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Abstract: This study investigated how underlying biophysical attributes affect the characterization of
the Surface Urban Heat Island (SUHI) phenomenon using (and comparing) two statistical techniques:
global regression and geographically weighted regression (GWR). Land surface temperature (LST)
was calculated from Landsat 8 imagery for 20 July 2015 for the metropolitan areas of Austin and San
Antonio, Texas. We sought to examine SUHI by relating LST to Lidar-derived terrain factors, land
cover composition, and landscape pattern metrics developed using the National Land Cover Database
(NLCD) 2011. The results indicate that (1) land cover composition is closely related to the SUHI effect
for both metropolitan areas, as indicated by the global regression coefficients of building fraction and
NDVI, with values of 0.29 and −0.74 for Austin, and 0.19 and −0.38 for San Antonio, respectively.
The terrain morphology was also an indicator of the SUHI phenomenon, implied by the elevation
(0.20 for Austin and 0.09 for San Antonio) and northness (0.20 for Austin and 0.09 for San Antonio);
(2) the SUHI phenomenon of Austin on 20 July 2015 was affected by the spatial pattern of the land use
and land cover (LULC), which was not detected for San Antonio; and (3) with a local determination
coefficient higher than 0.8, GWR had higher explanatory power of the underlying factors compared
to global regression. By accommodating spatial non-stationarity and allowing the model parameters
to vary in space, GWR illustrated the spatial heterogeneity of the relationships between different
land surface properties and the LST. The GWR analysis of SUHI phenomenon can provide unique
information for site-specific land planning and policy implementation for SUHI mitigation.

Keywords: Surface Urban Heat Island (SUHI); landscape; geographically weighted regression; spatial
pattern; Austin; San Antonio

1. Introduction

Although urban land covers only 2–3% of the total area of the Earth [1,2], urban areas draw
ample attention due to the rapid pace of urbanization across the world. Indeed, whereas the global
fraction of population living in the urban areas was just 30% in 1950, by 2014, that figure had passed
54% [3]. Urbanization involves increases in both population and developed space, and certain planning
and management strategies significantly influence the landscape pattern and the environment [4–7].
The Urban Heat Island (UHI) effect, which refers to the phenomenon of an urban area’s atmosphere
exhibiting higher temperatures than surrounding rural areas [8], has become a well-researched topic
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due to a series of adverse effects on vegetation phenology [9], air pollution [10], meteorology [11],
climatic warming [12], and health risks for urban residents [13].

Traditional UHI investigation has focused on atmosphere UHI where the air temperature is
measured in situ at isolated stations. Although some modern devices can capture additional parameters
to investigate the UHI (e.g., velocity, turbulence, and even pollutant concentration), the stationary
networks are still limited in most of urban areas worldwide. Meanwhile, due to the air mixes and
advection effect, the study of the atmosphere UHI is not capable of capturing the heterogeneous
thermal pattern caused by land use and land cover (LULC) composition and configuration. In contrast,
remote sensing data have been used to estimate the land surface temperature (LST), which is
time-synchronized and grid-based for a considerable areal extent [14,15]. Surface UHI (SUHI), which is
characterized by the analysis of remotely-sensed LST, has enabled the evaluation of the relationships
between LST and microscale geophysical variables on the landscape. Different from the traditional
UHI analysis, LST data contributes to a broader understanding of spatial thermal patterns and the
influence of surface properties on SUHI formation [16].

The examination of how underlying surface characteristics affect SUHI formation has become one
of the major applications of remote sensing for urban climate studies. Remote sensing-derived spectral
indices have been used to examine SUHI formation, including the Normalized Difference Vegetation
Index (NDVI) [17], the Normalized Difference Built-up Index (NDBI) [18], and the Normalized
Difference Water Index (NDWI) [19], among others. Moreover, several studies have reported that green
spaces or water bodies mitigate high LSTs [20–23]. On the other hand, built-up or impervious land cover
increases LST and exacerbates SUHI effects [23–25]. Furthermore, research has also demonstrated
the impacts of spatial composition and configurations of detailed LULC on the LST [21–23,26,27].
These studies indicate that empirical estimation models are effective tools for characterizing SUHI
formation with less computational intensity compared to simulation models. In addition, empirical
estimation outputs are relatively easy to interpret. Conventional statistics (e.g., ordinary least squares
(OLS)) are the primary tools for researchers in most studies that investigate the impacts of underlying
factors on SUHI formation. However, the prominent limitation of conventional statistics in geoscience
is spatial non-stationarity which refers to the spatially varying relationships between dependent and
independent variables [28]. Moreover, OLS has been shown to be of limited utility when spatial data are
coupled with highly correlated independent variables [29]. An alternative to conventional regression
is Geographically Weighted Regression (GWR) which can model spatial variation in the relationship
between dependent and independent variables. Li et al. [30] first indicated that GWR provides a better
fit and more localized information than a global model when exploring the landscape drivers of LST.
Additional assessments of GWR have been compared to global regression (e.g., OLS) with respect to
residual spatial autocorrelation, and a goodness-of-fit model has also been explored [31–33].

