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Abstract. This paper addresses the problem of finding objects

made of glass (or other transparent materials) in images. Since

the appearance of glass objects depends for the most part on what

lies behind them, we propose to use binary criteria (“are these

two regions made of the same material?”) rather than unary ones

(“is this glass?”) to guide the segmentation process. Concretely,

we combine two complementary measures of affinity between re-

gions made of the same material and discrepancy between regions

made of different ones into a single objective function, and use the

geodesic active contour framework to minimize this function over

pixel labels. The proposed approach has been implemented, and

qualitative and quantitative experimental results are presented.

1. Introduction

Material classification is important in practical computer vi-

sion applications as well as general object recognition [1].

Materials have several properties that can be picked up visu-

ally such as surface reflectance [17] and texture [24]. Tex-

ture is often sufficient to distinguish different opaque ma-

terials [5, 11]. On the other hand, transparent objects are

characterized by the fact that one can see through them,

rather than by any intrinsic texture pattern. The main fo-

cus of the machine vision research dealing with transpar-

ent objects has been concerned with 3D structure from X

[4, 9, 15, 16, 22] and layer separation in the case of re-

flections [12, 23]. Relatively little work has been con-

cerned with the automatic identification of objects made of

transparent materials [18]. Adelson et al. [2] have shown

that X-junctions —where a transparent material intersects

a color/texture boundary— may play an important role in

this process, and given rules for classifying junctions as be-

ing due to a transparent boundary or not. This has been

applied to the separation of transparent overlays in [21].

McHenry et al. [14] have shown that edges across glass

objects’ boundaries1 show up quite reliably in the output of

the Canny edge detector [8], and proposed various cues to

capture the transparent, refractive and reflective properties

of glass across its boundaries, and classify the correspond-

ing edges. In this approach, the active contour method of

Kass et al. [10] is then used to identify a single glass region

enclosing the identified edges.

1We will use “glass” in the rest of this presentation to designate trans-

parent, highly reflective and refractive materials such as glass.

This paper describes an alternative, region-based ap-

proach to the problem of segmenting images into glass and

non-glass components. By focusing on regions, we allevi-

ate the need for a final grouping stage as needed in an edge-

based method, and thus do not have to assume that only

one glass object is present. Our method can be outlined

as follows: Since the appearance of glass objects depends

for the most part on what lies behind them, we propose

to use binary criteria (“are these two regions made of the

same material?”) rather than unary ones (“is this glass?”)

to guide the segmentation process. After an initial set of

homogeneous image regions has been identified by a tradi-

tional segmentation algorithm [7], pairs of regions are re-

lated by an affinity measure, providing some indication as

to how well two regions belong to the same material; and a

discrepancy measure based on how much one region looks

like a glass-covered version of the other, providing a ba-

sis for separating regions made of different materials. We

combine these two complementary measures into a single

objective function. Though optimizing this function is a

combinatorial problem, we show that it can be modified to

fit into the geodesic active contour framework [6], allowing

a solution to be found efficiently.

The rest of the paper is organized as follows. Section 2

describes the initial image segmentation process and the

proposed measures of discrepancy and affinity. In section 3,

we present a cost function derived from these measures and

effective means for optimizing it in a geodesic active con-

tour framework. We present our experiments in section 4,

and conclude with a brief discussion in section 5.

2. Characterizing Glass Regions

In [14], rectangular samples are taken from opposite sides

of small edge snippets from the output of the Canny edge

detector and compared using a series of cues associated with

characteristics of glass: transparency, refraction and reflec-

tion. The cues operate on the assumption that one sample

should be some arbitrary piece of background and check

whether the other looks like a glass-covered version of that

piece. The two regions should look similar in terms of color,

and somewhat similar in terms of texture. Since glass is re-

fractive, we might expect the texture to be slightly different

due to distortion. Because of reflection, we might also ex-



Figure 1. In [14], region samples around edge snippets are com-

pared in order to classify the snippet as glass or not glass based on

similarity and distortion between them. Here, our goal is to check

whether one region is a glass-covered version of another, and we

may potentially compare any two (blue) regions in the image.

pect to see specularities as well.

While these cues hold most strongly at edges between

adjacent regions, the same cues can in fact be applied be-

tween any pair of image samples (Figure 1). Rather than

focusing on rectangular region samples along image edges,

we use in this paper the homogeneous texture/color re-

gions found by the graph-based segmentation algorithm of

Felzenszwalb et al. [7] as an initial partition of the image.

