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Abstract—The geographical location of Internet IP addresses
is important for academic research, commercial and homeland
security applications. Thus, both commercial and academic
databases and tools are available for mapping IP addresses to
geographic locations. Evaluating the accuracy of these mapping
services is complex since obtaining diverse large scale ground
truth is very hard. In this work we evaluate mapping services
using an algorithm that groups IP addresses to PoPs, based on
structure and delay. This way we are able to group close to
100,000 IP addresses world wide into groups that are known to
share a geo-location with high confidence. We provide insight
into the strength and weaknesses of IP geolocation databases,
and discuss their accuracy and encountered anomalies.

I. INTRODUCTION

In the recent years, geolocation services have become a
necessity in many fields and for many applications. While the
end user is usually not aware of it, many websites visited every
day use geolocation information for targeted localized adver-
tising, localized content (such as local news and weather), and
compliance with local law.

The last decade presented a new threat to the world: cyber
terrorism. Cyber terrorism and warfare targets communication
networks as well as important infrastructure facilities, and thus
threatens to cause havock through online attacks. Finding and
blocking such cyber attacks is in a high priority for national
security forces, and IP geolocation can help by providing
geographic information about the attacker hosts. The DHS
cyber security center [19] classified geolocation research to be
in the field of situational understanding and attack attribution,
with the intent to identify attackers. The DHS also comments
that geolocation improves visualization, thus simplifies large-
scale data analysis. A patent filed by the NSA [22] notes
that geolocation can be used to monitor remote access and
prevent login using stolen passwords or login ID. It can only
be assumed that military and government based agencies use
geolocation techniques to detect the source of activity on
terrorist related websites as well as trying to track down enemy
communication centers.

Perhaps the most highlighted purpose of geolocation infor-
mation is for fraud prevention and various means of security.
Banking, trading, and almost any other type of business that
handles online money transactions are exposed to phishing
attempts as well as other schemes. Criminals try to break into
user accounts to transfer money, manipulate stocks, make pur-
chases and other illegal activities. The geolocation information
provides means to reduce the risk, for example by blocking
users from certain high-risk countries and cross-referencing
user expected and actual location.

The IETF has also commenced in defining standards for
geolocation and emergency calling through IETF GEOPRIV
working group [23], which discusses internet geolocation
standards and privacy protection for geolocation. Some ex-
amples are DHCP location, as in RFC3825 and RFC4776,
and defining protocols for discovering the local location
information server [42]. Even common emergency services,
such as dispatching emergency responders to the location of
emergency use it.

Geolocation information is also important in many research
fields. It improves internet mapping and characterization, as it
ties the internet graph to actual node positions, and allows
exploring new aspects of the network that are otherwise
uncovered, such as the effect of ISP location on its services
and types of relationships with other service providers.

Many previous papers from various fields have discussed the
usage of geolocation information in day-to-day applications
([41], [12], [26] and more). However, not many works have
focused on the accuracy of geolocation databases. In 2008,
Siwpersad et al. [38] examined the accuracy of Maxmind [30]
and IP2Location [18]. They assessed their resolution and
confidence area and concluded that their resolution is too
coarse and that active measurements provide a more accurate
alternative. Gueye et al. [16] investigated the imprecision of
relying on the location of blocks of IP addresses to locate
Internet hosts and concluded that geolocation information
coming from exhaustive tabulation may contain an implicit
imprecision. Muir and Oorschot [32] conducted a survey of
geolocation techniques used by geolocation databases and
examined means for evasion/circumvention from a security
standpoint.

Improving location accuracy by measurements has been
addressed by several works in the recent years. IP2Geo [33]
was one of the first to suggest a measurement-based approach
to approximate the geographical distance of network hosts. A
more mature approach is constraint based geolocation [17],
which uses several delay constraints to infer the location of a
network host by a triangulation-like method. Later works, such
as Octant [43] use a geometric approach to localize a node
within 22 mile radii. Katz-Bassett et al. [25] suggested topol-
ogy based geolocation using link delay to improve the location
of nodes. Yoshida et al. [44] used end-to-end communication
delay measurements to infer PoP level topology between
thirteen cities in Japan. Laki et al. [27] increased geolocation
accuracy by decomposing the overall path-wise packet delay
to link-wise components and were thus able to approximate
the overall propagation delay along the measurement path.
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Eriksson et al. [6] apply a learning based approach to improve
geolocation. They reduce IP geolocation to a machine learning
classification problem and use a Naive Bayes framework to
increase geolocation accuracy.

In this paper, we study the accuracy of geolocation
databases. The main problem in such a study is the lack
of ground truth information, namely a large and diverse set
of IP addresses with known geographic location to compare
the geolocation databases against. We avoid this need using a
different approach, we use an algorithm, whose main features
are summarized in Section III-A, for mapping IP addresses to
PoPs (Points of Presence). The algorithm, based both on delay
measurements and graph structure, has a very small probability
to map two IP addresses, which are not co-located, to the same
PoP. Thus, while we do not know the location of the PoP we
know that all the IP addresses within a PoP should reside in the
same location. This serves as a mean to check a geolocation
database coherency: if two IP addresses in the same PoP are
mapped to different locations, there is a database problem, and
we can use the distances among the various locations of IP
addresses in the same PoP as a measure of database accuracy.
The results are presented in Section IV-A. We take a step
further and compare multiple databases results for the same
PoP (Section IV-C) and study their spread.

II. GEOLOCATION SERVICES

Geolocation services range from free services, through
services that cost a few hundreds of dollars and up to services
that cost tens of thousands of dollars a year. This section
surveys most of these services, focusing on the main players.