Previous studies have focused on analyzing SUHI for single cities, while SUHI research on broader
metropolitan areas of multiple cities is far less common. This larger extent analysis warrants further
investigation since the underlying factors are likely to be more complex and variable over space.
The Austin and San Antonio metropolitan areas in Texas, USA were selected for our LST mapping
because of their hot and humid summers and population concentrations (Figure 1 and Table 1).
However, there have been few UHI studies within these two metropolitan areas, and comparisons of
UHI results are difficult because of variations in mapping units and land cover characteristics. Under
that backdrop, the main objectives of this study are to answer the following questions: (1) Which
underlying landscape properties (e.g., land cover and terrain morphology) are significantly related
to the SUHI phenomena for Austin and San Antonio, Texas, and (2) compared to a global regression
approach, does GWR provide improved insight about the landscape drivers of LST?
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Figure 1. The Austin and San Antonio metropolitan areas in Texas, U.S. 
Figure 1. The Austin and San Antonio metropolitan areas in Texas, U.S.

Table 1. Summary of the geographic, demographic, and climatic characteristics of Austin and San
Antonio, Texas.

Areas
Location (the

Center Point) 1
Land Area

(Square km2) 1

Estimated
Population

(1 July 2015) 2

Bare Earth Elevation
(Approximate, meters) 3

Average
Temperature Range

(◦C), July 4

Average
Precipitation
(mm), July 4

Austin
30.36◦N,
97.78◦W

4587.36 931,830
(107, 405)

Mean: 235
(23.6, 35.3) 48

San Antonio
32.76◦N,
96.97◦W

4752.04 1,469,845
(116, 579)

Mean: 263
(23.3, 34.8) 52

Sources: (1) Inquired or calculated by the authors in ArcMap based on the projection system “WGS 1984 UTM
Zone 14N”. (2) US Census Bureau. (3) Derived from 5 m Digital Terrain Models (DTMs), built by the authors from
Lidar data provided by the Texas Natural Resources Information System (TNRIS). (4) US climate data website
(www.usclimatedata.com).

2. Materials and Methods

2.1. Study Areas

As two of the four major metropolitan areas of Texas, the Austin–Round Rock (Austin) and the
San Antonio–New Braunfels (San Antonio) metropolitan areas are located in the central south region of
Texas, USA (Figure 1). The Interstate highway I-35, a major transportation corridor, passes north-south
through these two metropolitan areas. Both areas are characterized by relatively flat terrain to the east,
grading to more complex topography along the Western edge of the Balcones Escarpment. Based on
the Köppen climate classification scheme, the region is considered humid subtropical with long and
hot summers, short and mild winters, and warm and rainy spring and fall seasons [34] (Table 1).
Both the Austin–Round Rock and San Antonio–New Braunfels metropolitan areas are located in a

www.usclimatedata.com
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unique and narrow transitional zone that ranges from semi-arid vegetation cover dominated by trees
and shrubs in the west, to humid and more densely vegetated prairie/grassland to the east.

2.2. Data Collection and Preprocessing

2.2.1. Landsat 8 OLI/TIRS Imagery

The moderate spatial resolution and spectral bands of Landsat data are amenable to modeling
SUHI variation and underlying landscape patterns at the extent of a metropolitan area. Because of
the harmful impact of high temperature on human health in our study areas, summer (June, July,
and August) and day-time SUHI phenomena were considered in this SUHI study. Meanwhile, at least
two Landsat images are needed to cover the entire San Antonio area. In this sense, two cloud-free
Landsat 8 OLI/TIRS images acquired on 20 July 2015 were obtained from the United States Geological
Survey (USGS) Earth Explorer for LST calculation and derivation of related spectral indices (e.g., NDVI).
Image preprocessing was implemented using ERDAS Imagine 2015 and included stacking individual
bands and clipping the image stack of the study areas. Digital numbers for all reflective bands
were converted to top-of-atmosphere (TOA) reflectance using scaling coefficients provided in the
image metadata.

2.2.2. Lidar Dataset Processing

Lidar data were used to calculate a series of morphological properties closely related to SUHI
variation, including topography and building morphology. Lidar datasets were obtained from the
Texas Natural Resources Information System (TNRIS) and downloaded using an online interface.
Table 2 provides the relevant metadata information about the different airborne Lidar survey project
between 2007 and 2012 that were used to calculate the Lidar-derived model covariates. Lidar data
processing included the generation of digital terrain models (DTM) and building footprint extraction.
Five-meter DTMs were generated using the “LAS Dataset to Raster” tool in ArcGIS 10.5 for individual
Lidar projects, using the 3D Analyst Conversion Toolbox and “Average Cell Assignment Type” for
ground classified returns. The DTMs from the different source projects were merged together after
being re-projected to the same spatial reference (NAD UTM Zone 14N). Similarly, 5 m digital surface
models (DSMs) were generated with the same tool but using the “Maximum Cell Assignment Type” for
all Lidar returns. The DSMs represented the ground surface combined with built-up areas, vegetation,
and other features on the landscape. The same reprojection and data merging procedures were applied
to the DSMs. Figure 2 shows the spatial pattern of DSMs for the study areas and a detailed illustration
of DSMs for a selected area in San Antonio.

Table 2. Metadata of Lidar projects for the study areas.