These regions that are then compared as explained in the

rest of this section to identify glass/non-glass pairs. It is im-

portant in our case that the initial regions provide an over

segmentation of the image, which is easily achieved by ap-

propriately setting the parameter that governs the behavior

of the algorithm described in [7]. In addition, we have mod-

ified the measure of texture/color discrepancy between pix-

els proposed in [7] to add weight to edge pixels and prevent

regions from bleeding over Canny edges, which have been

shown in [14] to be reliable cues for glass boundaries. Fi-

nally, small and thin regions are merged with their neigh-

bors.

Ideally, given these initial regions, we would like to de-

fine a single homogeneity measure expressing how much

regions from the same material belong together. Since we

are separating glass from non-glass, this means giving high

values to regions within glass, high values to regions not

within glass, and low values to regions when one is in glass

and one is not. As explained below, this does not seem pos-

sible, due to the optical properties of glass and other trans-

parent materials. We propose instead to quantify how much

pairs of regions don’t belong together, or do, using two sep-

arate discrepancy and affinity terms.

2.1. Discrepancy

McHenry et al. propose in [14] to find glass edges using a

classifier trained on the following cues between two regions

incident to the same edge, assuming one is a glass-covered

version of the other:

• Color Similarity (C): the color tends to be similar in both

regions.

• Blurring (B): the texture in the glass region is blurred.

• Overlay Consistency: the intensity distribution in a glass

region is constrained by the intensity distribution of its back-

ground by alpha (A) and emission (E) values.

• Texture Distortion (D): the texture of the glass region is

slightly different due to refraction.

• Highlights (H): glass regions often have specularities.

We borrow from this work, and refer the reader to [14] for

details. We do not use the blur cue here since it relies on the

discrete cosine transform which is appropriate for rectangu-

lar samples but not for arbitrary region shapes.

The five cues (A, C, D, E, H) together provide us with a

five-dimensional space to characterize the discrepancy be-

tween two regions —that is, a measure of how these regions

are unlikely to come from the same material, in terms of one

of them looking like a glass-covered version of the other.

Rather than train a classifier in this five-dimensional space,

the cues are grouped into three different classifiers of three

terms each: ECA, DCA, HCA, and their outputs combined

using a fourth linear support vector classifier which effec-

tively weights the reliability of these sub-classifiers.

It has been shown in [19] that the value returned by a

support vector classifier —that is, the signed distance of a

data point to the dividing hyperplane— can be used as a

probability with a proper mapping. This is done by fitting a

sigmoid to the training data, which tends to give the positive

training data very high probabilities and the negative ones

very low probabilities. The range of values for which a test

point can take on an intermediate value is small, and values

increase quickly. This is fine when the classifier is rarely

wrong, but for our purposes it is not desirable to have most

of the assigned probabilities at the far extremes. In addition,

our setting does not require discrepancy (or for that matter,

affinity) measures that can be interpreted as probabilities, so

we drop the log function and simply scale the SVM output

so that on the training data the minimum output is 0 and the

maximum is 1. This will be our discrepancy measure Dij

between regions i and j.

Dij can be thought of as a distance separating regions

depending on how much one looks like a glass-covered ver-

sion of the other. If this is the case, a high value is re-

turned. When the two regions look completely different,

a low value is returned. Unfortunately, a low value in no

way means that the two regions are both glass or both back-

ground. Consider the four regions shown in Figure 2. Let us

call the two background types A,B and their glass-covered

versions A′, B′ respectively. In this example, we expect

DAA′ , DBB′ to be high and DAB , DA′B′ to be low since

they look very different. But what of DAB′ and DA′B?

These pairs also look very different so will have low val-

ues, possibly lower values than DAB , DA′B′ depending on

the background appearances. Thus, if we try to separate the

regions into two groups, glass and non-glass, based on this



Figure 2. Comparing two background regions to their glass-

covered versions we expect to get a high discrepancy value. We

will get low values when comparing the two background regions,

the two glass regions, and the glass regions to the background re-

gion that does not correspond to it. This will allow for two possible

segmentations, the correct glass/background segmentation and an-

other with one glass region and the background that is not its own.

measure alone, we may have many solutions. In the above

example, both the correct segmentation (AB)(A’B’) and an

alternative (AB’)(A’B) are likely just as good. In fact, we

see that we can really only trust Dij when its value is high.

