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A GEOMETRIC ANALYSIS OF SUBSPACE CLUSTERING

WITH OUTLIERS

BY MAHDI SOLTANOLKOTABI1 AND EMMANUEL J. CANDÉS2

Stanford University

This paper considers the problem of clustering a collection of unlabeled
data points assumed to lie near a union of lower-dimensional planes. As is
common in computer vision or unsupervised learning applications, we do not
know in advance how many subspaces there are nor do we have any infor-
mation about their dimensions. We develop a novel geometric analysis of an
algorithm named sparse subspace clustering (SSC) [In IEEE Conference on

Computer Vision and Pattern Recognition, 2009. CVPR 2009 (2009) 2790–
2797. IEEE], which significantly broadens the range of problems where it
is provably effective. For instance, we show that SSC can recover multiple
subspaces, each of dimension comparable to the ambient dimension. We also
prove that SSC can correctly cluster data points even when the subspaces
of interest intersect. Further, we develop an extension of SSC that succeeds
when the data set is corrupted with possibly overwhelmingly many outliers.
Underlying our analysis are clear geometric insights, which may bear on
other sparse recovery problems. A numerical study complements our theo-
retical analysis and demonstrates the effectiveness of these methods.

1. Introduction.

1.1. Motivation. One of the most fundamental steps in data analysis and di-
mensionality reduction consists of approximating a given data set by a single

low-dimensional subspace, which is classically achieved via Principal Component
Analysis (PCA). In many problems, however, a collection of points may not lie
near a low-dimensional plane but near a union of multiple subspaces as shown
in Figure 1. It is then of interest to find or fit all these subspaces. Furthermore,
because our data points are unlabeled in the sense that we do not know in ad-
vance to which subspace they belong to, we need to simultaneously cluster these
data into multiple subspaces and find a low-dimensional subspace approximating
all the points in a cluster. This problem is known as subspace clustering and has
numerous applications; we list just a few:

Received January 2012; revised July 2012.
1Supported by a Benchmark Stanford Graduate Fellowship.
2Supported in part by NSF via Grants CCF-0963835, CNS-0911041 and the 2006 Waterman

Award, by AFOSR under Grant FA9550-09-1-0643, and by ONR under Grant N00014-09-1-0258.
MSC2010 subject classifications. 62-07.
Key words and phrases. Subspace clustering, spectral clustering, outlier detection, ℓ1 minimiza-

tion, duality in linear programming, geometric functional analysis, properties of convex bodies, con-
centration of measure.

2195

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/12-AOS1034
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2196 M. SOLTANOLKOTABI AND E. J. CANDÉS

FIG. 1. Collection of points near a union of multiple subspaces.

• Unsupervised learning. In unsupervised learning the goal is to build represen-
tations of machine inputs, which can be used for decision making, predicting
future inputs, efficiently communicating the inputs to another machine and so
on.

In some unsupervised learning applications, the standard assumption is that
the data is well approximated by a union of lower-dimensional manifolds.
Furthermore, these manifolds are sometimes well approximated by subspaces
whose dimension is only slightly higher than that of the manifold under study.
Such an example is handwritten digits. When looking at handwritten charac-
ters for recognition, the human eye is able to allow for simple transforma-
tions such as rotations, small scalings, location shifts and character thickness.
Therefore, any reasonable model should be insensitive to such changes as well.
Simard et al. [36] characterize this invariance with a 7-dimensional manifold;
that is, different transformations of a single digit are well approximated by a 7-
dimensional manifold. As illustrated by Hastie et al. [17], these 7-dimensional
manifolds are in turn well approximated by 12-dimensional subspaces. Thus, in
certain cases, unsupervised learning can be formulated as a subspace clustering
problem.

• Computer vision. There has been an explosion of visual data in the past few
years. Cameras are now everywhere: street corners, traffic lights, airports and
so on. Furthermore, millions of videos and images are uploaded monthly on the
web. This visual data deluge has motivated the development of low-dimensional
representations based on appearance, geometry and dynamics of a scene. In
many such applications, the low-dimensional representations are characterized
by multiple low-dimensional subspaces. One such example is motion segmen-
tation [45]. Here, we have a video sequence which consists of multiple moving
objects, and the goal is to segment the trajectories of the objects. Each trajectory
approximately lies in a low-dimensional subspace. To understand scene dynam-
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ics, one needs to cluster the trajectories of points on moving objects based on
the subspaces (objects) they belong to, hence the need for subspace clustering.

Other applications of subspace clustering in computer vision include im-
age segmentation [48], face clustering [18], image representation and compres-
sion [19], and systems theory [44]. Over the years, various methods for subspace
clustering have been proposed by researchers working in this area. For a com-
prehensive review and comparison of these algorithms, we refer the reader to
the tutorial [42] and references therein [1, 4, 5, 9–12, 14, 16, 28, 30, 31, 34, 37,
38, 40, 43, 47, 49–51].

• Disease detection. In order to detect a class of diseases of a specific kind (e.g.,
metabolic), doctors screen specific factors (e.g., metabolites). For this purpose,
various tests (e.g., blood tests) are performed on the newborns and the level of
those factors are measured. One can further construct a newborn-factor level
matrix, where each row contains the factor levels of a different newborn. That
is to say, each newborn is associated with a vector containing the values of the
factors. Doctors wish to cluster groups of newborns based on the disease they
suffer from. Usually, each disease causes a correlation between a specific set of
factors. Such an assumption implies that points corresponding to newborns suf-
fering from a given disease lie on a lower-dimensional subspace [26]. Therefore,
the clustering of newborns based on their specific disease together with the iden-
tification of the relevant factors associated with each disease can be modeled as
a subspace clustering problem.

PCA is perhaps the single most important tool for dimensionality reduction.
However, in many problems, the data set under study is not well approximated by
a linear subspace of lower dimension. Instead, as we hope we have made clear, the
data often lie near a union of low-dimensional subspaces, reflecting the multiple
categories or classes a set of observations may belong to. Given its relevance in
data analysis, we find it surprising that subspace clustering has been well studied
in the computer science literature but has comparably received little attention from
the statistical community. This paper begins with a very recent approach to sub-
space clustering and proposes a framework in which one can develop some useful
statistical theory. As we shall see, insights from sparse regression analysis in high
dimensions—a subject that has been well developed in the statistics literature in
recent years—inform the subspace clustering problem.

1.2. Problem formulation. In this paper we assume we are given data points
that are distributed on a union of unknown linear subspaces S1 ∪ S2 ∪ · · · ∪ SL;
that is, there are L subspaces of R

n of unknown dimensions d1, d2, . . . , dL. More
precisely, we have a point set X ⊂ R

n consisting of N points in R
n, which may be

partitioned as

X = X0 ∪ X1 ∪ · · · ∪ XL(1.1)
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for each ℓ ≥ 1, Xℓ is a collection of Nℓ unit-normed vectors chosen from Sℓ. The
careful reader will notice that we have an extra subset X0 in (1.1) accounting for
possible outliers. Unless specified otherwise, we assume that this special subset
consists of N0 points chosen independently and uniformly at random on the unit
sphere. The task is now simply stated. Without any prior knowledge about the
number of subspaces, their orientation or their dimension,

(1) identify all the outliers, and
(2) segment or assign each data point to a cluster as to recover all the hidden

subspaces.

It is worth emphasizing that our model assumes normalized data vectors; this is
not a restrictive assumption since one can always normalize inputs before applying
any subspace clustering algorithm. Although we consider linear subspaces, one
can extend the methods of this paper to affine subspace clustering which will be
explained in Section 1.3.1.

We now turn to methods for achieving these goals. Our focus is on noiseless
data and we leave noisy subspace clustering to future work.

1.3. Methods and contributions. To introduce our methods, we first consider
the case in which there are no outliers before treating the more general case. From
now on, it will be convenient to arrange the observed data points as columns of
a matrix X = [x1, . . . ,xN ] ∈ R

n×N , where N = N0 + N1 + · · · + NL is the total
number of points.

1.3.1. Methods. Subspace clustering has received quite a bit of attention in
recent years and, in particular, Elhamifar and Vidal introduced a clever algorithm
based on insights from the compressive sensing literature. The key idea of the
Sparse Subspace Clustering (SSC) algorithm [11] is to find the sparsest expan-
sion of each column xi of X as a linear combination of all the other columns.
This makes a lot of sense because under some generic conditions, one expects that
the sparsest representation of xi would only select vectors from the subspace in
which xi happens to lie in. This motivates Elhamifar and Vidal to consider the
sequence of optimization problems

min
z∈RN

‖z‖ℓ1 subject to Xz = xi and zi = 0.(1.2)

The hope is that whenever zj �= 0, xi and xj belong to the same subspace. This
property is captured by the definition below.

DEFINITION 1.1 (ℓ1 subspace detection property). The subspaces {Sℓ}Lℓ=1 and
points X obey the ℓ1 subspace detection property if and only if it holds that for
all i, the optimal solution to (1.2) has nonzero entries only when the corresponding
columns of X are in the same subspace as xi .
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In certain cases the subspace detection property may not hold, that is, the sup-
port of the optimal solution to (1.2) may include points from other subspaces. How-
ever, it might still be possible to detect and construct reliable clusters. A strategy is
to arrange the optimal solutions to (1.2) as columns of a matrix Z ∈ R

N×N , build
an affinity graph G with N vertices and weights wij = |Zij | + |Zji |, construct the
normalized Laplacian of G, and use a gap in the distribution of eigenvalues of this
matrix to estimate the number of subspaces. Using the estimated number of sub-
spaces, spectral clustering techniques (e.g., [33, 35]) can be applied to the affinity
graph to cluster the data points. The main steps of this procedure are summarized
in Algorithm 1. This algorithm clusters linear subspaces but can also cluster affine
subspaces by adding the constraint ZT 1 = 1 to (1.2).

1.3.2. Our contributions. In Section 3 we will review existing conditions in-
volving a restriction on the minimum angle between subspaces under which Al-
gorithm 1 is expected to work. The main purpose of this paper is to show that
Algorithm 1 works in much broader situations.

• Subspaces with nontrivial intersections. Perhaps unexpectedly, we shall see that
our results assert that SSC can correctly cluster data points even when our sub-
spaces intersect so that the minimum principal angle vanishes. This is a phe-
nomenon which is far from being explained by current theory.

• Subspaces of nearly linear dimension. We prove that in generic settings, SSC
can effectively cluster the data even when the dimensions of the subspaces grow

Algorithm 1 Sparse subspace clustering (SSC)

Input: A data set X arranged as columns of X ∈ R
n×N .

1. Solve (the optimization variable is the N × N matrix Z)

minimize ‖Z‖ℓ1

subject to XZ = X,

diag(Z) = 0.