Projects
Point Space and MSE Accuracy
(Horizontal/Vertical, cm)

Datum (Horizontal/Vertical) and Projection Point Classes

CAPCOG 2007 Caldwell,
Travis, Williamson

140; 100/18.5
NAD83/NAVD88;
State Plane Texas Central

Ground/unclassified

CAPCOG 2008 Bastrop,
Fayette, Hays

140; 100/18.5–37 NAD83/NAVD88; State Plane Texas South Central Ground/unclassified

CAPCOG 2012 Travis 140; N/A NAD83/NAVD88; State Plane Texas Central 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 17

FEMA 2011 Comal,
Guadalupe

100; 60/12.5 NAD83, NSRS2007/NAVD88, Geoid 09; UTM Zone 14N 1, 2, 7, 9 ,10, 11

StratMap 2010 Bexar 50; 100/19
NAD83/NAVD88, Geoid 09;
UTM Zone 14N

1, 2, 6, 7, 9, 12, 13

StratMap 2011 Caldwell,
Gonzales

50; 75/15
NAD83/NAVD88, Geoid 09;
UTM Zone 14N

1, 2, 4, 6, 7, 9, 13

Notes: 1. Point classes are based on the American Society for Photogrammetry and Remote Sensing (ASPRS)
classification system. (1) Unclassified; (2) bare earth; (3) low vegetation; (4) medium vegetation; (5) high vegetation;
(6) buildings; (7) low point/noise; (9) water; (10) rail; (11) road surface; (12) overlap; (13) bridges/culverts;
(15) transmission tower; and (17) bridge deck. NAD: North American Datum; UTM: Universal Transverse Mercator;
MSE: mean squared error.
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Figure 2. Digital surface models (DSMs) with a 5 m resolution for Austin (left), San Antonio (middle),
and a detailed illustration of DSMs for a selected area of San Antonio (right).

Buildings are an essential component of SUHI formation, both in terms of building height and
fractional cover on the landscape. Building footprints for portions of central and south Austin were
created by the City of Austin Enterprise Geospatial Services; however, they did not cover the entire
metropolitan area. Consequently, we extracted building footprints using the dataset of Lidar points
in LP360, a type of software for Lidar data management and post-processing. Buildings were first
classified using the point cloud task tool “Planar Point Filter”, in which the parameters were set after
several trial and error runs. Subsequently, building outlines were extracted as polygons from the Lidar
data in LP360 with the automated point cloud task tool “Point Group Tracing and Squaring” for the
developed areas. To further improve the accuracy of the building extraction, we manually interpreted
and deleted erroneous building outlines with the aid of high-resolution current and historical images
from Google Earth and base maps in ArcGIS. Figure 3 provides examples of detailed building extraction
results for selected intensively developed areas.
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Figure 3. Detailed illustrations (left) of building extractions from a selected part (right) of the study areas.
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2.3. SUHI Measurement

Top-of-atmosphere (TOA) radiance (i.e., radiance measured by the LTOA,λ sensor) was converted
to brightness temperature according to the following formula:

Tsen =
K2

ln
(

K1
LTOA,λ

+ 1
) (1)

where Tsen is the temperature in Kelvin (K), and K1 and K2 are calibration constants specific to the
Landsat TIRS sensor which can be obtained from the image metadata.

The brightness temperature was further adjusted using land surface emissivity (LSE) which is
essential for LST inversion due to the noteworthy thermal variation of different land surface properties
at a large spatial extent. The variation of vegetation coverage, surface moisture, roughness, and viewing
angles leads to different LSEs for different cover types [35]. The Normalized Difference Vegetation
Index (NDVI) threshold emissivity estimation algorithm [36,37], a common method for LSE estimates,
was applied in this study. The NDVI values were used to distinguish between soil and vegetated pixels
before LSE calculation. The radiance-corrected values of band 4 (Red) and band 5 (NIR) from Landsat
OLI were used for the corresponding NDVI calculation to mitigate the effects of vegetation phenology.

Specifically, following instructive literature, an NDVI threshold for rocks/soil (NDVIs) was
assigned a value of 0.2, and the NDVI threshold for vegetation (NDVIv) was assigned a value of
0.5 [23,35]. Thus, any pixel for which NDVI < NDVIv was assumed to be bare soil or rock with an
ελ (emissivity) value of 0.966. If NDVI > NDVIv, a pixel was considered to be fully vegetated and
assigned an ελ value of 0.986 [35]. If the NDVI was between NDVIs and NDVIv, then the pixels were
considered to be a combination of vegetation and rocks/soil. Equations (2)–(4) were used to represent
the relationship between NDVI and LSE to calculate the LSE for corresponding pixels.

ελ = εvλPV + εsλ(1 − PV) + Cλ (2)

where εvλ and εsλ are emissivity values of vegetation and soil, respectively. Cλ was used to calibrate
the cavity effect due to surface roughness:

Cλ = (1 − εsλ)εvλ F′(1 − PV). (3)

F′ is a geometrical factor, assigned a value of 0.55, by assuming different geographical
distributions [37], while PV is the vegetation fraction.

PV = [
NDVI − NDVImin

NDVImax − NDVImin
]
2
. (4)

The Planck’s function was used to perform LSE correction of the substance compared to the
blackbody. Thus, brightness temperatures were converted to LST [38,39].