Free geolocation services differ from one another in nature.
Three representatives of such sources are discussed here: DNS
resolution, Google Gears and HostIP.Info. DNS resolution
was probably the first source for geolocation information. In
2002 Spring et al. [39] used DNS names to improve location
information as part of the Rocketfuel project. However, DNS
suffers from several problems: many interfaces do not have
a DNS name assigned to them, and incorrect locations are
inferred when interfaces are misnamed [45]. In addition, rules
for inferring the locations of all DNS names do not exist, and
require some manual adjustments. Google Gears provides a set
of geolocation API [13] that allows to query a user’s current
position. The position is obtained from onboard sources, such
as GPS, a network location service, or from the user’s manual
input. When needed, the location API also has the ability to
send various signals that the devices has access to (nearby
cell sites, WiFi nodes, etc.) to a third-party location service
provider, who resolves the signals into a location estimate
[14]. Thus, the service granularity is based on a single IP
address granularity and not on address blocks. HostIP.Info [20]
is an open source project. The data is collected from users
participating in direct feedback through the API, as well as
ISP’s feedback. In addition, website visitors are updating their
location, which in turn is updated as a database entry. The city
data comes from various sources, such as data donation and

US census data (for the USA). The data is provided as /24
CIDR blocks.

Another type of geolocation services emerges from uni-
versities and research institutes. These services tend to use
measurements, entirely or on top of other methodologies, in
order to improve geolocation data quality. While many of the
measurement based geolocation services that we discussed
in Section I do not provide the ability to query specific IP
addresses [25], [43], [44], one online geolocation service that
does allow it is Spotter, which is based on a work by Laki
et al. [28]. Spotter uses a probabilistic geolocation approach,
which is based on a statistical analysis of the relationship be-
tween network delay and geographic distance. This approach
is shown to be independent of the landmarks position from
where the measurement was performed. To approximate the
location of a target, spotter measures propagation delays from
landmarks to the target, and then convert the delays into
geographic distances based on a delay-distance model. The
resulting set of distance constraints is used to determine the
targets estimated location with a triangulation-like method.

Mid-range cost geolocation services include databases such
as Maxmind GeoIP, IPligence, and IP2Location. All these
databases cost a few hundreds of US Dollars and supply to the
user a full database, typically as a flat file or MySQL dump.
Some of the companies, such as MaxMind, also provide a
geolocation web service.

MaxMind [30] is one of the pioneers in geolocation,
founded in 2002, and it distributes a range of databases: from
country level to city level, longitude and latitude. Information
on ISP and netspeed can be retrieved as well. In addition to
all the above, MaxMind suggests to enterprises a database
with an accuracy radius for geolocation information. In this
work, the MaxMind GeoIP City database is being used for
geolocation information. IPInfoDB [1] is a free geolocation
service that uses MaxMind GeoIP lite database and adds on
top of it reserved addresses and optional timezone.

IPligence [24] is a geolocation service provider, existing
since 2006. ItsThe company’s high end product, IPligence
Max, contains geographic information such as country, region
and city, longitude and latitude, in addition to general infor-
mation such as owner and timezone. Hexasoft development
maintains IP2Location [18], a geolocation database with a
wider range of geolocation information: from IP to country
conversion, to retrieving information such as bandwidth and
weather. For this study, we used their DB5 database, which
maps IP addresses to country, region, city, latitude, and lon-
gitude. In all the above products, the IP addresses’ location is
given in ranges, which vary in size and reach the granularity
of a handful of addresses per range.

High end geolocation services are often priced by the
number of queries and their cost may reach tens of thousands
of dollars a year for large websites. Amongst these services,
and based on their pricing level, are Quova, Akamai Edge
Platform [3], Digital Element’s Netacuity Edge and Geobytes.
Each of these companies praise themselves with large tier-
1 customers from different fields, who use their services for
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targeted advertising, fraud prevention, and more.
Quova [2], founded in 1999, sells three levels of data

information, bronze, silver, and gold. The advanced services
contain attributes such as location confidence level, Designated
Market Area (DMA), and status designations for anonymized
Internet connections. Quova’s database is based on data mining
classification techniques, hand-labeled hostnames and research
note.

Akamai [3] was founded in 1998 and launched its com-
mercial service in 1999. It provides through Edge Platform
product IP location information. Akamai’s IP location services
are a part of a much larger package of tools and applications
used for traffic management, dynamic sites accelerations,
performance enhancement and more.

Digital Element [4], founded in 2005, publishes under
the products NetAcuity and NetAcuity Edge two levels of
geolocation information, with over thirty nine data points,
including demographics, postal code, and business type. The
IP geolocation data source is anonymous data gathered from
interactions with users. One source for this user information
is partner companies that use the product. The information is
validated using a proprietary clustering analysis algorithm.

Geobytes [9] launched in 2002 its GeoSelect product,
for geolocation information. The wealth of data provided
by Geobytes matches mid-range companies, but it is part
of a broader package of services, including reports, users
redirection, etc. While in the past Geobytes used ICMP packets
to create an infrastructure map, current methods include also
gathering information from websites that require users to enter
their location information and then processing this data onto
Geobytes’ infrastructure map of the Internet [31]. No DNS
information is used by Geobytes for their location resolution.

In this work, databases from all three groups are being
used. From the no-charge databases: HostIP.Info, Spotter and
DNS (partial). Mid-range databases used are MaxMind GeoIP
City, IPligence Max, and IP2Location DB5. GeoBytes and
NetAcuity are the last two databases used in this work.
Unfortunately, we failed to reach a collaboration with Quova
and Akamai for this project.

A. Databases Accuracy

The geolocation service provider is, in many cases, the sole
source for database accuracy information. Some vendors do
not publish such figures at all, such as IPligence, while others
announce precision figures without explaining how they were
obtained. A few geolocation services, such as Akamai and
Quova provide accuracy information as obtained by external
auditors. Table I presents a summary of accuracy figures, as
given by the geolocation service providers on their websites
[2], [3], [4], [9], [18], [30]. The table includes information on
country level, city level world wide level and the USA city
level accuracy.