2.2. Affinity

Since glass edges tend to show up reliably in images [14], it

is reasonable to try and use them to relate regions. In partic-

ular, when two regions are connected by an edge, and they

are on the same side of that edge, they can be correlated by

some affinity value Aij . Determining whether a path exists

between two regions is a simple matter of walking along

the edgels that come near one region’s border and following

the edge to see which other region borders it comes close

to. When there is more than one way to approach another

region, we consider only the shortest path. The process of

finding all the connecting paths can be implemented effi-

ciently by converting the edge output into a graph where the

nodes are edgels that are junctions (more than two neigh-

bors) or ends (one neighbor), and the graph edges are the

edgel paths connecting these nodes (possibly empty). In our

implementation, we consider a region to be near an edgel

when it has a point less than four pixels away. This too can

be done efficiently by simply dilating each region by four

pixels.
We would like the value of Aij to be high when two re-

gions come from the same material (i.e., glass or non-glass),
and low otherwise. To do this, let us consider what can hap-
pen on the edge path between two regions. If this path is
rough, with many large changes in orientation, there is a
good chance that it is going through a textured region, pos-
sibly merged by smoothing and hysteresis, or has left one
object and entered another. On the other hand, if the edge
path is smooth, there is a good chance we are following a
single object’s contour. Thus we define the affinity as

Aij = 1 −
aij

π
,

where aij is the maximum angle between consecutive edgel

tangents on the path from region i to j. Straight paths will

receive a value of 1, and paths with sharp turns will receive

Figure 3. Four possible scenarios that may occur when connecting

two regions by an edge path. Upper left: Both regions are on the

same side of a smooth edge path. Upper right: The regions are on

opposite sides of an edge path. Lower left: Both regions are on

the same side of a non-smooth path. Lower right: Both regions

are on the same side of smooth path that is intersected by another

path.

lower values. If there is no path between two regions, Aij

is set to 0. Edge detectors are known to behave oddly at

junctions, possibly breaking one object’s contour and con-

necting it to that of another. In many of these cases, an

abrupt turn will result, thus it is beneficial to down weight

sharp turns indicating our lack of confidence that they are

true connections (Figure 3).

One may ask what happens when a background con-

tour intersects a glass object. Would such an occurrence

strongly correlate glass and non-glass regions? Due to the

highly refractive nature of glass, most contours passing be-

hind a glass object will appear broken (Figure 4). In turn,

this will force a sharp change in direction on any joining

paths between the two regions, resulting in a low affinity.

Of course, under the right conditions —perhaps a flat ob-

ject like a glass plate lying on top of a striped table— such

intersecting contours will result in an incorrectly high affin-

ity. We can spot such hazards with the edge graph already

built. When the path between two regions comes across

an intersection which two high correlating paths could pass

through, for example two paths at right angles,2 we can do

one of two things. Following [14], we could evaluate each

of the good paths through the junction and only allow infor-

mation to pass along the most glass-like path, or just pre-

vent all information from passing through the junction. In

our experiments we do the latter. We also extend the notion

of affinity to pairs of regions that don’t have a direct edge

path between them, but are connected through several edge

fragments along adjacent regions.

Figure 5 shows typical examples of affinity strengths be-

tween sample regions and all others. Let us point out that

there is a second advantage to glass having a high refrac-

tive component in that the area within and just outside a

2The topology of an edge detector’s output is unreliable in most cir-

cumstances. However in the case of glass, it is a viable means of relating

regions.



Figure 4. Checking to see whether two regions are on the same side

of a smooth edge is a good way of linking together regions that are

both glass or both not glass. Edges that could incorrectly link

glass and background regions by passing behind the glass object

are usually broken by refraction, thus making their edge path non-

smooth.

glass object’s contour tend to have the glass boundary as the

longest smoothest path around. Thus glass regions tend to

be better correlated to one another than background regions

are to each other.

We can think of Aij as a measure of affinity between

two regions, giving high values to regions within the same

contour. However, a low value does not necessarily mean

two regions belong in different groups. In fact in most cases

it will mean that there is no edge path between them. As

before, we can only really trust Aij when its value is high.