Ts =
BT

1 + λ BT
ρ lnελ

(5)

where Ts is the LST in Kelvin (K), and BT is the brightness temperature (e.g., Tsen) in this study. λ is
the wavelength of emitted radiance (band 10 was used for the LST calculation and λ = 10.895 µm for
Landsat 8 TRIS), ρ (e.g., h × c/σ) = 1.438 × 10−2 mK. Ts was then converted into Celsius LST (◦C).
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2.4. OLS and GWR Analysis

Unlike a conventional (global) regression model, GWR is able to model spatial variation in the
relationship between dependent and independent variables. A GWR model takes the following form:

yi = β0(ui, vi) + ∑
k
βk(ui, vi)xik + εi (6)

where yi, xik, and εi are the dependent variable, the k independent variable (subscripted as k), and the
random error at point i (subscripted as subscript i), respectively. The location is denoted by the
coordinates (ui, vi) of a given point (i). The coefficients βk(ui, vi) are varying weights on the location,
and β0(ui, vi) is the geographically varying intercept. Thus, the GWR extends the global regression
model by adding the geographical location parameter to generate the local coefficients to account for
spatial non-stationarity. The estimates of β0(ui, vi) and βk(ui, vi) are based on the unbiased estimation
of a set of observations, in which the weight matrix is used to weight the observations differently [40].
The variation in βk(ui, vi) at different locations makes the GWR different from the OLS. The distance
to the given point (i) is an important factor that affects the weight matrix:

β0(ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi)Y. (7)

Generally, the Gaussian function is used to generate the weight matrix (W(ui, vi)) with the
following form:

W(ui, vi) = e−0.5( d(ui,vi)
b )

2

. (8)

Here, an adaptive Gaussian kernel function was adopted for the analysis, where optimal the
bandwidth was detected through a golden search algorithm in GWR 4. Here, by incorporating the
weight into the pooled observations, the GWR yielded more precise estimates compared to the OLS.

Global regression models were also developed and compared to the GWR results. The coefficient
of determination (R2), the global Moran’s I of the residuals, the Akaike Information Criterion (AIC),
and the corrected AICc were used to compare the performances of global regression models versus
the GWR model with respect to the goodness-of-fit and residual spatial autocorrelation. In this paper,
both the GWR and global regression models were built using the open source platform GWR 4 [41].

2.5. Derivation and Selection of Explanatory Variables

Based on knowledge from prior SUHI studies [21–27], a suite of potential explanatory variables
was selected for two models, one each for the metropolitan areas under consideration. Considering the
variable type, the explanatory variables were categorized into three groups, as summarized in Table 3.

2.5.1. Land Use/Land Cover Composition (LULC) Variables

The Buildings Fraction (BF), Impervious Surfaces Fraction (ISF), NDVI, and Canopy were
considered for SUHI explanatory variables in terms of the LULC composition. ISF and Canopy
were downloaded as independent layers from National Land Cover Database (NLCD) 2011 [42],
the thematic accuracy of which has been established in the literature [43]. BF was derived using the
building footprint features based on the Lidar datasets.
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Table 3. Potential explanatory variables: derivation sources and statistical summary of the observations.

Variables Derivation Sources Max. Min. Mean SD

Land use/land cover composition (LULC) variables

Canopy (Tree Canopy Fraction) 2011 NLCD Tree Canopy dataset
Austin 87.46 1.26 32.89 19.83

San Antonio 86.48 0.46 32.30 20.00

ISF (Impervious Surfaces Fraction) 2011 NLCD ISF dataset
Austin 80.83 0.00 9.44 14.25

San Antonio 86.42 0.00 12.12 17.10

BF (Buildings fraction) Building footprints
Austin 43.96 0.00 5.07 8.43

San Antonio 51.25 0.00 5.52 8.72

NDVI (Normalized Difference
Vegetation Index)

Landsat 8 OLI, 20 July 2015
Austin 0.53 −0.44 0.31 0.10

San Antonio 0.57 −0.38 0.30 0.10

Landscape pattern metrics variables

CONTAG (Contagion Index) NLCD LULC data
Austin 87.34 10.68 40.76 11.08

San Antonio 97.90 10.18 41.67 11.90

PD (Patch Density) – Austin 137.22 4.56 53.83 30.26

San Antonio 128.74 0.65 53.51 30.88

SHDI (Shannon’s Diversity Index) – Austin 2.42 0.25 1.54 0.33

San Antonio 2.34 0.02 1.49 0.36

PR (Patch Richness) – Austin 15.00 3.00 8.65 2.12

San Antonio 15.00 2.00 8.46 2.48

Terrain variables

Elevation Aggregated from 5 m × 5 m DTMs
Austin 403.51 113.14 227.66 56.95

San Antonio 526.87 124.96 255.19 75.88

Northness Aggregated from 5 m × 5 m Northness dataset
Austin 0.48 −0.66 −0.04 0.13

San Antonio 0.93 −0.67 −0.06 0.14

Notes: “Max.”: Maximum. “Min.”: Minimum. “SD”: standard deviation. “NLCD”: National Land Cover Database.
“DSM”: Digital Surface Model. “DTM”: Digital Terrain Model. “–”: “same as above”.