2. Form the affinity graph G with nodes representing the N data points and edge
weights given by W = |Z| + |Z|T .
3. Sort the eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σN of the normalized Laplacian of G in
descending order, and set

L̂ = N − arg max
i=1,...,N−1

(σi − σi+1).

4. Apply a spectral clustering technique to the affinity graph using L̂ as the
estimated number of clusters.

Output: Partition X1, . . . , X
L̂

.
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almost linearly with the ambient dimension. We are not aware of other literature
explaining why this should be so. To be sure, in most favorable cases, earlier
results only seem to allow the dimensions of the subspaces to grow at most like
the square root of the ambient dimension.

• Outlier detection. We present modifications to SSC that succeed when the data
set is corrupted with many outliers—even when their number far exceeds the
total number of clean observations. To the best of our knowledge, this is the first
algorithm provably capable of handling these many corruptions.

• Geometric insights. Such improvements are possible because of a novel ap-
proach to analyzing the sparse subspace clustering problem. This analysis com-
bines tools from convex optimization, probability theory and geometric func-
tional analysis. Underlying our methods are clear geometric insights explaining
quite precisely when SSC is successful and when it is not. This viewpoint might
prove fruitful to address other sparse recovery problems.

Section 3 proposes a careful comparison with the existing literature. Before doing
so, we first need to introduce our results, which is the object of Sections 1.4 and 2.

1.4. Models and typical results.

1.4.1. Models. In order to better understand the regime in which SSC suc-
ceeds as well as its limitations, we will consider three different models. Our aim is
to give informative bounds for these models highlighting the dependence upon key
parameters of the problem such as (1) the number of subspaces, (2) the dimensions
of these subspaces, (3) the relative orientations of these subspaces, (4) the number
of data points per subspace and so on.

• Deterministic model. In this model the orientation of the subspaces as well as
the distribution of the points on each subspace are nonrandom. This is the set-
ting considered by Elhamifar et al. and is the subject of Theorem 2.5, which
guarantees that the subspace detection property holds as long as for any two
subspaces, pairs of (primal and dual) directions taken on each subspace have a
sufficiently small inner product.

• Semi-random model. Here, the subspaces are fixed but the points are distributed
at random on each of the subspaces. This is the subject of Theorem 2.8, which
uses a notion of affinity to measure closeness between any two subspaces. This
affinity is maximal and equal to the square root of the dimension of the sub-
spaces when they overlap perfectly. Here, our results state that if the affinity
is smaller, by a logarithmic factor, than its maximum possible value, then SSC
recovers the subspaces exactly.

• Fully random model. Here, both the orientation of the subspaces and the dis-
tribution of the points are random. This is the subject of Theorem 1.2; in a
nutshell, SSC succeds as long as the dimensions of the subspaces are within at
most a logarithmic factor from the ambient dimension.
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1.4.2. Segmentation without outliers. Consider the fully random model first.
We establish that the subspace detection property holds as long as the dimensions
of the subspaces are roughly linear in the ambient dimension. Put differently, SSC
can provably achieve perfect subspace recovery in settings not previously under-
stood.

Our results make use of a constant c(ρ) only depending upon the density of
inliers (the number of points on each subspace is ρd + 1) and which obeys the
following two properties:

(i) For all ρ > 1, c(ρ) > 0.
(ii) There is a numerical value ρ0, such that for all ρ ≥ ρ0, one can take c(ρ) =

1√
8
.

THEOREM 1.2. Assume there are L subspaces, each of dimension d , chosen

independently and uniformly at random. Furthermore, suppose there are ρd + 1
points chosen independently and uniformly at random on each subspace.3 Then

the subspace detection property holds with large probability as long as

d <
c2(ρ) logρ

12 logN
n(1.3)

[N = L(ρd + 1) is the total number of data points]. The probability is at least

1− 2
N

−Ne−√
ρd , which is calculated for values of d close to the upper bound. For

lower values of d , the probability of success is of course much higher, as explained

below.

Theorem 1.2 is in fact a special instance of a more general theorem that we shall
discuss later and which holds under less restrictive assumptions on the orientations
of the subspaces as well as the number and positions of the data points on each
subspace. This theorem conforms to our intuition since clustering becomes more
difficult as the dimensions of the subspaces increase. Intuitively, another difficult
regime concerns a situation in which we have very many subspaces of small di-
mensions. This difficulty is reflected in the dependence of the denominator in (1.3)
on L, the number of subspaces (through N ). A more comprehensive explanation
of this effect is provided in Section 2.1.2.

As it becomes clear in the proof (see Section 7), a slightly more general version
of Theorem 1.2 holds, namely, with 0 < β ≤ 1, the subspace detection property
holds as long as

d < 2β

[

c2(ρ) logρ

12 logN

]

n(1.4)

3From here on, when we say that points are chosen from a subspace, we implicitly assume they

are unit normed. For ease of presentation we state our results for 1 < ρ ≤ ed/2, that is, the number
of points on each subspace is not exponentially large in terms of the dimension of that subspace. The
results hold for all ρ > 1 by replacing ρ with min{ρ, ed/2}.
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with probability at least 1 − 2
N

− Ne−ρ(1−β)d . Therefore, if d is a small fraction
of the right-hand side in (1.3), the subspace detection property holds with much
higher probability, as expected.

An interesting regime is when the number of subspaces L is fixed and the den-
sity of points per subspace is ρ = dη, for a small η > 0. Then as n → ∞ with the
ratio d/n fixed, it follows from N ≍ Lρd and (1.4) using β = 1 that the subspace
detection property holds as long as

d <
η

48(1 + η)
n.

This justifies our earlier claims since we can have subspace dimensions growing
linearly in the ambient dimension. It should be noted that this asymptotic statement
is only a factor 8 − 10 away from what is observed in simulations, which demon-
strates a relatively small gap between our theoretical predictions and simulations.4

1.4.3. Segmentation with outliers. We now turn our attention to the case where
there our extraneous points in the data in the sense that there are N0 outliers as-
sumed to be distributed uniformly at random on the unit sphere. Here, we wish to
correctly identify the outlier points and apply any of the subspace clustering al-
gorithms to the remaining samples. We propose a very simple detection procedure
for this task. As in SSC, decompose each xi as a linear combination of all the other
points by solving an ℓ1-minimization problem. Then one expects the expansion of
an outlier to be less sparse. This suggests the following detection rule: declare xi

to be an outlier if and only if the optimal value of (1.2) is above a fixed threshold.
This makes sense because if xi is an outlier, one expects the optimal value to be on
the order of

√
n (provided N is at most polynomial in n), whereas this value will

be at most on the order of
√

d if xi belongs to a subspace of dimension d . In short,
we expect a gap—a fact we will make rigorous in the next section. The main steps
of the procedure are shown in Algorithm 2.

Our second result asserts that as long as the number of outliers is not over-
whelming, Algorithm 2 detects all of them.

THEOREM 1.3. Assume there are Nd points to be clustered together with N0
outliers sampled uniformly at random on the n − 1-dimensional unit sphere (N =
N0 + Nd ). Algorithm 2 detects all of the outliers with high probability6 as long as

N0 <
1

n
ec

√
n − Nd ,

4To be concrete, when the ambient dimension is n = 50 and the number of subspaces is L = 10,
the subspace detection property holds for d in the range from 7 to 10.

5Here, γ = N−1
n is the total point density and λ is a threshold ratio function whose value shall be

discussed later.
6With probability at least 1 − N0e−Cn/ log(N0+Nd ). If N0 < 1

nec
√

n − Nd , this is at least 1 − 1
n .
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Algorithm 2 Subspace clustering in the presence of outliers

Input: A data set X arranged as columns of X ∈ R
n×N .

1. Solve

minimize ‖Z‖ℓ1

subject to XZ = X,

diag(Z) = 0.

2. For each i ∈ {1, . . . ,N}, declare i to be an outlier iff ‖zi‖ℓ1 > λ(γ )
√

n.5

3. Apply a subspace clustering to the remaining points.
Output: Partition X0, X1, . . . , XL.

where c is a numerical constant. Furthermore, suppose the subspaces are d-

dimensional and of arbitrary orientation, and that each contains ρd + 1 points

sampled independently and uniformly at random. Then with high probability,7 Al-

gorithm 2 does not detect any subspace point as outlier provided that

N0 < nρc2n/d − Nd ,

in which c2 = c2(ρ)/(2e2π).

This result shows that our outlier detection scheme can reliably detect all out-
liers even when their number grows exponentially in the root of the ambient di-
mension. We emphasize that this holds without making any assumption whatso-
ever about the orientation of the subspaces or the distribution of the points on each
subspace. Furthermore, if the points on each subspace are uniformly distributed,
our scheme will not wrongfully detect a subspace point as an outlier. In the next
section we show that similar results hold under less restrictive assumptions.

2. Main results.

2.1. Segmentation without outliers. In this section we shall give sufficient
conditions in the fully deterministic and semi-random model under which the SSC
algorithm succeeds (we studied the fully random model in Theorem 1.2).

Before we explain our results, we introduce some basic notation. We will ar-
range the Nℓ points on subspace Sℓ as columns of a matrix X(ℓ). For ℓ = 1, . . . ,L,
i = 1, . . . ,Nℓ, we use X

(ℓ)
−i to denote all points on subspace Sℓ excluding the ith

point, X
(ℓ)
−i = [x(ℓ)

1 , . . . ,x
(ℓ)
i−1,x

(ℓ)
i+1, . . . ,x

(ℓ)
Nℓ

]. We use U(ℓ) ∈ R
n×dℓ to denote an

arbitrary orthonormal basis for Sℓ. This induces a factorization X(ℓ) = U(ℓ)A(ℓ),

7With probability at least 1 −N0e−Cn/ log(N0+Nd ) −Nde−√
ρd . If N0 < min{nec2n/d , 1

n ec
√

n}−
Nd , this is at least 1 − 1

n − Nde−√
ρd .
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FIG. 2. Geometric representation of a dual point; see Definition 2.1.

where A(ℓ) = [a
(ℓ)
1 , . . . ,a

(ℓ)
Nℓ

] ∈ R
dℓ×Nℓ is a matrix of coordinates with unit-norm

columns. For any matrix X ∈ R
n×N , the shorthand notation P(X) denotes the sym-

metrized convex hull of its columns, P(X) = conv(±x1,±x2, . . . ,±xN ). Also P
ℓ
−i

stands for P(X
(ℓ)
−i ). Finally, ‖X‖ is the operator norm of X and ‖X‖ℓ∞ the maxi-

mum absolute value of its entries.

2.1.1. Deterministic model. We first introduce some basic concepts needed to
state our deterministic result.

DEFINITION 2.1 (Dual point). Consider a vector y ∈ R
d and a matrix A ∈

R
d×N , and let C∗ be the set of optimal solutions to

max
λ∈Rd

〈y,λ〉 subject to
∥

∥AT
λ
∥

∥

ℓ∞ ≤ 1.