3. Combining the Measures

We have been calling Dij and Aij discrepancy and affinity
measures, but they may be better thought of as measures of
certainty of discrepancy and affinity: When the discrepancy
is 1, the regions compared are as likely to consist of differ-
ent materials as can be inferred from the training data. On
the other hand, when it is low, we cannot ascertain whether
one region is glass, and the other is a piece of background.
Similarly, when the affinity Aij is high, the two regions are
very likely to be part of the same material. On the other
hand, a low value does not inform us much. Thus, it makes
sense that a correct segmentation should maximize a com-
bined certainty criterion drawn from the two measures at
our disposal. To do this, we could maximize the following
objective function:

E =
X

i∈G,j∈O

Dij +
X

i∈G,j∈G

Aij −
X

i∈G,j∈O

Aij (1)

with respect to the region labels (“(G)lass” or “(O)ther”).

The first term enforces large discrepancies between glass

regions and non-glass regions. The second term enforces

large affinities internal to the glass. The final term penalizes

a segmentation for breaking any large affinities between the

glass and non-glass. Unfortunately, maximizing this func-

tion is a combinatorial problem: In practice, even though

most initial segmentations only leave a few hundred re-

gions, having to enumerate an exponential number of com-

binations of these is still far too expensive.
We propose instead to change the original objective func-

tion definition and concentrate on the discrepancy between

Figure 5. Top row: an image with its initial segmentation based

on color and texture. Bottom row: Two selected regions (red) and

the affinity values of all other regions. Brighter intensities indicate

higher values.

adjacent regions. In this context, it is convenient to define

Dxy = bxyDixyj

to express the local discrepancy at the pixel level. Here ixy

is the region that contains point x, y and bxy is an indicator
variable whose value is 1 if point x, y is on the border of this
region. The variable j is then the region on the opposite side
of the border. Similarly, we define

Axy = bxy

 

X

j∈G

Aixyj −
X

j∈O

Aixyj

!

to express the pixels’ affinity to the glass set.
Optimizing an objective function based on Axy and Dxy

over all possible pixel labels is still a combinatorial prob-
lem. Thus, we treat every pixel as a sample of an under-
lying continuous function and relax the original combina-
torial problem into a continuous one. For this, we use the
geodesic active contour framework of Casselles et al. [6],
and define an objective function over the smooth boundary
(contour) Cs of an evolving image region:

E(C) =

1
Z

0

g(BCs
)|Ċs|ds,

where g is a monotonically decreasing function (e.g. Gaus-

sian), and |Ċs| is a regularization term that tends to minimize
the length of the contour and maximize its smoothness. For
regions defined in the discrete image domain, BCs

is re-
placed by a term Bxy (boundary strength) given in our case
by:

Bxy = αDxy + (1 − α)Axy

where α weights the significance of the discrepancy and

affinity terms. We have defined Dxy and Axy only at re-

gion borders since we want a subset of whole regions as our

output.
We now wish to minimize this function. This can be

done with a gradient descent method by differentiating over
time [6]:

∂

∂t
C = g(BCs

)K ~N − (∇g(BCs
) · ~N ) ~N



Figure 6. Evolution of the level set (blue) as it segments the image

into glass and non-glass. Note that two small regions have been

classified incorrectly.

where K is the Euclidean curvature with respect to the curve

and ~N the normal. This can be solved in a level set imple-
mentation by embedding this within a function φ whose 0

level set is the current contour. Given an initialization for φ
we adjust it with the following evolution equation [6]:

∂

∂t
φ = g(BCs

)K|∇φ| + ∇g(BCs
) · ∇φ

In our implementation we initialize φ so that its 0 level set

is near the border of the image and set α to 0.25 (Figure 6).

The evolution equation implicitly requires the curve to

be smooth. We find this beneficial since trouble areas such

as texture will usually have rough boundaries.

Note that by changing our objective function to fit the

geodesic active contour framework, our final result may

not be on the initial region boundaries (even though we re-

stricted Dxy and Axy to border pixels). This is wasted in-

formation, since we want a subset of these regions as our

output. To account for this, we reset the contour every few

iterations to match the boundary of the regions within it.

This can be done by looking at the percentage of each re-

gion inside the current contour and removing all regions that

have more than 50 % of its pixels outside.

We further enforce the smoothness of the boundary with

a simple post-processing step where we examine each of the

regions just outside the border of what has been labeled as

glass. If adding this region reduces the overall perimeter of

the object then it too is classified as glass. This is repeated

until no further regions can be added.