2.5.2. Landscape Pattern Metrics

The 30 m NLCD 2011 data was used to compute landscape metrics at the landscape level
to quantify the general characteristics of the overall mosaic of LULC patches [42]. The LULC
types of the study area included open water, developed land (in four intensity levels), forest
(deciduous, evergreen, and mixed), shrub/scrub, grassland/herbaceous, pasture/hay, cultivated
land, and wetlands (woody, herbaceous).

The Contagion Index (CONTAG) and Patch Density (PD) were applied to describe aggregation.
CONTAG is inversely related to the edge density. For instance, when a single class occupies a very
large percentage of the landscape (low edge density), contagion is high and vice versa. It is affected by
both the dispersion and interspersion of land types. PD is the number of patches on the landscape and
describes the aggregation and subdivision characteristics of the various land covers. The Shannon's
Diversity Index (SHDI) considers the proportional abundance of each patch type across all patch
types and the Patch Richness (PR) quantifies the number of different patch types. These metrics were
selected to measure the diversity characteristics on the landscape. In regard to optimal sampling scale
selection, our previous study of Local Climate Zones (LCZs) indicated that 270 m is an optimal scale
for an urban climate study as a uniform measure of land cover and surface structure [44]. Based on
this finding, 1000 m × 1000 m grids cells were used as observations to mitigate the spatial dependence
and spatial autocorrelation. For consistency, all landscape metrics were calculated in FRAGSTATS
using a radius of 1000 m centered on sampling points distributed throughout the study areas.

2.5.3. Terrain Factors: Elevation and Northness

Air temperatures are influenced by the elevation [45] and variation in elevation results in spatial
patterns of LST on the landscape [30]. Additionally, the landform aspect strongly affects the intensity of
solar radiation and has been included in several SUHI studies [30,31]. Aspect (the compass direction of
a slope) was transformed to northness to mitigate the circular property of the data using Equation (9):



Remote Sens. 2018, 10, 1428 9 of 18

Northness = cos(aspect). (9)

All of the explanatory variables were aggregated or resampled to a resolution of 90 m to match
the dependent variable (LST). Furthermore, to mitigate spatial autocorrelation and to ensure that the
sampling dataset represented the study area with sufficient information to understand SUHI patterns,
a systematic sampling scheme was designed to obtain sampling points for the regression models.
We referred to the previous SUHI explanatory studies at the megacity level and used 1000 m as the
sampling interval for further exploration [30]. The center points of the cells which were completely
within the boundaries of the study areas were selected as independent observations. Finally, 3887 and
4113 samples were generated for the Austin and San Antonio metropolitans, respectively.

3. Results

3.1. LST Spatial Distribution

The spatial distribution of LSTs revealed the formation of an SUHI on 20 July 2015 for the two
metropolitan areas (Figure 4). As expected, extreme values of LST (>35 ◦C) were often associated with
the distribution of major transportation lines (e.g., I 35) and high-density buildings. The high LST
(>30 ◦C) areas for each study area were mainly in both downtown centers and isolated urbanized
areas (e.g., Georgetown, New Braunfels). In contrast, low LSTs (<25 ◦C) were distributed in central
to Western Austin and Northern San Antonio, where forested areas and water bodies are located.
The remaining areas exhibited relatively cool LSTs.

Northness = cos( )

Figure 4. Overall spatial variation of the and surface temperature (LST) for the SUHIs of Austin (left)
and San Antonio (right) metropolitan areas on 20 July 2015.

3.2. Diagnostics of the Regression Models

Prior to modeling, correlation analyses were conducted among the explanatory variables to assess
multicollinearity. Variance inflation factors higher than 10 were considered highly correlated. Of the
all candidate variables, five were used for analysis in the following global and local regression analysis:
the Shannon’s Diversity Index (SHDI), the Buildings Fraction (BF), NDVI, northness, and elevation.
For the sake of comparability and interpretation, all of the dependent and independent variables for
each were transformed to a range of values spanning from 1 to 100 as the inputs for the global and
GWR model.
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The global regression models for each of the two study areas estimated statistically significant
(p < 0.001) relationships between the LST and all explanatory variables (Table 4). For Austin,
the coefficient of determination (R2) for the global regression model was estimated to be 0.53. Among
the explanatory variables, the SHDI, BF, and elevation were found to vary positively with LST, while
the NDVI and northness were negatively correlated with LST. The global model for San Antonio
resulted in an R2 of 0.45 and revealed the same tendencies regarding the explanatory variables and
LST with one exception—the relationship between SHDI and LST was not statistically significant in
the San Antonio model.

Table 4. Comparison of global regression and Geographically Weighted Regression (GWR): summary
of the coefficients and diagnostics.