All the databases claim to have 97% precision or more at
the country level and 80% or more at the city level. MaxMind

†US State level accuracy

Database Country Level City Level USA City Level
IP2Location 99% 80%
MaxMind 99.8% Varies 83%
GeoBytes 97% 85%
NetAcuity 99.9% 95%
Akamai 97.22% 100%
Quova 99.9% 97.2% †

TABLE I
GEOLOCATION DATABASE ACCURACY AS REPORTED BY VENDOR

publishes detailed expected accuracy on city level based on
country [29]. The published figures range from 40% − 44%
in countries like Nigeria and Tunisia to 94% − 95% in
countries like Georgia, Qatar and Singapore. A correct location
resolution here is considered to be within 25 miles from its
true location. Netacuity’s information is based on a test by
Keynote Systems. Quova’s precision results are based on an
audit by Pricewaterhouse Coopers [34], which used 3 reference
third party databases.

The accuracy of the figures in Table I cannot be easily
evaluated. For example, neither the means by which Keynote
Systems tested Netacuity nor the reference databases used to
test Quova are revealed. Akamai claims for 97.2% correct
resolution at the city level worldwide and 100% accuracy at
the city level in the USA. The source for Akamai’s figures is
a report by Gomez [11], which defined a node location to be
unique on /23 CIDR subnets. In addition, a Census Metropoli-
tan Area (CMA) is the basis of the naming convention used
by Gomez to identify the physical location of its measurement
nodes. The precision of this method is thus debateable, as
described in Sec. I.

III. THE EVALUATION MODEL

A. Building PoP Maps

A PoP is a group of routers which belong to a single AS
and are physically located at the same building or campus.
In most cases [15], [36] the PoP consists of two or more
backbone/core routers and a number of client/access routers.
The client/access routers are connected redundantly to more
than one core router, while core routers are connected to
the core network of the ISP. The algorithm we use for PoP
extraction was first suggested by Feldman and Shavitt [7] and
later improved by Shavitt and Zilberman [37]. The algorithm
looks for bi-partite subgraphs with certain weight constraints
in the IP interface graph of an AS; no aliasing to routers is
needed. The bi-partites serve as cores of the PoPs and are
extended with other close by interfaces.

The initial partitioning removes all edges with delay higher
than PDmax th, PoP maximal diameter threshold, and edges
with number of measurements below PMmin th, the PoP
measurements threshold. PMmin th is introduced in order
to consider only links with a high reliable delay estimation
to avoid false indication of PoPs. The result non-connected
graph G′ contains induced sub graphs, each is a candidate
to become one or more PoPs. There are two reasons for a
connected group to include more than a single PoP. The first
and most obvious reason is geographically adjacent PoPs, e.g.,
New York, NY and Newark, NJ. The other is caused by wrong
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delay estimation of a small amount of links. For instance a
single incorrectly estimated link between Los Angeles,CA and
Dallas,TX might unify the groups obtained by such a naive
method.
Next, the algorithm checks if each connected group can be
partitioned to more than one PoP, using parent-child classifi-
cation according to the measurement direction in the bipartite
graph. Further localization is achieved by dividing the parents
and children groups into physical collocations using the high
connectivity of the bipartite graph. If parent pair and child pair
groups are connected, then the weighted distance between the
groups is calculated (If they are connected, by definition more
than one edge connects the two groups); if it is smaller than
a certain threshold the pair of groups is declared as part of
the same PoP. Last, a unification of loosely connected parts
of the PoP is conducted. For this end, the algorithm looks for
connected components (PoP candidates) that are connected by
links whose median distance is very short (below PDmax th).
In the original algorithm [7], an additional step was imple-
mented, called Singleton Treatment, in which nodes with only
one or two links are assigned to PoPs based on their median
distance. This step may add to the PoP IP addresses that are
not necessarily part of it. Thus, in this work, two PoP level
maps were generated: one map without any singletons, which
is considered to be accurate looking at the PoP IP addresses
only, and a second map that includes singletons. The aim of
the second map is to improve location estimation where PoP
location is undetermined based on the first map only. As the
singletons are necessarily in the vicinity of the PoP, using them
does not harm the locations estimation.
One of the motivations for this work is the lack of publicly
available ground truths for validating both PoPs structure
and IP geolocation. Thus, validating such algorithms was
always a difficult task. A previous work [37] focused on the
algorithm validation and correctness using stability over time,
sensitivity to parameters, and other indirect means. In addition,
it reported DNS based validation of fifty PoPs. For this work
we additionally validated 23 PoPs against publicly available
IP addresses in GEANT, the pan-European academic network,
and Proxad, a French ISP. and found no errors.

For this paper’s purposes, the thresholds sensitivity should
be mentioned, as they may affect the geolocation accuracy.
Figure 1 explores the PoP extraction algorithm’s sensitivity
to PDmax th. In the figure five ISPs are explored: Level
3, AT&T, Comcast, MCI, and Deutsche Telekom. The figure
presents the number of IPs included in PoPs when changing
PDmax th. Neither the number of discovered PoPs nor the
number of IPs within the PoPs are sensitive to the delay
threshold, as long as the threshold is 3ms or above. PDmax th

was selected to be 5ms, as it presents a good tradeoff between
delay measurement’s error and location accuracy. The number
of IPs included in PoPs decreases as the minimal number
of required measurements, PMmin th, increases, as can be
expected (see [37]). In our extracted PoP maps, PMmin th

was selected to be 5.
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Fig. 1. Number of IPs in PoPs vs. Maximal Delay

B. Data Evaluation Method

The geolocation databases evaluation is conducted using the
classification of IP addresses into PoPs as described above.
Since the classification is based on both structure and delay
measurements, the chances that two IP addresses, which our
algorithm maps to the same PoP, are not located in the same
geographical location are slim. We do recognize that when
two PoPs are very close (within a few tens of kilometers) our
algorithm may unify them to one. However, in this case the
median of their location is half their distance, namely not far.

To identify the geographical location of a PoP, we use the
geographic location of each of the IPs included in it. As
all the PoP IP addresses should be located within the same
campus, or within its vicinity if singletons are considered,
the location confidence of a PoP is significantly higher than
the confidence that can be gained from locating each of its
IP addresses separately. The algorithm, introduced in [37],
operates as follows:

Initial Location Each of the evaluated geolocation
databases is queried for the location (longitude, latitude) of
each IP included in the PoP. Next, the center weight of
the PoP location is found by calculating the median of all
PoP’s IP locations. Unlike average calculation, where a single
wrong IP can significantly deflect a location, median provides
a better suited starting point. Median does not guarantee
good results, for example, if there is complete disagreement
between geolocation databases as for the location of a PoP
(see Figure 14) . However, since geolocation databases are
typically reliable in country-level assignment, such examples
are rare.