4. Experiments and Results

We compare the proposed method to the ones proposed in

[14] on their test data set of fifty images. Thirty five of

the images contain glass objects in front of various back-

grounds. Fifteen of the images contain no glass objects. In

addition we train the glass classifiers used in Dij on the

same fifteen training images, six with glass objects in front

of various backgrounds and nine with no glass at all. The

results are shown in Table 1.

Figure 7. A proof-of-concept illustration showing that the outlined

technique can be generalized to find shadows with a discrepancy

based on the appropriate cues. It is interesting to note that the

stapler is actually darker than its shadow in the image.

The proposed method obtains a precision (percentage of

pixels labeled glass that are actually glass) of 77.03% which

is higher than any of the edge based methods proposed in

[14]. Some sample segmentations are given in Figure 8.

Notice the two distinct glass objects in the third row, which

could not be found with the edge based method. A couple of

false positives can be seen in the second row, though most

of the image is segmented correctly. In the first row there

is a conspicuous piece missing out of the right side of the

plate. Though its difficult to see in the small image one of

the external building regions partially bleeds into the plate

allowing for some of the glass regions to have a somewhat

high affinity with this region. When this region is eventu-

ally removed it weakens those regions allowing the contour

to pass by their boundaries. Similarly in the fourth row. In

this case the orange region making up one of the wall planks

crosses into the right bottle from time to time. Glass regions

incorrectly linked to to this region are eventually weakened

when the plank is removed. Of course if the initial seg-

mentation merges some of the glass into the background we

can not separate it later on. This can be seen in row two,

where most of the base of the tea glass is merged into the

table. Again in row five, the unmarked thin areas at the

top of the bowl are part of the the blue region just above it.

In row three an incorrect merging of part of the glass with

the opening of the mug and the base of the bottle with part

of the table results in false positives. In general, the initial

segmentation does a good job of separating the region into

uniform pieces of background and glass.

5. Conclusion

We have presented a region-based segmentation method for

finding objects made of transparent materials such as glass.

As argued by Adelson in [1], the visual vocabulary of mate-

rials includes much more than just texture. The recognition

of transparency is one such example, but finding metallic,

dull, or even greasy spots in an image would be interesting

as well. Identifying a material’s typical form, such as be-



Method True Positive Rate False Positive Rate Precision

SVM on all cues 47.01% 3.09% 68.76%

Multiple SVM’s + Weighted sum 83.94% 8.53% 58.78%

Multiple SVM’s + Exponential model 88.30% 10.04% 56.04%

Multiple SVM’s + Weighted sum (sampled) 79.72% 4.12% 73.70%

Proposed method 61.73% 2.67% 77.03%

Table 1. Results of the various classifiers described in [14] all tested on a test set of 50 images where glass pixels were marked by hand.

True positive rate, or recall indicates the percentage of glass pixels that were correctly identified. The false positive rate indicates the

percentage of non-glass pixels that were identified as glass. Precision is the percentage of identified glass pixels that were actually glass.

From top to bottom: an SVM on all six values of the cues, a classifier consisting of a weighted sum of the sub-classifiers described in

section 2.1, a classifier consisting of the outputs of the sub-classifiers combined through an exponential model, a classifier consisting of a

weighted sum of the sub-classifiers and trained on only a sample of the training data [14], and the proposed segmentation method.

ing granular, fibrous, porous, nodular, columnar, foliated,

or scaly is interesting as well [1]. While characterizing a

material’s luster as metallic or mirror-like may be difficult

when looking at a single image region, it might be accom-

plished using a binary measure as we have here. In the case

of mirror-like surfaces, we might also compare two regions

to see if one could be a reflected version of the other (possi-

bly with some distortion).

We would like to point out that the general approach that

we have described here can also be applied to the task of

finding shadows with different, appropriate cues to define

the discrepancy measure (Figure 7). Color cues, such as as

the ratios of their components [3] have been used to remove

shadows [13]. In addition it has been observed that some

color spaces tend to have channels that are invariant to shad-

ows [20]. This property lends itself to another shadow cue

based on color. Of course, texture should be a cue since a

shadow should not modify an objects texture, thus the tex-

ture would have to be very similar in two regions if one is

to be considered a shadow-covered version of the other. We

intend to explore this further in future work.
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Figure 8. Test images and output from the described method. Left: Five sample test images, Middle: The initial segmentation based on

color and texture, Right: Regions labeled glass.