The dual point λ(y,A) ∈ R
d is defined as a point in C∗ with minimum Euclidean

norm.8 A geometric representation is shown in Figure 2.

DEFINITION 2.2 (Dual directions). Define the dual directions v
(ℓ)
i ∈ R

n [ar-

ranged as columns of a matrix V(ℓ)] corresponding to the dual points λ
(ℓ)
i =

λ(a
(ℓ)
i ,A

(ℓ)
−i ) as

v
(ℓ)
i = U(ℓ) λ

(ℓ)
i

‖λ(ℓ)
i ‖ℓ2

.

The dual direction v
(ℓ)
i , corresponding to the point x

(ℓ)
i , from subspace Sℓ is shown

in Figure 3.

8If this point is not unique, take λ(y,A) to be any optimal point with minimum Euclidean norm.
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FIG. 3. Geometric representation of a dual direction. The dual direction is the dual point embedded

in the ambient n-dimensional space.

DEFINITION 2.3 (Inradius). The inradius of a convex body P , denoted by
r(P), is defined as the radius of the largest Euclidean ball inscribed in P .

DEFINITION 2.4 (Subspace incoherence). The subspace incoherence of a
point set Xℓ vis a vis the other points is defined by

μ(Xℓ) = max
x∈X \Xℓ

∥

∥V(ℓ)T x
∥

∥

ℓ∞,

where V(ℓ) is as in Definition 2.2.

THEOREM 2.5. If

μ(Xℓ) < min
i:xi∈Xℓ

r
(

P
ℓ
−i

)

(2.1)

for each ℓ = 1, . . . ,L, then the subspace detection property holds. If (2.1) holds

for a given ℓ, then a local subspace detection property holds in the sense that

for all xi , the solution to (1.2) has nonzero entries only when the corresponding

columns of X are in the same subspace as xi .

The incoherence parameter of a set of points on one subspace with respect to
other points is a measure of affinity between subspaces. To see why, notice that
if the incoherence is high, it implies that there is a point on one subspace and a
direction on another (a dual direction) such that the angle between them is small.
That is, there are two “close” subspaces, hence, clustering becomes hard. The in-
radius measures the spread of points. A very small minimum inradius implies that
the distribution of points is skewed toward certain directions, thus, subspace clus-
tering using an ℓ1 penalty is difficult. To see why this is so, assume the subspace
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FIG. 4. Skewed distribution of points on a single subspace and ℓ1 synthesis.

is of dimension 2 and all of the points on the subspace are skewed toward one
line, except for one special point which is in the direction orthogonal to that line.
This is shown in Figure 4 with the special point in red and the others in blue.
To synthesize this special point as a linear combination of the other points from
its subspace, we would need huge coefficient values and this is why it may very
well be more economical—in an ℓ1 sense—to select points from other subspaces.
This is a situation where ℓ0 minimization would still be successful but its convex
surrogate is not (researchers familiar with sparse regression would recognize a set-
ting in which variables are correlated and which is challenging for the LASSO).
Theorem 2.5 essentially states that as long as different subspaces are not similarly
oriented and the points on a single subspace are well spread, SSC can cluster the
data correctly. A geometric perspective of (2.1) is provided in Section 4.

To get concrete results, one needs to estimate both the incoherence and inradius
in terms of the parameters of interest, which include the number of subspaces, the
dimensions of the subspaces, the number of points on each subspace and so on.
To do this, we use the probabilistic models we introduced earlier. This is our next
topic.

2.1.2. Semi-random model. The following definitions capture notions of sim-
ilarity/affinity between two subspaces.

DEFINITION 2.6. The principal angles θ
(1)
k,ℓ , . . . , θ

(dk
∨

dℓ}
k,ℓ between two sub-

spaces Sk and Sℓ of dimensions dk and dℓ are recursively defined by

cos
(

θ
(i)
kℓ

)= max
y∈Sk

max
z∈Sℓ

yT z

‖y‖ℓ2‖z‖ℓ2

:= yT
i zi

‖yi‖ℓ2‖zi‖ℓ2

,

with the orthogonality constraints yT yj = 0, zT zj = 0, j = 1, . . . , i − 1.

Alternatively, if the columns of U(k) and U(ℓ) are orthobases, then the cosine

of the principal angles are the singular values of U(k)T U(ℓ). We write the small-
est principal angle as θkℓ = θ

(1)
kℓ so that cos(θkℓ) is the largest singular value of

U(k)T U(ℓ).
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DEFINITION 2.7. The affinity between two subspaces is defined by

aff(Sk, Sℓ) =
√

cos2 θ
(1)
kℓ + · · · + cos2 θ

(dk
∨

dℓ)
kℓ .

In case the distribution of the points are uniform on their corresponding sub-
spaces, the Geometric Condition (2.1) may be reduced to a simple statement about
the affinity. This is the subject of the next theorem.

THEOREM 2.8. Suppose Nℓ = ρℓdℓ + 1 points are chosen on each subspace

Sℓ at random, 1 ≤ ℓ ≤ L. Then as long as

max
k:k �=ℓ

4
√

2
(

log
[

Nℓ(Nk + 1)
]+ logL + t

)aff(Sk, Sℓ)√
dk

(2.2)
< c(ρℓ)

√

logρℓ for each ℓ,

the subspace detection property holds with probability at least

1 −
L
∑

ℓ=1

Nℓe
−√

dℓ

√
Nℓ−1 − 1

L2

∑

k �=ℓ

4e−2t

(Nk + 1)Nℓ

.

Hence, ignoring log factors, subspace clustering is possible if the affinity between

the subspaces is less than about the square root of the dimension of these sub-

spaces.

To derive useful results, assume for simplicity that we have L subspaces of the
same dimension d and ρd + 1 points per subspace so that N = L(ρd + 1). Then
perfect clustering occurs with probability at least 1 − Ne−√

ρd − 2
(ρd)(ρd+1)

e−2t if

aff(Sk, Sℓ)√
d

<
c(ρ)

√
logρ

4
√

2(2 logN + t)
.(2.3)

Our notion of affinity matches our basic intuition. To be sure, if the subspaces
are too close to each other (in terms of our defined notion of affinity), subspace
clustering is hard. Having said this, our result has an element of surprise. Indeed,
the affinity can at most be

√
d (

√
dk in general) and, therefore, our result essen-

tially states that if the affinity is less than c
√

d , then SSC works. Now this allows
for subspaces to intersect and, yet, SSC still provably clusters all the data points
correctly!

To discuss other aspects of this result, assume as before that all subspaces have
the same dimension d . When d is small and the total number of subspaces is
O(n/d), the problem is inherently hard because it involves clustering all the points
into many small subgroups. This is reflected by the low probability of success in
Theorem 2.8. Of course, if one increases the number of points chosen from each
subspace, the problem should intuitively become easier. The probability associated
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with (2.3) allows for such a trend. In other words, when d is small, one can increase
the probability of success by increasing ρ. Introducing a parameter 0 < β ≤ 1, the
condition can be modified to

aff(Sk, Sℓ)√
d

<
c(ρ)

√
β logρ

4(2 logN + t)
,(2.4)

which holds with probability at least 1 − Ne−ρ(1−β)d − 2
(ρd)(ρd+1)

e−2t . The more
general condition (2.2) and the corresponding probability can also be modified in
a similar manner.

2.2. Segmentation with outliers. To see how Algorithm 2 works in the pres-
ence of outliers, we begin by introducing a proper threshold function and define

λ(γ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

√

2

π

1
√

γ
, 1 ≤ γ ≤ e,

√

2

πe

1√
logγ

, γ ≥ e,

(2.5)

shown in Figure 5. The theorem below justifies the claims made in the introduction.

THEOREM 2.9. Suppose the outlier points are chosen uniformly at random

and set γ = N−1
n

, then using the threshold value (1 − t)
λ(γ )√

e

√
n, all outliers are

identified correctly with probability at least 1 − N0e
−C1t

2n/logN for some posi-

tive numerical constant C1. Furthermore, we have the following guarantees in the

deterministic and semi-random models:

FIG. 5. Plot of the threshold function (2.5).
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(a) If in the deterministic model,

max
ℓ,i

1

r(P(X
(ℓ)
−i ))

< (1 − t)
λ(γ )√

e

√
n,(2.6)

then no “real” data point is wrongfully detected as an outlier.
(b) If in the semi-random model,

max
ℓ

√
2dℓ

c(ρℓ)
√

logρℓ

< (1 − t)
λ(γ )√

e

√
n,(2.7)

then with probability at least 1 −∑L
ℓ=1 Nℓe

−√
dℓ

√
(Nℓ−1), no “real” data point is

wrongfully detected as an outlier.

The threshold in the right-hand side of (2.6) and (2.7) is essentially
√

n multi-
plied by a factor which depends only on the ratio of the number of points and the
dimension of the ambient space.

As in the situation with no outliers, when dℓ is small we need to increase Nℓ

to get a result holding with high probability. Again this is expected because when
dℓ is small, we need to be able to separate the outliers from many small clusters
which is inherently a hard problem for small values of Nℓ.

The careful reader will notice a factor
√

e discrepancy between the threshold
λ(γ )

√
n presented in Algorithm 2 and what is proven in (2.6) and (2.7). We believe

that this is a result of our analysis9 and we conjecture that (2.6) and (2.7) hold
without the factor

√
e in the denominator. Our simulations in Section 5 support

this conjecture.

3. Discussion and comparison with other work. It is time to compare our
results with a couple of previous important theoretical advances. To introduce these
earlier works, we first need some definitions.

DEFINITION 3.1. The subspaces {Sℓ}Lℓ=1 are said to be independent if and
only if

∑

ℓ dim(Sℓ) = dim(⊕ℓSℓ), where ⊕ is the direct sum.

For instance, three lines in R
2 cannot be independent.

DEFINITION 3.2. The subspaces {Sℓ}Lℓ=1 are said to be disjoint if and only if
for all pairs k �= ℓ, Sk ∩ Sℓ = {0}.

9More specifically, from switching from the mean width to a volumetric argument by means of
Urysohn’s inequality.
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DEFINITION 3.3. The geodesic distance between two subspaces Si and Sj of
dimension d , denoted by dist(Si, Sj ), is defined by

dist(Sk, Sℓ) =

√

√

√

√

√

dk
∨

dℓ
∑

i=1

(

θ
(i)
kℓ

)2
.