Location Error Range Every PoP location is assigned a
range of convergence, representing the expected location error
range based on the information received from the geolocation
databases. For every IP address in a PoP and for every
geolocation database we collect the geographic coordinates,
thus if there are N IP addresses and M databases, and for each
of the IP addresses we get, at most (if all are resolved), N×M
location votes. The algorithm finds the smallest radius which
has at least 50% of the votes, with 1km granularity. If the
radius is above a given threshold, typically 100km or 500km,
the algorithm outputs the threshold radius and the percentage
of location votes within it. If one of the geolocation databases
lacks information on an IP address, this IP element is not
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counted in the majority vote.
Location Refinement After a range of convergence is

found, the PoP location accuracy is further improved. The
new PoP location is set to the median of the location votes
inside the range of convergence. This ensures that deviations
in the PoP location caused by a small number of IP elements
outside the range of convergence are discarded, and the PoP
is centered based only on credible IP addresses locations.

To summarize, the PoP geolocation algorithm provides
per PoP longitude, latitude, range of convergence, and the
percentage of location votes within the convergence range.

The extraction of PoPs and assignment to geolocation based
on active measurements requires careful data filtering. To this
end, our PoPs extraction algorithm takes several precautions.
First, at least PMmin th measurements are required per IP
level edge in order for it to be considered by the PoP extraction
algorithm, and a median algorithm [7] is applied in order to
reduce the delay measurement error. Second, the distribution
of the DIMES vantage points results in the measurement of an
IP edge to be done by different agents from different locations,
thus reducing the inherited measurement error of a specific
path. Last, when DIMES measures a certain path, it sends
four consequent traceroutes per destination, and the best time
is used. If a path has several alternate routes all the hops from
the first divergence point are removed from the dataset.

The PoP geolocation generated maps were validated for
correctness by comparing them against PoP maps published
by the ISPs, such as Sprint [40], Qwest [35], Global Crossing
[10], and others. The location was validated against listed
PoPs by cities, when available, or eyeballed otherwise. We
also validated the PoPs list with collaborating ISPs such as
GARR [8]. In addition, we reported [37] a small scale testing
of the geolocation accuracy based on 50 known university
locations. The test was based only on three databases: Max-
mind, IPligence and HostIP.info. For 49 out of 50 universities,
the location was accurate within a 10km radius. The last
PoP, belonging to the University of Pisa, was located by the
algorithm in Rome, due to an inaccuracy in the MaxMind
and IPligence databases. Only Hostip.Info provided the right
coordinates for this PoP. PoP locations were also validated
against their DNS name, whenever a DNS name was available.

C. Dataset

The collected dataset for PoP level maps is taken from
DIMES [5]. We use all traceroute measurements taken during
March 2010, totaling 126.7 million, namely an average of
4.2 million measurements a day. The measurements were
collected from over 1750 vantage points, which are located in
74 countries around the world, as shown in Figure 2. About
16% of the vantage points are mobile.

The 126.7 million measurements produced 7.85 million dis-
tinct IP level edges (no IP level aliasing was performed). Out
of these, 642K edges had less than the median delay threshold,
and had sufficient number of measurements to be considered
by the PoP extraction algorithm. As described above, two PoP
level maps were generated by the PoP extraction algorithm,

Fig. 2. Map Of DIMES Agents, March-2010

Fig. 3. Map Of Discovered PoPs, March-2010

with and without singletons added. A total of 3800 PoPs where
discovered, containing 52K IP addresses from the first run,
and 104K IP addresses from the second run, meaning with
singletons. Although the number of discovered PoPs is not
large, as the algorithm currently tends to discover mainly large
PoPs while missing many access PoPs, the large number of IP
addresses and the spread around the world (see below) allow a
large scale and meaningful geolocation databases evaluation.

Figure 3 shows the geographical location (as calculated by
our algorithm) of the PoPs discovered by the PoP algorithm.
The PoPs are spread all over the world, in all five continents,
with high density of PoPs in Europe and North America.
As can be seen, PoPs are located even in places such as
Madagascar and Papua New Guinea, which comes to show
the vast range of location information required from the
geolocation databases in this evaluation.

For most of the databases, the data which was used, was
updated on the first week of April 2010. NetAcuity database
was obtained on the third week of April and Spotter located
the IP addresses during April and the beginning of May 2010.

IV. RESULTS

A. Basic Tests

1) Null Replies: We first check the number of NULL
replies returned for IP address queries. There are four flavors
for this question. First we distinguish between IP addresses
in the core of the PoPs and the ones in singletons. As some
databases may have better information on end users or access
interfaces than on core routers and main PoPs, this can be
meaningful. The next observation regards NULL replies that
apply to all the IP addresses within a certain PoP: does the
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Core PoP IP With Singletons
Database Null IP Null PoP Null IP Null PoP
IPligence 3.9% 1.5% 2.9% 1.4%
IP2Location 0% 0% 0% 0%
MaxMind 36% 10.6% 30.1% 6%
HostIP.Info 64% 38.6% 64% 29%
GeoBytes 20.7% 4.3% 17.8% 2.7%
NetAcuity 0% 0% 0% 0%
Spotter 37% 18.1%
DNS 14.3% 12.2% 28.4% 2%

TABLE II
NULL IP ADDRESS INFORMATION

database fail to cover a range of addresses or a physical
location range, or are the NULL replies a matter of a single IP
address lack of information? This is considered both with and
without singletons. Table II shows for each of the databases
the percentage of IP addresses which returned a NULL reply
for each of these cases.