Austin San Antonio

Global Regression GWR Global Regression GWR

β S.E. t Mean β SD β S.E. t Mean β SD

SHDI 0.04 *** 0.013 3.38 0.04 0.09 0.01 0.007 1.24 −0.01 0.07

BF 0.29 *** 0.010 29.50 0.28 0.23 0.19 *** 0.007 27.42 0.13 0.14

NDVI −0.74 *** 0.018 −41.08 −0.83 0.46 −0.38 *** 0.011 −33.66 −0.48 0.14

Elevation 0.20 *** 0.010 20.35 0.18 0.20 0.09 *** 0.006 14.05 0.09 0.36

Northness −0.15 *** 0.016 −9.41 −0.09 0.10 −0.23 *** 0.013 −18.59 −0.07 0.10

Intercept 104.46 *** 1.935 53.97 109.41 40.04 104.62 *** 1.154 90.68 109.29 14.87

Diagnostics

Residual sum of squares 476,925.15 137,817.06 194,028.74 55,084.50

−2 Log likelihood 29,726.22 24,900.77 27,523.09 22,344.25

Classic AIC 29,740.22 25,254.64 27,537.09 22,700.98

AICc 29,740.25 25,271.62 27,537.12 22,717.25

CV 123.72 39.71 47.37 14.70

R square 0.53 0.86 0.45 0.84

Adjusted R square 0.53 0.85 0.45 0.84

Global Moran’s I 0.440 *** 0.058 *** 0.745 *** 0.516 ***

Bandwidth of GWR 52.00 52.00

F-tests of improvement 36.42 *** 39.20 ***

Notes: Please refer to the full variable names from Table 3. ‘β’: the coefficients and intercept in Equation (6).
‘***’: significant at the p ≤ 0.001 level.

Compared to these global regressions, GWR models seem better suited to the investigation of the
SUHI and the underlying influencing factors for both study areas. Specifically, in the case of the Austin
metropolitan area, the higher R2 (0.85) for the GWR model suggests that the relationships between LST
and the modeled underlying physical factors may exhibit spatial non-stationarity. Such circumstances
are one reason why the GWR model seems to outperform the global regressions (Table 4). While the
AICc (the corrected Akaike Information Criterion) is not an absolute measurement of goodness of fit,
it contributes to the model comparison. Taking the Austin area as an example, the difference between
AICc and GWR (e.g., 25,271.62) is much lower (4468.63) than that of the global model, which indicates
the benefits of moving from the OLS to the GWR. Additionally, a full comparison of other diagnostic
measures further suggests improved performance for GWR compared to the global regression model,
including F-tests of GWR model improvement (34.42, Austin), and the Global Moran's I of the residuals
(e.g., 0.44 for GWR vs 0.058 for the global model in Austin).

3.3. The Global and Spatial Non-Stationarity Relationship

Ordinary kriging interpolation using the Spatial Analyst Toolbox in ArcGIS 10.5 was applied to
interpret the samples using a resolution of 300 m for the sake of visualization. First, both the global
and GWR analyses indicated that LULC affected the LST variation on 20 July 2015, as indicated by
the BF (Buildings Fraction) and NDVI (Table 4). GWR further revealed strong spatial heterogeneity in
their relationships based on the coefficient values and t statistics. These covariate relationships were
similar for Austin and San Antonio in the same range of estimates of BF coefficients (ranging from 0
to 0.6). Additionally, the t statistics of BF coefficients for both Austin and San Antonio indicated that
the relationship between the LST and BF was significant for most of the study areas, especially urban
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areas. Nevertheless, the effect of BF was more prevalent for Austin than for San Antonio, as evidenced
from the higher estimates of BF coefficients indicated by the global and local models. While the highest
values of the local estimates of BF coefficients (displayed in red) were located in the isolated natural
areas (Figure 5), the effect of the BF was prevalent and most of the high values were distributed in
areas with compact human settlements (displayed in yellow and slight blue).

− −

  

  

Figure 5. Overall spatial variation of the coefficients (left) and the t statistics (right): Buildings Fraction
(BF) and NDVI.

As expected, an increase in NDVI reduced the SUHI effect, as suggested by the significantly
negative relationship between LST and NDVI across the study areas. The estimated coefficient from
the global regression was −0.74 for Austin and −0.38 for San Antonio, revealing a stronger relationship
for LST and NDVI for Austin than San Antonio (Table 4). This fact was further proved by the GWR
analysis, the values of local absolute coefficients were higher overall in Austin (e.g., displayed in red
for majority of the region) than in San Antonio, indicating a higher capacity to mitigate the SUHI.
However, attention should also be paid to the area around the Lake Travis in Austin and nearby the
Calaveras Lake in San Antonio, where LST was notably positively related to NDVI, and the relationship
was not significant in some part of this area, as indicated by t statistics (Figure 5).

SHDI, as the indicator of the diversity of landscape spatial arrangement, had an overall positive
effect on the LST intensity, as explained by the global regression for Austin (Table 4). It indicated that
the fragmented landscape (e.g., the interaction of different land patches) would lead to a decrease
in the capacity to mitigate SUHI. This effect was further proved by the GWR analysis, from which
the regression coefficient was positive for most of the area. However, it is notable that the situation
was contrary in the area around the Lake Travis in Austin, as indicated by the slightly negative local
regression coefficients (Figure 6). Additionally, the global regression revealed a non-relationship
between SHDI and LST for the San Antonio metropolitan area, and GWR further found that the
effects of SHDI on LST variation were not significant for most of the area, as indicted by t statistics
(e.g., −1.5 to 1.2, Figure 6). Nevertheless, the GWR analysis did find some exceptions where the SHDI
was a strong predictor for LST variations (e.g., the small areas in the Southern and Northeastern parts
of San Antonio metropolitan area colored in red, Figure 6). By linking with Google Earth imagery and
the NLCD 2011, we found that Southern part displayed in red is covered by forest, pasture, and shrub
with high complexity. Also, this area demonstrated low DSM, as indicated by Figure 2.
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Figure 6. Overall spatial variation of the coefficients (left) and the t statistics (right): Shannon's
Diversity Index (SHDI).