3.1. Segmentation without outliers. In [11], Elhamifar and Vidal show that
the subspace detection property holds as long as the subspaces are independent.
In [12], the same authors show that under less restrictive conditions the ℓ1 subspace
detection property still holds. Formally, they show that if

1√
dℓ

max
Y∈Wdℓ

(X(ℓ))
σmin(Y) > max

k:k �=ℓ
cos

(

θ
(1)
kℓ

)

for all ℓ = 1, . . . ,L,(3.1)

then the subspace detection property holds. In the above formulation, σmin(Y) de-
notes the smallest singular value of Y and Wd(X(ℓ)) denotes the set of all full rank
sub-matrices of X(ℓ) of size n × dℓ. The interesting part of the above condition
is the appearance of the principal angle on the right-hand side. However, the left-
hand side is not particularly insightful (i.e., it does not tell us anything about the
important parameters involved in the subspace clustering problem, such as dimen-
sions, number of subspaces and so on) and it is in fact NP-hard to even calculate
it.

• Deterministic model. This paper also introduces a sufficient condition (2.1)
under which the subspace detection property holds in the fully determinis-
tic setting; compare Theorem 2.5. This sufficient condition is much less re-
strictive as any configuration obeying (3.1) also obeys (2.1). More precisely,
μ(Xℓ) ≤ maxk:k �=ℓ cos(θ (1)

kℓ ) and 1√
dℓ

maxY∈Wdℓ
(X(ℓ))σmin(Y) ≤ mini r(P

ℓ
−i).

10

As for (3.1), checking that (2.1) holds is also NP-hard in general. How-
ever, to prove that the subspace detection property holds, it is sufficient to
check a slightly less restrictive condition than (2.1); this is tractable, see
Lemma 7.1.

• Semi-random model. Assume that all subspaces are of the same dimension
d and that there are ρd + 1 points on each subspace. Since the columns
of Y have unit norm, it is easy to see that the left-hand side of (3.1)
is strictly less than 1/

√
d . Thus, (3.1) at best restricts the range for per-

fect subspace recovery to cos θ
(1)
kℓ < c 1√

d
[by looking at (3.1), it is not

10The latter follows from maxi
1

r(P ℓ
−i )

≤ minY∈Wdℓ
(X(ℓ))

√
dℓ

σmin(Y)
which is a simple consequence of

Lemma 7.8.
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entirely clear that this would even be achievable]. In comparison, Theo-
rem 2.8 (excluding some logarithmic factors for ease of presentation) re-
quires

aff(Sk, Sℓ) =
√

cos2
(

θ
(1)
kℓ

)+ cos2
(

θ
(2)
kℓ

)+ · · · + cos2
(

θ
(d)
kℓ

)

(3.2)
< c

√

log(ρ)
√

d.

The left-hand side can be much smaller than
√

d cos θ
(1)
kℓ and is, therefore, less

restrictive.
To be more specific, assume that in the model described above we have two

subspaces with an intersection of dimension s. Because the two subspaces in-
tersect, the condition given by Elhamifar and Vidal becomes 1 < 1√

d
, which

cannot hold. In comparison, our condition (3.2) simplifies to

cos2(θ
(s+1)
kℓ

)+ · · · + cos2(θ
(d)
kℓ

)

< c log(ρ)d − s,

which holds as long as s is not too large and/or a fraction of the angles are
not too small. From an application standpoint, this is important because it
explains why SSC can often succeed even when the subspaces are not dis-
joint.

• Fully random model. As before, assume for simplicity that all subspaces are of
the same dimension d and that there are ρd + 1 points on each subspace. We
have seen that (3.1) imposes cos θ

(1)
kℓ < c 1√

d
. It can be shown that in the fully

random setting,11 cos θ
(1)
kℓ ≈ c

√

d
n

. Therefore, (3.1) would put a restriction of the
form

d < c
√

n.

In comparison, Theorem 1.2 requires

d < c1
logρ

logN
n,

which allows for the dimension of the subspaces to be almost linear in the am-
bient dimension.

Such improvements come from a geometric insight: it becomes apparent that
the SSC algorithm succeeds if the actual subspace points (primal directions) have
small inner products with the dual directions on another subspace. This is in con-
trast with Elhamifar and Vidal’s condition which requires that the inner products
between any direction on one subspace and any direction on another be small.
Further geometric explanations are given in Section 4.2.

11One can see this by noticing that the square of this parameter is the largest root of a multivariate
beta distribution. The asymptotic value of this root can be calculated, for example, see [21].
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3.2. Segmentation with outliers. To the best of our knowledge, there is only
one other theoretical result regarding outlier detection. In [27], Lerman and Zhang
study the effectiveness of recovering subspaces in the presence of outliers by some
sort of ℓp minimization for different values of 0 < p < ∞. They address simulta-
neous recovery of all L subspaces by minimizing the functional

eℓp(X , S1, . . . , SL) =
∑

x∈X

min
1≤ℓ≤L

(

dist(x, Sℓ)
)p

.(3.3)

Here, S1, . . . , SL are the optimization variables and X is our data set. This is not a
convex optimization for any p > 0, since the feasible set is the Grassmannian.

In the semi-random model, the result of Lerman and Zhang states that under
the assumptions stated in Theorem 1.3, with 0 < p ≤ 1 and τ0 a constant,12 the
subspaces S1, . . . , SL minimize (with large probability) the energy (3.3) among all
d-dimensional subspaces in R

n if

N0 < τ0ρd min
(

1,min
k �=ℓ

dist(Sk, Sℓ)
p/2p

)

.(3.4)

It is easy to see that the right-hand side of (3.4) is upperbounded by ρd , that is,
the typical number of points on each subspace. Notice that our analogous result in
Theorem 1.2 allows for a much larger number of outliers. In fact, the number of
outliers can sometimes even be much larger than the total number of data points
on all subspaces combined. Our proposed algorithm also has the added benefit
that it is convex and, therefore, practical. Having said this, it is worth mentioning
that the results in [27] hold for a more general outlier model. Also, an interesting
byproduct of the result from Lerman and Zhang is that the energy minimization
can perform perfect subspace recovery when no outliers are present. In fact, they
even extend this to the case when the subspace points are noisy.

Finally, while this manuscript was in preparation, Liu Guangcan brought to our
attention a new paper [29], which also addresses outlier detection. However, the
suggested scheme limits the number of outliers to N0 < n−∑L

ℓ=1 dℓ. That is, when
the total dimension of the subspaces (

∑L
ℓ=1 dℓ) exceeds the ambient dimension n,

outlier detection is not possible based on the suggested scheme. In contrast, our
results guarantee perfect outlier detection even when the number of outliers far
exceeds the number of data points.

4. Geometric perspective on the separation condition. The goal of this sec-
tion is twofold. One aim is to provide a geometric understanding of the subspace
detection property and of the sufficient condition presented in Section 2.1. Another
is to introduce concepts such as K-norms and polar sets, which will play a crucial
role in our analysis.
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FIG. 6. Illustration of Definitions 4.1 and 4.2. (a) Norm with respect to a polytope K. (b) Polytope

K and its polar K
o.

4.1. Linear programming theory. We are interested in finding the support of
the optimal solution to

min
x∈RN

‖x‖ℓ1 subject to Ax = y,(4.1)

where both y and the columns of A have unit norm. The dual takes the form

max
z∈Rn

〈y, z〉 subject to
∥

∥AT z
∥

∥

ℓ∞ ≤ 1.(4.2)

Since strong duality always holds in linear programming, the optimal values
of (4.1) and (4.2) are equal. We now introduce some notation to express the dual
program differently.

DEFINITION 4.1. The norm of a vector y with respect to a symmetric convex
body is defined as

‖y‖K = inf{t > 0 : y/t ∈ K}.(4.3)

This norm is shown in Figure 6(a).

DEFINITION 4.2. The polar set Ko of K ⊂ R
n is defined as

K
o = {

y ∈ R
n : 〈x,y〉 ≤ 1 for all x ∈ K

}

.(4.4)

12The result of [27] is a bit more general in that the points on each subspace can be sampled from
a single distribution obeying certain regularity conditions, other than the uniform measure. In this
case, τ0 depends on this distribution as well.
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Set Ko = {z :‖AT z‖ℓ∞ ≤ 1} so that our dual problem (4.2) is of the form

max
z∈Rn

〈y, z〉 subject to z ∈ K
o.(4.5)

It then follows from the definitions above that the optimal value of (4.1) is given
by ‖y‖K, where K = conv(±a1, . . . ,±aN ); that is to say, the minimum value of
the ℓ1 norm is the norm of y with respect to the symmetrized convex hull of the
columns of A. In other words, this perspective asserts that support detection in an
ℓ1 minimization problem is equivalent to finding the face of the polytope K that
passes through the ray �y = {ty, t ≥ 0}; the extreme points of this face reveal those
indices with a nonzero entry. We will refer to the face passing through the ray �y as
the face closest to y. Figure 6(b) illustrates some of these concepts.

4.2. A geometric view of the subspace detection property. We have seen that
the subspace detection property holds if for each point xi , the closest face to xi

resides in the same subspace. To establish a geometric characterization, consider
an arbitrary point, for instance, x

(ℓ)
i ∈ Sℓ as in Figure 7. Now construct the sym-

metrized convex hull of all the other points in Sℓ indicated by P
ℓ
−i in the figure.

Consider the face of P
ℓ
−i that is closest to x

(ℓ)
i ; this face is shown in Figure 7 by

the line segment in red. Also, consider the plane passing through this segment and
orthogonal to Sℓ along with its reflection about the origin; this is shown in Figure 7
by the light grey planes. Set R

(ℓ)
i to be the region of space restricted between these

two planes. Intuitively, if no two points on the other subspaces lie outside of R
(ℓ)
i ,

then the face chosen by the algorithm is as in the figure and lies in Sℓ.
To illustrate this point further, suppose there are two points not in Sℓ lying out-

side of the region R
(ℓ)
i as in Figure 8. In this case, the closest face does not lie in Sℓ

FIG. 7. Illustration of ℓ1 minimization when the subspace detection property holds. Same object

seen from different angles.
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FIG. 8. Illustration of ℓ1 minimization when the subspace detection property fails. Same object

seen from different angles.

as can be seen in the figure. Therefore, one could intuitively argue that a sufficient
condition for the closest face to lie in Sℓ is that the projections onto Sℓ of the points
from all the other subspaces do not lie outside of regions R

(ℓ)
i for all points x

(ℓ)
i in

subspace Sℓ. This condition is closely related to the sufficient condition stated in
Theorem 2.5. More precisely, the dual directions v

(ℓ)
i approximate the normal di-

rections to the restricting planes R
(ℓ)
i , and mini r(P

ℓ
−i) the distance of these planes

from the origin.
Finally, to understand the sufficient condition of Theorem 2.5, we will use Fig-

ure 9. We focus on a single subspace, say, S1. As previously stated, a sufficient
condition is to have all points not in S1 to have small coherence with the dual direc-
tions of the points in S1. The dual directions are depicted in Figure 9 (blue dots).
One such dual direction line is shown as the dashed blue line in the figure. The

FIG. 9. Geometric view of (2.1). The right figure is seen from a direction orthogonal to S1.
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points that have low coherence with the dual directions are the points whose pro-
jection onto subspace S1 lie inside the red polytope. As can be seen, this polytope
approximates the intersection of regions R

(1)
i (

⋂N1
i=1 R

(1)
i ) and subspace S1. This

helps in understanding the difference between the condition imposed by Elhamifar
and Vidal and our condition; in this setting, their condition essentially states that
the projection of the points on all other subspaces onto subspace S1 must lie inside
the blue circle. By looking at Figure 9, one might draw the conclusion that these
conditions are very similar, that is, the red polytope and the blue ball restrict almost
the same region. This is not the case, because as the dimension of the subspace S1
increases most of the volume of the red polytope will be concentrated around its
vertices and the ball will only occupy a very small fraction of the total volume of
the polytope.