NetAcuity and IP2Location were the only databases to
return a location for all the queried IP addresses. This alone
does not come to indicate that the returned addresses are
correct, only that an entry exists. On the other end of the
scale, HostIP.Info failed to locate most of the IP addresses,
however on the PoP level this percentage drops by half. This
may imply that the nature of the failure for HostIP.Info is
the lack of information on specific IP addresses and not IP
ranges. Furthermore, in most cases HostIP.Info does return
a reply with country information, but without longitude and
latitude. Spotter did not locate about a third of the IP addresses.
The reason for such a failure can be either that the IP did
not respond to ping or that the roundtrip delays were too
high to provide approximations for the algorithm. Only core
PoP IP addresses, without singletons, where tested here. For
MaxMind, the percentage of Null replies refers to events
where no specific location information was available. In most
of these cases, MaxMind does return longitude and latitude
information, which are the center of the country where the
IP is located. DNS NULL replies are less than 15% for core
PoP IP addresses, and almost 29% when taking into account
singletons. As there is a probability that singletons represent
end users and not router interfaces, this is expected. The effect
of grouping into PoPs when looking at DNS is significant:
when taking into account singletons, only 2% of the PoPs
have no DNS-based location information.

2) Agreement within database: By definition, IP addresses
belonging to the same PoP reside in the same area. One can
leverage this information to evaluate the accuracy of a geoloca-
tion database: if IP addresses that belong to the same PoP are
assigned different geographical location, then the accuracy of
this information should be questioned. This statement is based
on the assumption that the PoP algorithm is correct and does
not assign IP addresses from different locations to the same
PoP. Our experiments here further support the assumption: in
all the PoPs evaluated, with no exception, there are always
databases that support the PoP vicinity requirement.
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Fig. 4. Range of Convergence Within Databases

We run the algorithm separately per database. Figure 4
presents a CDF of the convergence range within each database
without singletons, with the X-axis being the range of conver-
gence in kilometers. The convergence range is the radius which
covers at least 50% of the IP addresses locations within a PoP.
IPligence and IP2Location clearly have a range of convergence
far better than other databases: over 90% of the PoPs located
using these databases have the minimal range of convergence,
one kilometer, which is in practice the exact same location.
MaxMind, GeoBytes and NetAcuity have 74% to 82% of their
PoPs converge within one kilometer. For HostIP.Info, a bit less
than 57% of the PoPs converge within the minimal range, and
almost all the rest fail to converge. This is caused mostly due
to lack of information on IP addresses, as many PoPs do not
have even a single IP with location information. Spotter is
different than the others. As Spotter information is acquired
by measurements, having almost a third of the PoPs converge
within one kilometer is an indication of good performance.
In addition, over 82% of the PoPs converge within 100km,
and close to 98% within 500km, which is similar or better
than most of the other databases. The slow accumulation is
expected due to measurements errors. An interesting result is
the curve marked as All, showing the range of convergence
when combining the information from all databases. Though
all databases have most of their PoPs located within the
minimal range, less than 30% of the All PoPs converge within
this range, meaning that there is a disagreement between the
databases, though as the range grows so does the percentage
of converged PoPs. This does not necessarily mean that all
the databases have agreed on the same location, nor that this
location is correct, as databases which reply with a location for
every IP have more influence that databases with some NULL
replies. We further explore this question in Section IV-C.

Figures 5 and 6 present a CDF of the agreement within
databases without singletons. The X axis marks the percentage
of IP addresses in PoPs that represent the majority, and the Y
axis presents the probability for this majority vote. For Figure
5 we set a radius of 100km and in Figure 6 the used radius is
500km, within which a majority is required. Most databases
have 95% or more chances to have at least 50% of the location
votes within the 500km radius, and at least 90% within 100km
radius.
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For all databases there are PoPs with no majority vote,
meaning that less than 50% of the location votes were within
the tested radius. IPligence and IP2Location have the highest
probability to reach a majority vote, while HostIP.Info, and
Geobytes grow at the slowest pace. For a radius of 100km,
Spotter does not reach full agreement for almost 60% of
the PoPs, probably due to measurement accuracy limitations.
Interestingly, for less than 4% of the PoPs there is 100% agree-
ment by all databases, which once again does not correlate
with single-database observations and points to a mismatch
between databases.

B. Ground Truth Location

The best way to assess the accuracy of a database is to
compare its information with the true geographical location
of each IP address, through some ”Ground Truth” database.
Unfortunately, there is no ground truth database of all IP
addresses. A small number of IP addresses are covered by
a ground truth database provided by CAIDA. The database,
described in [21], includes private data from one tier-1 and
one tier-2 ISPs. In addition it contains public data from five
research networks. The geographic location is provided based
on host names, with their encoding provided by the ISP and
verified.

We use this database to evaluate the accuracy of the geoloca-
tion databases. The ground truth database used is from January,
2010 and includes 25K IP addresses, their ISO code, country,
region and city. Each database is compared with the ground
truth dataset to the maximal extent. For databases where only
PoP-IP data is available (Spotter, NetAcuity), CIDR/24 is used

Database Matched IPs Country Match City Match
GeoBytes 67.3% 80.1% 26.5%
HostIP.Info 28.1% 89.0% 17.9%
IP2Location 93.9% 80.9% 14.16%
IPligence 93.9% 81.0% 0.8%
MaxMind 79.6% 84.7% 29.4%
NetAcuity 67.9% 96.9% 79.1%
Spotter 54.1% 85.6% 27.8%

TABLE III
COMPARISON WITH CAIDA’S GROUND TRUTH DATABASE

to match missing addresses. We note that despite this extended
match, our database is still too limited to match all. Before
describing the results, it is important to understand that this
group of IP addresses is not necessarily representative, thus
may bias the results.

Table III presents the results of the comparison. The col-
umn ”Matched IPs” presents the percentage of IP addresses
matched between the ground truth and the evaluated database,
and returned with a non-NULL value. Out of the matched
IP addresses, ”Country Match” presents the percentage of
matches on country level and ”City Match” presents the
percentage of matches on city level. We allow a distance of
100km between a pair of returned city coordinates to consider
a reply as a city match.

