonstrate how the

geometry of the feasible region plays a critical role. Although we have looked at specific

examples, many of the basic ideas and proof techniques hold in more general settings of

copositive optimization, and so we hope this paper prepares the reader for further investiga-

tions into this exciting area.

As indicated in the Introduction, part of the value of this type of research comes from its

characterization of classes of valid cuts for nonconvex problems, and it will be interesting to
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investigate the practical applications of the various cut classes. In particular, the different

classes could be applied anytime the corresponding geometry appears as a substructure in a

given problem. For example, any problem with linear inequalities and ellipsoidal constraints

could potentially benefit from the classes CY CT ≥ 0 and Y ci ∈ L in Section 6. In addition,

for a problem with x ∈ R
n, one could examine pairs of variables at a time, say, xi and xj. If

the projection of the feasible region onto (xi, xj) is a polygon and its facets and vertices can

be worked out explicitly, then the ideas of Section 9 would be applicable.
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