5. Numerical results. This section proposes numerical experiments on syn-
thesized data to further our understanding of the behavior/limitations of SSC, of
our analysis and of our proposed outlier detection scheme. In this numerical study
we restrict ourselves to understanding the effect of noise on the spectral gap and
the estimation of the number of subspaces. For a more comprehensive analytical
and numerical study of SSC in the presence of noise, we refer the reader to [7].
For comparison of SSC with more recent methods on motion segmentation data,
we refer the reader to [13, 28]. These papers indicate that SSC has the best perfor-
mance on the Hopkins 155 data [39] when corrupted trajectories are present, and
has a performance competitive with the state of the art when there is no corrupted
trajectory. In the spirit of reproducible research, the Matlab code generating all the
plots is available at http://www.stanford.edu/~mahdisol/Software.

5.1. Segmentation without outliers. As mentioned in the Introduction, the sub-
space detection property can hold even when the dimensions of the subspaces are
large in comparison with the ambient dimension n. SSC can also work beyond
the region where the subspace detection property holds because of further spectral
clustering. Section 5.1.1 introduces several metrics to assess performance and Sec-
tion 5.1.2 demonstrates that the subspace detection property can hold even when
the subspaces intersect. In Section 5.1.3 we study the performance of SSC under
changes in the affinity between subspaces and the number of points per subspace.
In Section 5.1.4 we illustrate the effect of the dimension of the subspaces on the
subspace detection property and the spectral gap. In Section 5.1.5 we study the ef-
fect of noise on the spectral gap. In the final subsection we study the capability of
SSC in estimating the correct number of subspaces and compare it with a classical
algorithm.

5.1.1. Error metrics. The four different metrics we use are as follows (see [12]
for simulations using similar metrics):

http://www.stanford.edu/~mahdisol/Software


SUBSPACE CLUSTERING WITH OUTLIERS 2217

• Feature detection error. For each point xi , partition the optimal solution of SSC
as

zi = Ŵ

⎡

⎢

⎢

⎢

⎢

⎣

zi1

zi2
...

ziL

⎤

⎥

⎥

⎥

⎥

⎦

.

In this representation, Ŵ is our unknown permutation matrix and zi1, zi2, . . . , ziL

denote the coefficients corresponding to each of the L subspaces. Using N as
the total number of points, the feature detection error is

1

N

N
∑

i=1

(

1 − ‖ziki
‖ℓ1

‖zi‖ℓ1

)

,(5.1)

in which ki is the subpace xi belongs to. The quantity between brackets in (5.1)
measures how far we are from choosing all our neighbors in the same subspace;
when the subspace detection property holds, this term is equal to 0 whereas it
takes on the value 1 when all the points are chosen from the other subspaces.

• Clustering error. Here, we assume knowledge of the number of subspaces and
apply spectral clustering to the affinity matrix built by the SSC algorithm. After
the spectral clustering step, the clustering error is simply defined as

# of misclassified points

total # of points
.(5.2)

• Error in estimating the number of subspaces. This is a 0-1 error which takes
on the value 0 if the true number of subspaces is correctly estimated, and 1
otherwise.

• Smallest nonzero eigenvalue. We use the (N − L) + 1th smallest eigenvalue
of the normalized Laplacian13 as a numerical check on whether the subspace
detection property holds (when the subspace detection property holds this value
vanishes).

5.1.2. Subspace detection property holds even when the subspaces intersect.
We wish to demonstrate that the subspace detection property holds even when the
subspaces intersect. To this end, we generate two subspaces of dimension d =
10 in R

n=200 with an intersection of dimension s. We sample one subspace (S1)
of dimension d uniformly at random among all d-dimensional subspaces and a
subspace of dimension s [denoted by S

(1)
2 ] inside that subspace, again, uniformly

13After building the symmetrized affinity graph W = |Z|+|Z|T , we form the normalized Laplacian

LN = I − D−1/2WD−1/2, where D is a diagonal matrix and Dii is equal to the sum of the elements
in column Wi . This form of the Laplacian works better for spectral clustering as observed in many
applications [33].
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FIG. 10. Error metrics as a function of the dimension of the intersection. (a) Feature detection

error. (b) Clustering error. (c) Error in estimating the number of subspaces.

at random. Sample another subspace S
(2)
2 of dimension d − s uniformly at random

and set S2 = S
(1)
2 ⊕ S

(2)
2 .

Our experiment selects N1 = N2 = 20d points uniformly at random from each
subspace. We generate 20 instances from this model and report the average of the
first three error criteria over these instances; see Figure 10. Here, the subspace
detection property holds up to s = 3. Also, after the spectral clustering step, SSC
has a vanishing clustering error even when the dimension of the intersection is as
large as s = 6.

5.1.3. Effect of the affinity between subspaces. In Section 2.1.2 we showed
that in the semi-random model, the success of SSC depends upon the affinity be-
tween the subspaces and upon the density of points per subspace (recovery be-
comes harder as the affinity increases and as the density of points per subspace
decreases). We study here this trade-off in greater detail through experiments on
synthetic data.

We generate 3 subspaces S1, S2 and S3, each of dimension d = 20 in R
n=40. The

choice n = 2d makes the problem challenging since every data point on one sub-
space can also be expressed as a linear combination of points on other subspaces.
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The bases we choose for S1 and S2 are

U(1) =
[

Id

0d×d

]

, U(2) =
[

0d×d

Id

]

,(5.3)

whereas for S3,

U(3) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos(θ1) 0 0 0 . . . 0
0 cos(θ2) 0 0 . . . 0
0 0 cos(θ3) 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . cos(θd)

sin(θ1) 0 0 0 . . . 0
0 sin(θ2) 0 0 . . . 0
0 0 sin(θ3) 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . sin(θd)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.(5.4)

Above, the principal angles are set in such a way that cos θi decreases linearly
from cos θ to α cos θ , where θ and α are fixed parameters; that is to say, cos θi =
(1 − a(i − 1)) cos θ , a = 1−α

d−1 .
In our experiments we sample ρd points uniformly at random from each sub-

space. We fix α = 1
2 and vary ρ ∈ [2,10] and θ ∈ [0, π

2 ]. Since α = 1
2 , as θ in-

creases from 0 to π/2, the normalized maximum affinity maxi �=j aff(Si, Sj )/
√

d

decreases from 1 to 0.7094 (recall that a normalized affinity equal to 1 indicates
a perfect overlap, that is, two subspaces are the same). For each value of ρ and θ ,
we evaluate the SSC performance according to the three error criteria above. The
results, shown in Figure 11, indicate that SSC is successful even for large values of
the maximum affinity as long as the density is sufficiently large. Also, the figures
display a clear correlation between the three different error criteria, indicating that
each could be used as a proxy for the other two. An interesting point is ρ = 3.25
and aff/

√
d = 0.9; here, the algorithm can identify the number of subspaces cor-

rectly and perform perfect subspace clustering (clustering error is 0). This indicates
that the SSC algorithm in its full generality can achieve perfect subspace clustering
even when the subspaces are very close.

5.1.4. Effect of dimension on subspace detection property and spectral gap.
In order to illustrate the effect an increase in the dimension of subspaces has on
the spectral gap, we generate L = 20 subspaces chosen uniformly at random from
all d-dimensional subspaces in R

50. We consider 5 different values for d , namely,
5, 10, 15, 20, 25. In all these cases, the total dimension of the subspaces Ld is
more than the ambient dimension n = 50. We generate 4d unit-normed points
on each subspace uniformly at random. The corresponding singular values of the
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FIG. 11. Performance of the SSC algorithm for different values of the affinity and density of points

per subspace. In all three figures, the horizontal axis is the density ρ, and the vertical axis is the

normalized maximum affinity maxi �=j aff(Si , Sj )/
√

d .

normalized Laplacian are displayed in Figure 12. As evident from this figure, the
subspace detection property holds, when the dimension of the subspaces is less
than 10 (this corresponds to the last eigenvalues being exactly equal to 0). Beyond
d = 10, the gap is still evident, however, the gap decreases as d increases. In all
these cases, the gap was detectable using the sharpest descent heuristic presented
in Algorithm 1 and, thus, the correct estimates for the number of subspaces were
always found.

FIG. 12. Gaps in the eigenvalues of the normalized Laplacian as a function of subspace dimension.
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FIG. 13. Gaps in the eigenvalues of the normalized Laplacian for different values of the noise

level σ .

5.1.5. Effect of noise on spectral gap. In order to illustrate the effect of noise
on the spectral gap, we sample L = 10 subspaces chosen uniformly at random
from all d = 20-dimensional subspaces in R

50. The total dimension of the sub-
spaces (Ld = 200) is once again more than the ambient dimension n = 50. We
then sample points on each subspace—4d per subspace as before—and perturb
each unit-norm data point xi by a noisy vector chosen independently and uni-
formly at random on the sphere of radius σ (noise level) and then normalize to
have unit norm. The noisy samples are x̃i = xi+zi

‖xi+zi‖ℓ2
, where ‖zi‖ℓ2 = σ . We con-

sider 9 different values for the noise level, namely, 0, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4. The corresponding singular values of the normalized Laplacian are
shown in Figure 13. As evident from this figure, we are in a regime where the sub-
space detection property does not hold even for noiseless data (this corresponds to
the last eigenvalues not being exactly equal to 0). For σ positive, the gap is still
evident but decreases as a function of σ . In all these cases, the gap was detectable
using the sharpest descent heuristic presented in Algorithm 1 and, thus, the number
of subspaces was always correctly inferred.