Terrain factors affected the LST variation on 20 July 2015, as indicated by the elevation and
northness. For both Austin and San Antonio, the elevation exhibited an overall slight positive effect
in the global regression (e.g., 0.20 and 0.09 of coefficients, Table 4). GWR further helped to explore
this unexpected finding by indicating that negative coefficients indeed exist in the rural areas for both
Austin and San Antonio, especially in the areas with low vegetation cover (e.g., the Northeastern part
of Austin and Eastern San Antonio colored with blue, Figure 7). On the other hand, both the global and
local regressions yielded the significantly negative coefficient (average coefficient) of northness, which
indicated that the northness is a strong predictor of the LST (Table 4). Again, the effect of northness
varied spatially, and it had a stronger effect on San Antonio (−5.34 vs. −2.07 indicated by the global
regression, Table 4), especially in the Northern part (a larger area colored with red indicated by the
GWR, Figure 7).

  

  

Figure 7. Overall spatial variation of the terrain-related coefficients (left) and the t statistics (right):
elevation and northness.

The spatial patterns of the local determination coefficients (R2) of the GWR model highlighted
a marked regional heterogeneity. Overall, GWR outperformed the global regression with local R2

values larger than 0.5 across both study areas (Figure 8). GWR modeling was also characterized by
higher local R2 values in the city centers (>0.8) while relatively lower values were observed (0.5–0.65)
in the surrounding areas. Standardized residuals, indicating the under or overprediction of LST, were
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distributed with significant spatial autocorrelation as tested by the Global Moran’s I test in ArcGIS.
As shown in Figure 8, the standardized residuals from both global and local regression were distributed
in clusters, while the spatial clustering effect resulting from the global regressions was much more
apparent than those resulting from the GWR.

 

 

Figure 8. Overall spatial distribution of local R2 values (top), standardized residuals of the GWR
(bottom left), and global regression (bottom right) as measures of model goodness-of-fit.

4. Discussion

4.1. Which Underlying Properties Are Significantly Related to the SUHI for Austin and San Antonio?

Overall, the regression analyses revealed that LULC composition and terrain morphology are
closely related to SUHI effects for both metropolitan areas. Similarities in climate and topography for
these metropolitan areas facilitates the comparison of their respective SUHIs. First, the composition
of land cover was shown to be an essential factor that influences the LST pattern for both study
areas. Our study confirmed previous findings that an increase in the building density (e.g., Buildings
Fraction; BF) tends to exacerbate the SUHI effect, while an increase in the vegetation cover intensity
tends to mitigate the SUHI effect [24,33,46–49]. Regarding the regional differences, although the effects
tended to be similar, building density and vegetation cover intensity were more strongly correlated
with the SUHI phenomenon in San Antonio than in Austin, as indicated by global BF coefficient
(0.29 vs. 0.19) and NDVI coefficient (−0.74 vs. −0.38) (Table 4). Furthermore, it is notable that the
situation was contrary in the area near a water body (e.g., Lake Travis in Austin) as indicated by the
slightly negative local regression coefficients. The unique characteristics of water bodies regarding
thermal characteristics were also consistent with previous studies [17,47].

Both global and local regressions provided unexpected results for elevation. Our results show
that an increase in elevation is associated with an overall increase of LST. It is different with the
common knowledge that air temperature decreases with an increase in altitude. In fact, it was DTM
(e.g., bare earth digital terrain model) that was used as the potential explanatory factor for LST variation,
while the actual surface temperature of the property was being remotely sensed. Air temperature
varies between about 0.6 and 1.0 K per 100 m elevation change. Given its small variation in the
study area, the effect of elevation may not be substantial. Thus, in the areas with dense building or
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forest cover, the effect of elevation would be not as severe as other factors when incorporating them
simultaneously in the modeling. Also, most areas of Austin and San Antonio exhibit flat terrains;
thus, the effect of elevation was not apparent. Furthermore, the Lidar-derived DSM proved to be an
effective way to characterize the terrain morphology at the microscale (e.g., 5 m × 5 m) to understand
the relationship between northness and SUHI variation. Consistent with previous studies, this research
indicated that the alleviating effect of northness was more apparent for floodplain areas with low and
flat terrains for both the Austin and San Antonio metropolitan areas (e.g., Refs. [31–33]).

The effect of landscape configuration on SUHI formulation has drawn attention in recent years by
incorporating the landscape matrix at the patch, class, or landscape level [21–23,26,27,46]. For example,
a recent study by Kim, et al. [50] found that larger and better-connected landscape patches have
the effect of mitigating high LST at the neighborhood scale, while fragmented and isolated patches
showed the opposite effect in the city of Austin. Similarly, this study found that the SUHI of Austin
on 20 July 2015 was also affected by the spatial pattern of LULC, measured by SHDI, which was not
detected in San Antonio.