It is interesting to observe that except for NetAcuity, none
of the databases is close to its acclaimed accuracy on country
level. In most cases, the databases indicate that the IP is
located in United States, while the ground truth database
places them elsewhere. For IPligence and IP2Location 99%
of the wrong placements are of this type, and 88% to 90% of
the mistakes for MaxMind and HostIP.Info. Geobytes, on the
other hand, has an almost equivalent number of mismatches
between the USA and other countries, with no dominant trend.
An expected mistake, common to IPligence and IP2location,
is the interchange between the USA and Canada.

On the city level, IPligence’s and IP2Location’s results
are remarkably poor. The reason that we observe is the
large amount of IP addresses assigned to Washington DC
by both databases: IPligence assigns no less than 20.4K of
the mismatched IP addresses to Washington, while IPligence
does so for 10.1K of the IPs. This phenomenon is not evident
in other databases, where the results tend to spread across
cities. Other cases of a large bias for a city are Geobytes,
with 3.8K of the wrong assignments set to New-York City,
and MaxMind with 4.8K of the wrong assignments set to
Washington DC. Spotter measurements accuracy affects these
results, too, which is evident when increasing the match range
from 100km to 300km: the number of matched cities to
longitude/latitude doubles.

C. Comparison Between Databases

While some of the databases have proprietary means to
gather location information, a large portion of geolocation data
is likely to come from the same source, such as getting country
information from ARIN. To examine this we use the 52K PoP

†US State level accuracy
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IP addresses that are used in the first evaluation as a sample of
the IP space. We calculate for each pair of databases a distance
vector that holds the distance difference between their answers
to the geolocation of each of the IPs in the list. Cases where
at least one of the databases returned a NULL answer were
ignored. Figures 7 and 8 depict the root mean square (RMS)
of each distance vector and its median, respectively. The fairly
large RMS values are due to the long fat tail of large errors in
the databases, which we discuss later in this section. Maxmind,
IP2Location, and IPligence seem to be much closer to each
other than the rest. This is evident in the median heatmap
that shows a median distance of only 5-11km. Netacuity has
a small median distance to Maxmind, but much larger one to
the other two. This is due to the many country level values
returned by Maxmind and ignored by this analysis; naturally
these are the IPs which are harder to locate and thus most
databases have their acute errors in this group. As a result
Maxmind seems closer to databases more than others.

The large values in the RMS distances heatmap (Figure
7) are explained by Figure 9. The figure presents for several
selected database pairs the CDF of distance vectors. The pairs
that had very small median distance, such as IP2Location to
MaxMind and IPligence or Maxmind to Netacuity, grow at
a very fast rate until a probability of about 0.6. This leads
to a median that is only a few kilometers. However, about
10% of the IP-distances will be between 500km to 1000km
range. Some of the addresses are even located very far away,
thousands of kilometers apart. We assume that most of these
differences are caused by anomalies in at least one of the
databases. Databases with high median and RMS distance have
the same trend of CDF as the other pairs, however the main
difference is that the initial distance between most IP addresses
is larger: For Geobytes to HostIP.Info, only 30% of the IP
addresses are located within a close range, while 20% more
are within 500km to 1000km range. Note that here the tail of
CDF distance values is even longer than in the previous pairs.
NetAcuity to Spotter pair, selected for their relatively close
median value, demonstrate the effect of active measurements:
the CDF curve is smooth, and there are almost no IP addresses
placed within a few kilometers range. The cause is that while
most databases who place an IP address within the same city
will give it identical coordinates, like city center, while Spotter
will triangulate the location within the city premises.

Next, we compare the databases based on aggregated data
collected from all sources and look at the distance of each
IP from the PoP median location. Note that due to the high
correlation between 3-4 databases, that may be the result of
using similar location sources, the PoP median location may
be shifted and not always correct.

We assess the similarity between databases by comparing
an IP location in every database to the location of its PoP as
voted by all databases. Figure 10 depicts for each database
the CDF of the deviation of each IP from the PoP median
location. The interesting observations here are at the 40km
range, which is a city range, and 500km range, which can be
referred to as a region. IPligence, MaxMind and IP2Location

Fig. 7. RMS Distance[km] Between Databases - Heatmap

Fig. 8. Median Distance[km] Between Databases - Heatmap
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have a probability of 62% to 73% to place an IP within 40km
from the PoP median location, with IPligence and MaxMind
placing over 80% of the IP addresses within 500km radius.
Geobytes, HostIP.Info and Netacuity place 33% to 47% of
the IP addresses within a city range, and 48% to almost 60%
within 500km from the majority vote. Spotter places only 10%
within 40km range and 30% within the same region.

Comparing Figure 10 with the median heatmap of Figure 8
shows that indeed the three strongly correlated databases tend
to bring the PoP median close to them. Looking at the distance
error from the PoP median (The horizontal line at 0.5 in
Figure 10) we see that it crosses IPligence, Maxmind, and
IP2Location at a few kilometer distance, Netacuity at 150km,
and HostIP.Info and GeoBytes at roughly 400km, numbers that
match the median distance in columns 2 and 3 in Figure 8.
Spotter values are above 500km, and indeed in Figure 10 at
500km its CDF is below 0.5.

Some of the databases, like HostIP.Info, Netacuity, Geobytes
and Spotter, deviate less in Europe than in the USA and the
rest of the world, as depicted in Figure 11. Other databases, as
IP2Location, have greater deviation in Europe than the rest of
the world. For clarity, only three of the databases are shown
in Figure 11. A drawback of all databases is that there is a
long tail of IP addresses locations which are placed 5000km
or more from the PoP median location calculated from the
majority of all votes. Figure 12 shows that in some databases
this tail can hold 15% of the IP addresses. Although the
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Fig. 13. Database Location Deviation From PoP Median vs. Range of
Convergence

majority vote may be incorrect, this points that at least one of
the databases is significantly far off from the real IP address
location.