5.1.6. Comparison with other methods. We now hope to demonstrate that one
of the main advantages of SSC is its ability to identify, in much broader circum-
stances, the correct number of subspaces using the eigen-gap heuristic. Before we
discuss the pertaining numerical results, we quickly review a classical method in
subspace clustering [10]. Start with the rank-r SVD X = U�VT of the data matrix
and use W = VVT as the affinity matrix. (Interestingly, the nuclear-norm heuristic
also results in the same affinity matrix [13, 28]). It was shown in [10] that when
the subspaces are independent, the affinity matrix will be block diagonal and one
can thus perform perfect subspace clustering. When the subspaces are not inde-
pendent, the affinity matrix may occasionally be approximately block diagonal as
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FIG. 14. Gaps in the eigenvalues of the normalized Laplacian for the affinity graphs. (a) Noiseless

setup with d = 10 (the zoom is to see the gap for the classical method more clearly). (b) Noiseless

and noisy setups with d = 30.

observed empirically in some particular computer vision applications. In the pres-
ence of noise, or when the independence assumption is violated, various methods
have been proposed to “clean up” the affinity matrix and put it into block diagonal
form [10, 20, 22–24, 46]. As noted by Vidal in [42], most of these algorithms need
some knowledge of the true data rank and/or dimension of the subspaces. Further-
more, none of these algorithms have been proven to work when the independence
criterion is violated—in contrast with the analysis presented in this paper.

We believe that a major advantage of SSC vis a vis more recent approaches
[13, 28] is that the eigen-gap heuristic is applicable under broader circumstances.
To demonstrate this, we sample L = 10 subspaces chosen uniformly at random
from all 10-dimensional subspaces in R

50. The total dimension Ld = 100 is once
more larger than the ambient dimension n = 50. The eigenvalues of the normalized
Laplacian of the affinity matrix for both SSC and the classical method (W = VVT )
are shown in Figure 14(a). Observe that the gap exists in both plots. However, SSC
demonstrates a wider gap and, therefore, the estimation of the number of subspaces
is more robust to noise. To illustrate this point further, consider Figure 14(b) in
which points are sampled according to the same scheme but with d = 30, and with
noise possibly added just as in Section 5.1.5. Both in the noisy and noiseless cases,
the classical method does not produce a detectable gap, while the gap is detectable
using the simple methodology presented in Algorithm 1.

5.2. Segmentation with outliers. We now turn to outlier detection. For this
purpose, we consider three different setups in which

• d = 5, n = 50,
• d = 5, n = 100,
• d = 5, n = 200.

In each case, we sample L = 2n/d subspaces chosen uniformly at random so that
the total dimension Ld = 2n. For each subspace, we generate 5d points uniformly
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at random so that the total number of data points is Nd = 10n. We add N0 = Nd

outliers chosen uniformly at random on the sphere. Hence, the number of out-
liers is equal to the number of data points. The optimal values of the optimiza-
tion problems (1.2) are plotted in Figure 15. The first Nd values correspond to
the data points and the next N0 values to the outliers. As can be seen in all the
plots, a gap appears in the values of the ℓ1 norm of the optimal solutions. That is,
the optimal value for data points is much smaller than the corresponding optimal
value for outlier points. We have argued that the critical parameter for outlier de-
tection is the ratio d/n. The smaller, the better. As can be seen in Figure 15(a),
the ratio d/n = 1/10 is already small enough for the conjectured threshold of Al-
gorithm 2 to work and detect all outlier points correctly. However, it wrongfully
considers a few data points as outliers. In Figure 15(b), d/n = 1/20 and the con-
jectured threshold already works perfectly, but the proven threshold is still not able
to do outlier detection well. In Figure 15(c), d/n = 1/40, both the conjectured and
proven thresholds can perform perfect outlier detection. (In practice, it is of course
not necessary to use the threshold as a criterion for outlier detection; one can in-
stead use a gap in the optimal values.) It is also worth mentioning that if d is larger,
the optimal value is more concentrated for the data points and, therefore, both the
proven and conjectured threshold would work for smaller ratios of d/n (this is
different from the small values of d above).

6. Background on Geometric Functional Analysis. Our proofs rely heav-
ily on techniques from Geometric Functional Analysis and we now introduce
some basic concepts and results from this field. Most of our exposition is adapted
from [41].

DEFINITION 6.1. The maximal and average values of ‖ · ‖K on the sphere
S n−1 are defined by

b(K) = sup
x∈Sn−1

‖x‖K and M(K) =
∫

Sn−1
‖x‖K dσ(x).

Above, σ is the uniform probability measure on the sphere.

DEFINITION 6.2. The mean width M∗(K) of a symmetric convex body K in
R

n is the expected value of the dual norm over the unit sphere,

M∗(K) = M
(

K
o)=

∫

S n−1
‖y‖Ko dσ(y) =

∫

S n−1
max
z∈K

〈y, z〉dσ(y).

With this in place, we now record some useful results.

LEMMA 6.3. We always have M(K)M(Ko) ≥ 1.
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FIG. 15. Gap in the optimal values with L = 2n/d subspaces. (a) d = 5, n = 50, L = 20. (b) d = 5,
n = 100, L = 40. (c) d = 5, n = 200, L = 80.
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PROOF. Observe that since ‖ · ‖Ko is the dual norm of ‖ · ‖K, ‖x‖2 =
‖x‖K‖x‖Ko and, thus,

1 =
(∫

S n−1

√

‖x‖K‖x‖Ko dσ

)2

≤
∫

S n−1
‖x‖K dσ

∫

S n−1
‖x‖Ko dσ,

where the inequality follows from Cauchy-Schwarz. �

The following theorem deals with concentration properties of norms. According
to [25], these appear in the first pages of [32].

THEOREM 6.4 (Concentration of measure). For each t > 0, we have

σ
{

x ∈ Sn−1 :
∣

∣‖x‖K − M(K)
∣

∣> tM(K)
}

< exp
(

−ct2n

[

M(K)

b(K)

]2)

,

where c > 0 is a universal constant.

The following lemma is a simple modification of a well-known result in Geo-
metric Functional Analysis.

LEMMA 6.5 (Many faces of convex symmetric polytopes). Let P be a sym-

metric polytope with f faces. Then

n

(

M(P)

b(P)

)2

≤ c log(f )

for some positive numerical constant c > 0.

DEFINITION 6.6 (Geometric banach-mazur distance). Let K and L be sym-
metric convex bodies in R

n. The Banach-Mazur distance between K and L, de-
noted by d(K, L), is the least positive value ab ∈ R for which there is a linear
image T (K) of K obeying

b−1
L ⊆ T (K) ⊆ aL.

THEOREM 6.7 (John’s theorem). Let K be a symmetric convex body in R
n

and Bn
2 be the unit ball of R

n. Then d(K,Bn
2 ) ≤ √

n.

Our proofs make use of two theorems concerning volume ratios. The first is this.

LEMMA 6.8 (Urysohn’s inequality). Let K ⊂ R
n be a compact set. Then

(

vol(K)

vol(Bn
2 )

)1/n

≤ M∗(K).
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LEMMA 6.9 ([3], Theorem 2). Let Ko = {z ∈ R
n : |〈ai, z〉| ≤ 1 : i = 1, . . . ,N}

with ‖ai‖ℓ2 = 1. The volume of Ko admits the lower estimate

vol
(

K
o)1/n ≥

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2
√

2√
pr

, p ≥ 2,

1

r
, if 1 ≤ p ≤ 2.

Here, n ≤ N , 1 ≤ p < ∞ and r = ( 1
n

∑N
i=1 ‖ai‖p

ℓ2
)
1/p

.

7. Proofs. To avoid repetition, we define the primal optimization problem
P(y,A) as

min
x

‖x‖ℓ1 subject to Ax = y,

and its dual D(y,A) as

max
ν

〈y, ν〉 subject to
∥

∥AT
ν
∥

∥

ℓ∞ ≤ 1.

We denote the optimal solutions by optsolP(y,A) and optsolD(y,A). Since the
primal is a linear program, strong duality holds, and both the primal and dual have
the same optimal value which we denote by optval(y,A) (the optimal value is set
to infinity when the primal problem is infeasible). Also notice that as discussed in
Section 4, this optimal value is equal to ‖y‖K, where K(A) = conv(±a1, . . . ,±aN )

and Ko(A) = {z :‖AT z‖ℓ∞ ≤ 1}.

7.1. Proof of Theorem 2.5. We first prove that the geometric condition (2.1)
implies the subspace detection property. We begin by establishing a simple variant
of a now classical lemma (e.g., see [8]). Below, we use the notation AS to denote
the submatrix of A with the same rows as A and columns with indices in S ⊂
{1, . . . ,N}.

LEMMA 7.1. Consider a vector y ∈ R
n and a matrix A ∈ R

n×N . If there ex-

ists c obeying y = Ac with support S ⊆ T , and a dual certificate vector ν satisfying

AT
S ν = sgn(cS),

∥

∥AT
T ∩Scν

∥

∥

ℓ∞ ≤ 1,
∥

∥AT
T cν

∥

∥

ℓ∞ < 1,

then all optimal solutions z∗ to P(y,A) obey z∗
T c = 0.

PROOF. Observe that for any optimal solution z∗ of P(y,A), we have
∥

∥z∗∥
∥

ℓ1
=
∥

∥z∗
S

∥

∥

ℓ1
+
∥

∥z∗
T ∩Sc

∥

∥

ℓ1
+
∥

∥z∗
T c

∥

∥

ℓ1

≥ ‖cS‖ℓ1 + 〈

sgn(cS), z∗
S − cS

〉+
∥

∥z∗
T ∩Sc

∥

∥

ℓ1
+
∥

∥z∗
T c

∥

∥

ℓ1

= ‖cS‖ℓ1 + 〈

ν,AS

(

z∗
S − cS

)〉+
∥

∥z∗
T ∩Sc

∥

∥

ℓ1
+
∥

∥z∗
T c

∥

∥

ℓ1

= ‖cS‖ℓ1 +
∥

∥z∗
T ∩Sc

∥

∥

ℓ1
− 〈

ν,AT ∩Scz∗
T ∩Sc

〉+
∥

∥z∗
T c

∥

∥

ℓ1
− 〈

ν,AT cz∗
T c

〉

.
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Now note that
〈

ν,AT ∩Scz∗
T ∩Sc

〉= 〈

AT
T ∩Scν, z∗

T ∩Sc

〉≤
∥

∥AT
T ∩Scν

∥

∥

ℓ∞

∥

∥z∗
T ∩Sc

∥

∥

ℓ1
≤
∥

∥z∗
T ∩Sc

∥

∥

ℓ1
.

In a similar manner, we have 〈ν,AT cz∗
T c〉 ≤ ‖AT

T cν‖ℓ∞‖z∗
T c‖ℓ1 . Hence, using these

two identities, we get
∥

∥z∗∥
∥

ℓ1
≥ ‖c‖ℓ1 + (

1 −
∥

∥AT
T cν

∥

∥

ℓ∞

)∥

∥z∗
T c

∥

∥

ℓ1
.

Since z∗ is an optimal solution, ‖z∗‖ℓ1 ≤ ‖c‖ℓ1 , and plugging this into the last
identity gives

(

1 −
∥

∥AT
T cν

∥

∥

ℓ∞

)∥

∥z∗
T c

∥

∥

ℓ1
≤ 0.