These contrasting findings may be explained by the fact that the landscape of San Antonio is more
aggregated and less diverse as indicated by the statistics of potential explanatory variables (Table 3).
In this study, to balance the spatially detailed characterization of SUHI and the size of samples in
the modeling, 1000 m was set as the sampling interval as well as the window size for landscape
matrix calculation for both study areas. Since both landscape patterns and LST distributions are scale
dependent, previous studies have drawn different conclusions on the suitable scale for investigation
of the relationship (e.g., 700 m for Beijing, China [51]; 600 m for Wuhan, China [52]). In addition,
the appropriate scale also depends on landscape matrix selection. For instance, the SHDI showed the
strongest correlation with LST at the 700 m scale which was not the optimal solution if other landscape
matrices were taken into account, as indicated by a case study of Wuhan, China [53]. In this sense,
further research is warranted to examine the scale sensitivity of their relationships in the future to lead
to more comprehensive understanding.

4.2. Compared to the Conventional Regression Model, Does the GWR Provide Fresh Insight into the
SUHI Phenomenon?

As a natural process, SUHI exhibits high spatial heterogeneity which is difficult to characterize
with conventional regression methods. However, most previous studies derived the spatial relationship
by focusing on individual cities, especially for cities in Asia [24,33,46–49], while varying heterogeneous
impacts have been rarely studied and compared. The results reported in this paper suggest significant
spatial non-stationarity in the relationship between the LST and explanatory variables for the
two metropolitan areas. Here, GWR modeling was confirmed as an effective method to detect
non-stationarity, especially for the urban cores of Austin and San Antonio as well as Western San
Antonio with local R2 values of higher than 0.8.

Furthermore, locally detailed differentiation of the underlying mechanisms of SUHI provided
by non-stationarity GWR modeling is necessary for partitioned regional landscape planning. With
the implementation of GWR, studies have suggested site-specific policies designed for effective SUHI
mitigation, including land use planning that considers the distance to roads to alleviate the high LST
effect [30] and the location and configuration of green spaces in urban areas [31]. Considering natural
and socioeconomic factors, Li, Cao, Lang and Wu [33] mapped the potential heat sources and sinks
of a megacity and performed GWR analysis based on the heat source and sink regions, where the
partitioned policies were provided.

Whereas a classic regression method would provide an estimate of the mean value for an entire
region regardless of the spatial pattern, GWR can infer a more dynamic approach to parameter
estimations by using data from neighborhoods to determine the model parameters. In the case
of identifying whether the SUHI phenomenon is influenced by local underlying physical factors,
this dynamic model approach is desirable, as a “one size fits all” approach may not accurately identify
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the LST variation across a heterogeneous metropolitan landscape. In short, compared to conventional
regression, GWR has the inherent potential to enable a better understanding of SUHI phenomenon
and associated biophysical factors across the metropolitan area.

5. Conclusions

In this study, we used Landsat imagery from 20 July 2015, a Lidar dataset and derived products,
NLCD 2011 land cover, and associated fractional cover products as the main data sources to investigate
SUHI spatial distribution in the Austin and San Antonio metropolitan areas. This study further
explored how the underlying surface characteristics affect SUHI phenomenon by using global
regression and GWR analysis.

The results indicate that the GWR is in overall agreement with the global regression, and that
both help to address the contributions of a set of specific underlying physical factors related to the
SUHI phenomenon. The composition of land cover is an essential factor that influences the LST pattern
for both study areas. Furthermore, the Lidar-derived DSM was proved to be an effective way to
characterize the terrain morphology at the microscale (e.g., 5 m × 5 m) to aid in the understanding of
the relationship between northness and SUHI variation. This study further found that the SUHI of
Austin on 20 July 2015 was also affected by the spatial pattern of LULC, measured by SHDI, which was
not detected in the San Antonio metropolitan area. Overall, this study contributed to obtaining a better
understanding of SUHI phenomenon.

By accommodating spatial non-stationarity and allowing the model parameters to vary in space,
GWR illustrated the spatial heterogeneity of the relationship between different land surface properties
and the LST. In particular, the GWR analysis revealed considerably stronger relationships in some
areas. Thus, together with the mapping result, the GWR analysis of the SUHI phenomenon can provide
unique information for site-specific land planning and policy implementation for SUHI mitigation.

In this paper, the LST was calculated from a Landsat sensor, and the effect of urban facets was
not considered in this SUHI study. For instance, in a dense built-up neighborhood, the uneven solar
heating on different building surfaces can lead to the anisotropy of surface thermal emission [54,55].
The LST on 20 July 2015 was calculated as the dependent variable, while the variation in the SUHI
pattern at different times may affect the regression result. Uncertainties also come from the inconstancy
of the acquisition time among input and output data for modeling. NLCD was built in the year 2011,
whereas Lidar projects were conducted by different agencies with different accuracy standards and
different time periods (Table 2). Hence, further work on the complete surface temperature acquisition
and SUHI spatiotemporal variation is warranted. Then, a robust analysis of underlying properties
related to the SUHI phenomenon can be performed.
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