Figure 13 depicts for each database a scatter plot of the
range of convergence (X axis) versus the deviation of the IP
location from the PoP median location (Y axis). The figure
demonstrates that in many cases the range of convergence
is small, yet the deviation from the PoP median location
may be thousands of kilometers. Furthermore, a large range
of convergence does not imply that that the PoP center is
necessarily wrong; In all databases we see cases where the
range is large, yet the selected IP address location is the same
as the majority location from all databases. IPligence and
IP2Location demonstrate an interesting phenomenon: though
their range of convergence is very small, the variation from
the PoP median location is very large. This can indicate, as
is demonstrated next, that large groups of IP addresses are
assigned a single false location.

For MaxMind and HostIP there are many PoPs at the far
end of the graph, with a large range of convergence. This
is caused by lack of information on specific IP addresses
which does not allow them to reach a majority vote. Netacuity
and Spotter seem to have no strong correlation between the
range of convergence and the deviation from the PoPs median
location. For Netacuity these may mean that IP addresses
are assigned distinct locations within the same area, as with
different users in the same city. Spotter suffers from large
range of convergence for some PoPs due to NULL replies,
however there is an obvious trend that places most PoPs IP
addresses within 300km range from each other, with a small
number scattered at larger range of convergence, as can be
expected in a triangulation based method.

D. Database Anomalies

Though the results above may indicate that some databases
have superb location information, this is not the case. In
many cases the returned data is deceiving, and actually may
represent lack of information in the database. For example,
we identified 266 IP addresses in the PoPs that belong to
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Qwest Communications. Out of those, 253 IP addresses are
located by IPligence in Denver, Colorado. Looking at the
raw IPligence database, there are 20291 entries that belong
to Qwest communications, each entry representing a range
of IP addresses. Out of those, 20252 entries are located in
Denver, which is the location of Qwest’s headquarters. The
phenomenon was first detected by our algorithm in July/2009:
70 Qwest PoPs where detected. Maxmind assigned them to 55
different locations, HostIP.Info to 46 locations, IP2locations
to 35 locations and IPligence located them all in Denver. In
response to a query back then, IPligence have replied that ”In
some occasions you could find records belonging to RIPE or
any other registrar, these are most likely not used IP addresses
but registered under their name, anything else should be empty
or null”.

Quite a similar case exists with IP2Location. For Cogent,
2365 out of 2879 IP addresses were located in Washington
DC, which is Cogent’s headquarters location. Out of 57 PoPs
belonging to Cogent, only one was not placed by IP2Location
in these exact same coordinates. For IPligence, all the PoPs
were located in the same place, too. However, Maxmind
placed the PoPs in 13 locations, Geobytes in 23 locations
and Netacuity in 31 locations (only a handful in Washington’s
area). In the Akamai audit by Gomez [11] a similar case is
described: A node in Vancouver, Canada was reported to be
in Toronto, and a node in Bangalore, India was reported to be
in Mumbai, India. In both cases those were ISP headquarters
known locations.

Sometimes differences between databases may be very
acute, with a reported node location being far off by thousands
of kilometers and even countries far apart. In Figure 14 one
such example is shown. We take a 4-nodes PoP in ASN 703
(Verizon/ UUNET/ MCI Communications) and display on a
map the location of the PoP based on each of the geolocation
databases. IPligence, IP2Location, Geobytes, Netacuity and
DNS all internally have the PoP four IP addresses at the same
location, however each of the databases locate it differently:
IPligence and IP2Location in Australia, Netacuity and DNS in
Singapore and Geobytes in Afghanistan. MaxMind and Spotter
lack information on these nodes and HostIP.Info places the
PoP with 66% certainty in China. Extending our PoP view to
include singletons, thus including 10 nodes, the picture does
not change. MaxMind and Spotter have location on one of the
IPs and they place it in Singapore. IPligence and IP2location
place 9 out of 10 IPs in Australia, and one in Singapore.
Geobytes places this last IP address in Singapore too, yet 6 out
of 10 IP locations still point to Kabul, Afghanistan. The rest
three nodes are located in Australia. Geobytes does give low
certainty rate to the location, being 50 or less to both country
and region. Netacuity places 8 out of 10 IPs in Singapore
and 2 in Australia. HostIP.Info has location information on 6
IPs, 3 of them are placed in China and 3 in Australia, but
in Melbourne, far from IPligence and IP2location designated
location. Notably, all the edges in this PoP have less than
3.5mS delay and are measured five to 173 times each.

The mismatch between databases is not uncommon. Some

Fig. 14. Mismatch Between Databases - UUNET

Fig. 15. Mismatch Between Databases - Global Crossing

examples exist inside the United States, too: in Figure 15
we show one PoP in ASN 3549, Global Crossing, as it
is placed by the different geolocation databases all across
the country. This PoP has over 160 IP addresses, counting
singletons, and as such a majority in each database has more
substance. IPligence places the PoP with more than 90%
majority in Springfield, Missouri. MaxMind and IP2Location
point to Saint Louis, Missouri with 92% and 82% accordingly.
NetAcuity indicates that the PoP is in San-Jose, California
with 100% certainty, while DNS and Spotter place the PoP
in this vicinity, in a radius of a few tens of kilometers.
GeoBytes has somewhat above 59% of the locations pointing
to New York, with other common answers being spread across
California (25%). Geobytes country certainty here was 100%
with 42% region certainty for the IP addresses it located in
New York. HostIP.Info placed the PoP in Chicago with 65%
majority (28% of the locations had pointed to Santa Clara,
California).