Now since ‖AT
T cν‖ℓ∞ < 1, it follows that ‖z∗

T c‖ℓ1 = 0. �

Consider x
(ℓ)
i = U(ℓ)a

(ℓ)
i , where U(ℓ) ∈ R

n×dℓ is an orthogonal basis for Sℓ and
define

c
(ℓ)
i = optsolP

(

a
(ℓ)
i ,A

(ℓ)
−i

)

.

Letting S be the support of c
(ℓ)
i , define λ

(ℓ)
i as an optimal solution to

λ
(ℓ)
i = arg min

λ̄
(ℓ)
i ∈R

dℓ

∥

∥λ̄
(ℓ)

i

∥

∥

ℓ2

subject to
{(

A
(ℓ)
−i

)T

S
λ̄

(ℓ)

i = sgn
(

c
(ℓ)
i

)

,
∥

∥

(

A
(ℓ)
−i

)T

Sc λ̄
(ℓ)

i

∥

∥

ℓ∞ ≤ 1
}

.

Because c
(ℓ)
i is optimal for the primal problem, the dual problem is feasible by

strong duality and the set above is nonempty. Also, λ
(ℓ)
i is a dual point in the sense

of Definition 2.1, that is, λ
(ℓ)
i = λ(a

(ℓ)
i ,A

(ℓ)
−i ). Introduce

ν
(ℓ)
i = U(ℓ)λ

(ℓ)
i ,

so that the direction of ν
(ℓ)
i is the ith dual direction, that is, ν

(ℓ)
i = ‖λ(ℓ)

i ‖ℓ2v
(ℓ)
i (see

Definition 2.2).
Put T to index those columns of X−i in the same subspace as x

(ℓ)
i (subspace

Sℓ). Using this definition, the subspace detection property holds if we can prove
the existence of vectors c (obeying cT c = 0) and ν as in Lemma 7.1 for problems
P(x

(ℓ)
i ,X−i) of the form

min
z∈RN−1

‖z‖ℓ1 subject to X−iz = x
(ℓ)
i .(7.1)

We set to prove that the vectors c = (

0, . . . ,0, c
(ℓ)
i ,0, . . . ,0

)

, which obeys cT c = 0

and is feasible for (7.1), and ν
(ℓ)
i are indeed as in Lemma 7.1. To do this, we have
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to check that the following conditions are satisfied:
(

X
(ℓ)
−i

)T

S
ν

(ℓ)
i = sgn

(

c
(ℓ)
i

)

,(7.2)

∥

∥

(

X
(ℓ)
−i

)T

Scν
(ℓ)
i

∥

∥

ℓ∞ ≤ 1,(7.3)

and for all x ∈ X \ Xℓ

∣

∣

〈

x, ν
(ℓ)
i

〉∣

∣< 1.(7.4)

Conditions (7.2) and (7.3) are satisfied by definition, since
(

X
(ℓ)
−i

)T

S
ν

(ℓ)
i = (

A
(ℓ)
−i

)T

S
U(ℓ)T U(ℓ)

λ
(ℓ)
i = (

A
(ℓ)
−i

)T

S
λ

(ℓ)
i = sgn

(

c
(ℓ)
i

)

,

and
∥

∥

(

X
(ℓ)
−i

)T

Scν
(ℓ)
i

∥

∥

ℓ∞ =
∥

∥

(

A
(ℓ)
−i

)T

ScU(ℓ)T U(ℓ)
λ

(ℓ)
i

∥

∥

ℓ∞ =
∥

∥

(

A
(ℓ)
−i

)T

Scλ
(ℓ)
i

∥

∥

ℓ∞ ≤ 1.

Therefore, in order to prove that the subspace detection property holds, it remains
to check that for all x ∈ X \ Xℓ we have

∣

∣

〈

x, ν
(ℓ)
i

〉∣

∣=
∣

∣

〈

x,v
(ℓ)
i

〉∣

∣

∥

∥λ
(ℓ)
i

∥

∥

ℓ2
< 1.

By definition of λ
(ℓ)
i , ‖A

(ℓ)
−i

T
λ

(ℓ)
i ‖ℓ∞ ≤ 1 and, therefore, λ

(ℓ)
i ∈ (P

ℓ
−i)

o
, where

(

P
ℓ
−i

)o = {

z :
∥

∥A
(ℓ)
−i

T
z
∥

∥

ℓ∞ ≤ 1
}

.

DEFINITION 7.2 (Circumradius). The circumradius of a convex body P , de-
noted by R(P), is defined as the radius of the smallest ball containing P .

Using this definition and the fact that λ
ℓ
i ∈ (P

ℓ
−i)

o
, we have

∥

∥λ
(ℓ)
i

∥

∥

ℓ2
≤ R

(

P
ℓ
−i

o)= 1

r(P
ℓ
−i)

,

where the equality is a consequence of the lemma below.

LEMMA 7.3 ([6], page 448). For a symmetric convex body P , that is, P =
−P , the following relationship between the inradius of P and circumradius of its

polar P o holds:

r(P)R
(

P
o)= 1.

In summary, it suffices to verify that for all pairs (ℓ, i) (a pair corresponds to a
point x

(ℓ)
i ∈ Xℓ) and all x ∈ X \ Xℓ, we have

∣

∣

〈

x,v
(ℓ)
i

〉∣

∣< r
(

P
ℓ
−i

)

.

Now notice that the latter is precisely the sufficient condition given in the statement
of Theorem 2.5, thereby concluding the proof.
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7.2. Proof of Theorem 2.8. We prove this in two steps.

Step 1: We develop a lower bound about the inradii, namely,

P

{

c(ρℓ)
√

logρℓ√
2dℓ

≤ r
(

P
ℓ
−i

)

for all pairs (ℓ, i)

}

≥ 1 −
L
∑

ℓ=1

Nℓe
−√

ρℓdℓ .(7.5)

Step 2: Notice that μ(Xℓ) = maxk:k �=ℓ ‖X(k)T V(ℓ)‖ℓ∞ . Therefore, we develop
an upper bound about the subspace incoherence, namely,

P

{

∥

∥X(k)T V(ℓ)
∥

∥

ℓ∞ ≤ 4
(

log
[

Nℓ(Nk + 1)
]+ logL + t

)aff(Sk, Sℓ)√
dk

√
dℓ

for all pairs (ℓ, k) with ℓ �= k

}

(7.6)

≥ 1 − 1

L2

∑

k �=ℓ

4

(Nk + 1)Nℓ

e−2t .

Notice that if the condition (2.2) in Theorem 2.8 holds, that is,

max
k �=ℓ

4
√

2
(

log
[

Nℓ(Nk + 1)
]+ logL + t

)aff(Sk, Sℓ)√
dk

< c(ρℓ)
√

logρℓ,

then steps 1 and 2 imply that the deterministic condition in Theorem 2.5 holds
with high probability. In turn, this gives the subspace detection property.

7.2.1. Proof of step 1. Here, we simply make use of a lemma stating that the
inradius of a polytope with vertices chosen uniformly at random from the unit
sphere is lower bounded with high probability.

LEMMA 7.4 ([2]). Assume {Pi}Ni=1 are independent random vectors on S
d−1,

and set K = conv(±P1, . . . ,±PN ). For every δ > 0, there exists a constant C(δ)

such that if (1 + δ)d < N < ded/2, then

P

{

r(K) < min
{

C(δ),1/
√

8
}

√

log(N/d)

d

}

≤ e−d .

Furthermore, there exists a numerical constant δ0 such that for all N > d(1 + δ0)

we have

P

{

r(K) <
1√
8

√

log(N/d)

d

}

≤ e−d .

One can increase the probability with which this lemma holds by introducing
a parameter 0 < β ≤ 1 in the lower bound [15]. A modification of the arguments
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yields (note the smaller bound on the probability of failure)

P

{

r(K) < min
{

C(δ),1/
√

8
}

√

β
log(N/d)

d

}

≤ e−dβN1−β

.

This is where the definition of the constant c(ρ)14 comes in. We set c(ρ) =
min{C(ρ − 1),1/

√
8} and ρ0 = δ0 + 1 where δ0 is as in the above Lemma and

use β = 1
2 . Now since P

ℓ
−i consists of 2(Nℓ − 1) vertices on S

dℓ−1 taken from
the intersection of the unit sphere with the subspace Sℓ of dimension dℓ, applying
Lemma 7.4 and using the union bound establishes (7.5).

7.2.2. Proof of step 2. By definition,
∥

∥X(k)T V(ℓ)
∥

∥

ℓ∞ = max
i=1,...,Nℓ

∥

∥X(k)T v
(ℓ)
i

∥

∥

ℓ∞
(7.7)

= max
i=1,...,Nℓ

∥

∥

∥

∥

A(k)T U(k)T U(ℓ) λ
(ℓ)
i

‖λ(ℓ)
i ‖ℓ2

∥

∥

∥

∥

ℓ∞
.

Now it follows from the uniform distribution of the points on each subspace
that the columns of A(k) are independently and uniformly distributed on the unit
sphere of R

dk . Furthermore, the normalized dual points15
λ

(ℓ)
i /‖λ(ℓ)

i ‖ℓ2 are also
distributed uniformly at random on the unit sphere of R

dℓ . To justify this claim,
assume U is an orthogonal transform on R

dℓ and λ
(ℓ)
i (U) is the dual point corre-

sponding to Uai and UA
(ℓ)
−i . Then

λ
(ℓ)
i (U) = λ

(

Uai,UA
(ℓ)
−i

)= Uλ
(

ai,A
(ℓ)
−i

)= Uλ
(ℓ)
i ,(7.8)

where we have used the fact that λ
(ℓ)
i is the dual variable in the corresponding

optimization problem. On the other hand, we know that

λ
(ℓ)
i (U) = λ

(

Uai,UA
(ℓ)
−i

)∼ λ
(

ai,A
(ℓ)
−i

)= λ
(ℓ)
i ,(7.9)

where X ∼ Y means that the random variables X and Y have the same distribution.
This follows from Uai ∼ ai and UA

(ℓ)
−i ∼ A

(ℓ)
−i since the columns of A(ℓ) are chosen

uniformly at random on the unit sphere. Combining (7.8) and (7.9) implies that for
any orthogonal transformation U, we have

λ
(ℓ)
i ∼ Uλ

(ℓ)
i ,

14Recall that c(ρ) is defined as a constant obeying the following two properties: (i) for all ρ > 1,

c(ρ) > 0; (ii) there is a numerical value ρ0, such that for all ρ ≥ ρ0, one can take c(ρ) = 1√
8

.
15Since the columns of A(ℓ) are independently and uniformly distributed on the unit sphere of R

dℓ ,

λ
(ℓ)
i in Definition 2.1 is uniquely defined with probabilty 1.
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which proves the claim.
Continuing with (7.7), since λ

(ℓ)
i and A(k) are independent, applying Lemma 7.5

below with � = NℓL, N1 = Nk , d1 = dk , and d2 = dℓ gives

∥

∥

∥

∥

A(k)T (U(k)T U(ℓ)) λ
(ℓ)
i

‖λ(ℓ)
i ‖ℓ2

∥

∥

∥

∥

ℓ∞
≤ 4

(

log
[

Nℓ(Nk + 1)
]+ logL + t

)‖U(k)T U(ℓ)‖F√
dk

√
dℓ

,

with probability at least 1 − 4
(Nk+1)Nℓ

2L2 e−2t . Finally, applying the union bound

twice gives (7.6).

LEMMA 7.5. Let A ∈ R
d1×N1 be a matrix with columns sampled uniformly

at random from the unit sphere of R
d1 , λ ∈ R

d2 be a vector sampled uniformly at

random from the unit sphere of R
d2 and independent of A and � ∈ R

d1×d2 be a

deterministic matrix. For any positive constant �, we have

∥

∥AT
�λ

∥

∥

ℓ∞ ≤ 4
(

log(N1 + 1) + log� + t
) ‖�‖F√

d1
√

d2
,

with probability at least 1 − 4
(N1+1)�2 e

−2t .

PROOF. The proof is standard. Without loss of generality, we assume d1 ≤ d2
as the other case is similar. To begin with, the mapping λ �→ ‖�λ‖ℓ2 is Lipschitz
with constant at most σ1 (this is the largest singular value of �). Hence, Borell’s
inequality gives

P

{

‖�λ‖ℓ2 −
√

E‖�λ‖2
ℓ2

≥ ε
}

< e−d2ε
2/(2σ 2

1 ).

Because λ is uniformly distributed on the unit sphere, we have E‖�λ‖2
ℓ2

=
‖�‖2

F /d2. Plugging ε = (b − 1)
‖�‖F√

d2
into the above inequality, where b =

2
√

log(N1 + 1) + log� + t , and using ‖�‖F /σ1 ≥ 1 give

P

(

‖�λ‖ℓ2 > b
‖�‖F√

d2

)

≤ 2

(N1 + 1)2�2 e−2t .

Further, letting a ∈ R
d1 be a representative column of A, a well-known upper

bound on the area of spherical caps gives

P
{∣

∣aT z
∣

∣> ε‖z‖ℓ2

}≤ 2e−d1ε
2/2

in which z is a fixed vector. We use z = �λ, and ε = b/
√

d1. Therefore, for any
column a of A we have

P

{

∣

∣aT
�λ

∣

∣>
b√
d1

‖�λ‖ℓ2

}

≤ 2e−d1ε
2/2 = 2

(N1 + 1)2�2 e−2t .
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Now applying the union bound yields

P

(

∥

∥AT
�λ

∥

∥

ℓ∞ >
b√
d1

‖�λ‖ℓ2

)

≤ 2

(N1 + 1)�2
e−2t .

Plugging in the bound for ‖�λ‖ℓ2 concludes the proof. �

7.3. Proof of Theorem 1.2. We prove this in two steps.

Step 1: We use the lower bound about the inradii used in step 1 of the proof of
Theorem 2.8 with β = 1

2 , namely,

P

{

c(ρ)√
2

√

logρ

d
≤ r

(

P
ℓ
−i

)

for all pairs (ℓ, i)

}

≥ 1 − Ne−√
ρd .

Step 2: We develop an upper bound about subspace incoherence, namely,

P

{

μ(Xℓ) ≤
√

6 logN

n
for all ℓ

}

≥ 1 − 2

N
.

To prove step 2, notice that in the fully random model, the marginal distribution
of a column x is uniform on the unit sphere. Furthermore, since the the points on
each subspace are sampled uniformly at random, the argument in the proof of The-
orem 2.8 asserts that the dual directions are sampled uniformly at random on each
subspace. By what we have just seen, the points v

(ℓ)
i are then also distributed uni-

formly at random on the unit sphere (they are not independent). Last, the random
vectors v

(ℓ)
i and x ∈ X \ Xℓ are independent. The distribution of their inner product

is as if one were fixed, and applying the well-known upper bound on the area of a
spherical cap gives

P

{

∣

∣

〈

x,v
(ℓ)
i

〉∣

∣≥
√

6 logN

n

}

≤ 2

N3 .

Step 2 follows by applying the union bound to at most N2 such pairs.

7.4. Proof of Theorem 2.9. We begin with two lemmas relating the mean and
maximal value of norms with respect to convex polytopes.

LEMMA 7.6. For a symmetric convex body in R
n,

M(K)M(Ko)

b(K)b(Ko)
≥ 1√

n
.

PROOF. Variants of this lemma are well known in geometric functional anal-
ysis. By definition,

‖x‖K ≤ b(K)‖x‖2,

‖x‖Ko ≤ b
(

K
o)‖x‖2,
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and, hence, the property of dual norms allows us to conclude that

1

b(Ko)
‖x‖2 ≤ ‖x‖K ≤ b(K)‖x‖2,

1

b(K)
‖x‖2 ≤ ‖x‖Ko ≤ b

(

K
o)‖x‖2.

However, using Definition 6.6, these relationships imply that d(K,Bn
2 ) =

b(K)b(Ko). Therefore,

M(K)M(Ko)

b(K)b(Ko)
= M(K)M(Ko)

d(K,Bn
2 )

.

Applying John’s lemma and using Lemma 6.3 conclude the proof. �

LEMMA 7.7. For a convex symmetric polytope K(A), A ∈ R
n×N , we have

n

(

M(K)

b(K)

)2

≥ c
n

log(2N)
.

PROOF. By Lemma 7.6, we know that

M(K)M(Ko)

b(K)b(Ko)
≥ 1√

n
⇒ M(K)

b(K)
≥ 1√

n(M(Ko)/b(Ko))
.

However, applying Lemma 6.5 to the polytope Ko, which has at most 2N faces,
gives

n

(

M(Ko)

b(Ko)

)2

≤ C log(2N) ⇒ 1√
n(M(Ko)/b(Ko))

≥ 1√
C log(2N)

.

These two inequalities imply

M(K)

b(K)
≥ 1√

C log(2N)
⇒ n

(

M(K)

b(K)

)2

≥ 1

C

n

log(2N)
.

�

7.4.1. Proof of Theorem 2.9 [part (a)]. The proof is in two steps:

(1) For every inlier point x
(ℓ)
i ,

optval
(

x
(ℓ)
i ,X−i

)≤ 1

r(P
ℓ
−i)

.(7.10)

(2) For every outlier point x
(0)
i , with probability at least 1 − e−cnt2/logN , we

have

(1 − t)
λ(γ )√

e

√
n ≤ optval

(

x
(0)
i ,X−i

)

.
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Proof of step 1.

LEMMA 7.8. Suppose y ∈ Range(A), then

optval(y,A) ≤ ‖y‖ℓ2

r(K(A))
.

PROOF. As stated before,

optval(y,A) = ‖y‖K(A).

Put K(A) = K for short. Using the definition of the max norm and circumradius,

‖y‖K = ‖y‖ℓ2

∥

∥

∥

∥

y

‖y‖ℓ2

∥

∥

∥

∥

K

≤ ‖y‖ℓ2b(K) = ‖y‖ℓ2R
(

K
o)= ‖y‖ℓ2

r(K)
.(7.11)

The last equality follows from the fact that maximal norm on the unit sphere and
the inradius are the inverse of one another (Lemma 7.3). �

Notice that

optval
(

x
(ℓ)
i ,X−i

)≤ optval
(

x
(ℓ)
i ,X

(ℓ)
−i

)

,

and since ‖x
(ℓ)
i ‖ℓ2 = 1, applying the above lemma with y = x

(ℓ)
i and A = X

(ℓ)
−i

gives

optval
(

x
(ℓ)
i ,X

(ℓ)
−i

)≤ 1

r(P
ℓ
−i)

.

Combining these two identities establishes (7.10).

Proof of step 2. We are interested in lower bounding optval(y,A) in which A

is a fixed matrix and y ∈ R
n is chosen uniformly at random on the unit sphere.

Our strategy consists in finding a lower bound in expectation, and then using a
concentration argument to derive a bound that holds with high probability.

LEMMA 7.9 (Lower bound in expectation). Suppose y ∈ R
n is a point chosen

uniformly at random on the unit sphere and A ∈ R
n×N is a matrix with unit-norm

columns. Then

E
{

optval(y,A)
}

>

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1√
e

√

2

π

n√
N

, if 1 ≤ N

n
≤ e,

1√
e

√

2

πe

√

n

log N
n

, if
N

n
≥ e.
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PROOF. Since optval(y,A) = ‖y‖K(A), the expected value is equal to
M∗(Ko) = M(K). Applying Urysohn’s theorem (Theorem 6.8) gives

M∗(
K

o)≥
(

vol(Ko)

vol(Bn
2 )

)1/n

.

It is well known that the volume of the n-dimensional sphere with radius one is
given by

vol
(

Bn
2
)= πn/2

Ŵ((n/2) + 1)
.

The well-known Stirling approximation gives

Ŵ

(

n

2
+ 1

)

≥
√

2πe−n/2
(

n

2

)(n+1)/2

,

and, therefore, the volume obeys

vol
(

Bn
2
)≤

(

√

2πe

n

)

n

.

Note that if {ai}Ni=1 is a family of n-dimensional unit-norm vectors, then for p ≥ 1,
(

1

n

N
∑

i=1

|ai |p
)1/p

≤
(

N

n

)1/p

.

Applying Lemma 6.9 for p ≥ 2 gives

vol
(

K
o)1/n ≥ 2

√
2

√
p(N/n)1/p

.

The right-hand side is maximum when p = 2 log N
n

, which is larger than 2 as long
as N

n
≥ e. When N

n
< e, we shall use p = 2. Plugging in this value of p in the

bound of Lemma 6.9, we conclude that

vol
(

K
o)1/n ≥

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

2
√

N
n

, if 1 ≤ N

n
≤ e,

2√
e

1
√

log N
n

, if
N

n
≥ e.

Finally, this idenitity together with the approximation of the volume of the sphere
conclude the proof. �

LEMMA 7.10 (Concentration around mean). In the setup of Lemma 7.9,

optval(y,A) ≥ (1 − t)E
{

optval(y,A)
}

,

with probability at least 1 − e−cnt2/log(2N).

PROOF. The proof follows from Theorem 6.4 and applying Lemma 7.7. �
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These two lemmas (Lower bound in expected value and Concentration around
mean) combined with the union bound give the first part of Theorem 2.9.

7.4.2. Proof of Theorem 2.9 part (b). This part follows from the combination
of the proof of Theorem 2.9 part (a) with the bound given for the inradius presented
in the proof of Theorem 2.8.

7.5. Proof of Theorem 1.3. The proof follows Theorem 2.9 with t a small
number. Here we use t = 1 − 1√

2
.
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