The above are not single incidents. Similar cases have been
found in other AS as well, such as REACH (AS 4637),
where IPligence, IP2location and Maxmind located a PoP in
China, Geobytes located it in Australia, while Netacuity and
Spotter put it in the silicon valley, USA. Other cases range
from AS16735 (CTBC/Algar Telecom) where PoP locations
in Brazil were set thousands of kilometers apart, to Savvis
(AS3561) which is another case of locations spread across the
USA.
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E. Database Changes

One of the motivations to update geolocation databases
is the claim that IP geolocation changes significantly over
time. Maxmind [30] claim that it looses accuracy at a rate
of approximately 1.5% per month. IP2Location [18] states
that on average, there are 5%-10% of the records being
updated in the databases every month due to IP address
range relocation and new range available. Based on the PoPs
dataset, we compare this information versus the databases
at our disposal. For IPligence, an average of approximately
one percent of the addresses change every month, with some
minimal changes in some consecutive months, such as 0.6%
between November and December 2009. In HostIP.Info, 18%
of the IP addresses changed their location within nine months,
meaning an average of 2% a month. IP2Location changed only
1% of the locations over 4 months, meaning 0.25% per month,
however the reference set here included only 10K address
range entries. For Netacuity, running only on our dataset of
104K IP addresses, we observe that 2.4% of the IP addresses
have changed location in less than a month.

V. DISCUSSION

Before we discuss our results, it is important to note that
the paper is based on a PoP extraction algorithm, and thus
relies on its accuracy. The validation that we described here
and in previous papers make us believe that the results are
valid. Furthermore, the fact that the results of each standalone
database are very good, in most cases, and problems appear
mainly when comparing databases, strengthens the algorithm
correctness. Measurement errors can lead to the unification
of interfaces of different locations in the same PoP, but since
we use a conservative approach, the more common error is
for a PoP to be divided by our algorithm to multiple groups.
The later will have some effect on the geolocation database
evaluation: it will not affect the IP level analysis (like in
Figures 8 or 14), but where PoP level analysis is considered,
the numbers may be slightly altered, yet the overall results
will stay the same.

Overall we see that on a region level (500km) the databases
are mostly self-consistent, meaning they place all the PoP
IP addresses within the same region. This may be sufficient
for many location aware applications. At the city level, most
databases are still consistent within 82% or more. Note that
some of the databases (IPligence, GeoBytes, HostIP.Info) have
city-level granularity, namely all the IP addresses within a
certain city are placed in a single location. Other databases
(like MaxMind) provide sub-city granularity and as a result
they may incorrectly seem to perform worse under the 40km
or so range of convergence. Some databases (IP2Location and
NetAcuity) provide latitude and longitude at city level gran-
ularity, but also add zip or postal codes in several countries.
These increase the geolocation granularity but could not be
leveraged in this work.

There is a big difference between the region level coherency
of different standalone databases and their aggregate. While
for all databases 70% to 90% of the PoPs have 100% of the

IPs within 500km range, except for HostIP.Info with only 60%,
the aggregate has 100% of the nodes only in 4% of the cases.
If one is willing to accept an aggregate majority vote among
the databases, then at 500km range close to 95% of the PoPs
will be successfully located. This percentage drops to less than
70% for city level.

Some faulty locations are easy to detect by users. Most
evidently, the case of Qwest and Cogent, where some of the
geolocation services provided a single location for the vast
majority of the AS’s IPs. This is worrisome as geolocation
services are probably aware of this fault, and still provide
this data. Other services, such as MaxMind, prefer to return
NULL reply or only the country. On some occasions, the
geolocation service acknowledges the problem and fixes it.
For every selected geolocation database it is recommended
to check with the vendor the default location returned for
unresolved IP addresses before starting to use it.

We find it troubling that there are too many cases where
database disagreement spans across huge geographic distances.
The problem appeared not only in small PoPs, that may be
affected by sporadic errors in the database, but also in PoPs
with hundreds of IP addresses, where the databases had high
certainty on their indicated location (as shown in Figure 15).

A. Active Measurement Accuracy

Active measurements are used by many geolocation services
[25], [43], [28] and by other projects for different localization
tasks, most notably for assigning IP addresses to PoPs [39].
Spotter geolocation is based solely on active measurements,
thus we selected to study its performance to a greater depth
due to the importance of understanding the limitations of this
approach.

Figures 16 and 17 show Spotter’s overall performance com-
pared with its performance for PoPs located only in Europe or
in the USA. It is clear from both figures that in Europe Spotter
performs much better than in the USA and slightly better
than the world average. For example, for 40km radius (which
is frequently used as a city diameter), Spotter reaches about
78% convergence in Europe compared to 67% convergence
worldwide, and only 44% for the USA. The difference can be
explained∗ by the spread of vantage points used by Spotter,
which are almost entirely based on PlanetLab nodes. While
in Europe PlanetLab nodes are well spread geographically, in
the USA, most PlanetLab nodes are located along the coasts
making localization of IP addresses in the middle of the USA
less accurate. Interestingly, other databases which are based
on other geolocation techniques also achieve better results for
European addresses than for USA addresses.

Spotter convergence (Fig. 4) starts as the lowest which is
an outcome of the measurement error that tend to spread the
results for different IPs around the ‘true’ location. However, at
a radius of 100km it closes the gap with most databases and
reaches over 80% convergence (and close to 90% for Europe).

∗We consulted Peter Haga and Peter Matray from the Spotter project on
this aspect.
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Fig. 16. Breakdown of location votes percentage CDF for Spotter by region.
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Fig. 17. Breakdown of convergence range CDF for Spotter by region.

However, 20% ‘error’ may make distance measurements unfit
as the sole method for assigning IP addresses to PoPs.

VI. CONCLUSION

This paper presented a comprehensive study of geolocation
databases, comparing a large number of databases of different
types. The results show that while most of the databases pro-
vides results that seem coherent, the accuracy of the returned
location can not always be trusted. There is a strong correlation
between some databases, which indicates that the vast majority
of location information replies are correct. However, there is
a long and fat tail of errors in the databases; These errors are
in the range of thousands of kilometers and countries apart.
The use of geolocation databases should therefore be careful.

Our results also show that measurement based geolocation
can achieve fair results that may compete, at least in Europe,
with geolocation information gathered by other means and
that the achieved accuracy of geolocation using such tools
can be reasonably high. However, this accuracy may not be
high enough to be used as the sole tool to map IP addresses
to PoPs. There is room for better understanding the roots of
measurement based geolocation services inaccuracy in order
to improve them. Future research in this field should focus on
means to decide on ground truth when there is a disagreement
between the databases.
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