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A GEOMETRIC APPROACH TO

DYNAMICAL MODEL ORDER REDUCTION∗

FLORIAN FEPPON† AND PIERRE F. J. LERMUSIAUX†

Abstract. Any model order reduced dynamical system that evolves a modal decomposition to
approximate the discretized solution of a stochastic PDE can be related to a vector field tangent
to the manifold of fixed rank matrices. The dynamically orthogonal (DO) approximation is the
canonical reduced-order model for which the corresponding vector field is the orthogonal projection
of the original system dynamics onto the tangent spaces of this manifold. The embedded geometry of
the fixed rank matrix manifold is thoroughly analyzed. The curvature of the manifold is characterized
and related to the smallest singular value through the study of the Weingarten map. Differentiability
results for the orthogonal projection onto embedded manifolds are reviewed and used to derive
an explicit dynamical system for tracking the truncated singular value decomposition (SVD) of a
time-dependent matrix. It is demonstrated that the error made by the DO approximation remains
controlled under the minimal condition that the original solution stays close to the low rank manifold,
which translates into an explicit dependence of this error on the gap between singular values. The
DO approximation is also justified as the dynamical system that applies instantaneously the SVD
truncation to optimally constrain the rank of the reduced solution. Riemannian matrix optimization
is investigated in this extrinsic framework to provide algorithms that adaptively update the best low
rank approximation of a smoothly varying matrix. The related gradient flow provides a dynamical
system that converges to the truncated SVD of an input matrix for almost every initial datum.

Key words. model order reduction, fixed rank matrix manifold, low rank approximation, singu-
lar value decomposition, orthogonal projection, curvature, Weingarten map, dynamically orthogonal
approximation, Riemannian matrix optimization
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1. Introduction. Finding efficient model order reduction methods is an issue
commonly encountered in a wide variety of domains involving intensive computa-
tions and expensive high-fidelity simulations [66, 61, 38, 13]. Such domains include
uncertainty quantification [25, 46, 69, 72], dynamical systems analysis [30, 9, 80], elec-
trical engineering [24, 8], mechanical engineering [54], ocean and weather predictions
[43, 49, 12, 62], chemistry [55], and biology [40], to name a few. The computational
costs and challenges arise from the complexity of the mathematical models as well
as from the needs of representing variations of parameter values and the dominant
uncertainties involved. For example, to quantify uncertainties of dynamical system
fields, one often needs to solve stochastic PDEs,

(1) ∂tu = L (t,u;ω) ,

where t is time, u the uncertain dynamical fields, L a differential operator, and
ω a random event. For deterministic but parametric dynamical systems, ω may
represent a large set of possible parameter values that need to be accounted for by
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the model order reduction. Generally, after both spatial and stochastic/parametric
event discretization of the PDE (1), or, more directly, if the focus is on solving a
complex system of ODEs, one is interested in the numerical solution of a large system
of ODEs of the form

(2) Ṙ = L(t,R),

where L is an operator acting on the space of l-by-m matrices R. In the case of a
direct Monte Carlo approach for the resolution of the stochastic PDE (1), L is thought
of as being the discretization of the differential operator L by using l spatial nodes
and m Monte Carlo realizations or parameter values. Accurate quantification of the
statistical/parametric properties of the original solution u often requires solving such a
system (2) with both a high spatial resolution, l, and a high number of realizations, m.
Hence, solving (2) directly with a Monte Carlo approach becomes quickly intractable
for realistic, real-time applications such as ocean and weather predictions [57, 44] or
real-time control [39, 47].

A method to address this challenge is to assume the existence of an approximation
uDO of the solution u onto a finite number of r spatial modes, ui(t, x), and stochastic
coefficients, ζi(t, ω) (both assumed here to be time-dependent [44, 64]),

(3) u(t,x;ω) ≃ uDO =

r
∑

i=1

ζi(t, ω)ui(t,x),

and look for a dynamical system that would most accurately govern the evolution of
these dominant modes and coefficients. The optimal approximation (in the sense that
the L2 error E[||u−uDO||2]1/2 is minimized) is achieved by the Karhunen–Loève (KL)
decomposition [48, 30], whose first r modes yield an optimal orthonormal basis (ui).
Many methods, such as polynomial chaos expansions [82], Fourier decomposition [79],
or proper orthogonal decomposition [30], rely on the choice of a predefined, time-
independent orthonormal basis either for the modes, (ui), or the coefficients, (ζi),
and obtain equations for the respective unknown coefficients or modes by Galerkin
projection [58]. However, the use of modes and coefficients that are simultaneously
dynamic has been shown to be efficient [44, 45]. Dynamically orthogonal (DO) field
equations [64, 65] were thus derived to evolve adaptively this decomposition for a
general differential operator L and allowed to obtain efficient simulations of stochastic
Navier–Stokes equations [73].

At the discrete level, the decomposition (3) is written as R ≃ R = UZT , where R
is a rank-r approximation of the full rank matrix R, decomposed as the product of an
l-by-r matrix U containing the discretization of the basis functions, (ui), and an m-
by-r matrix Z containing the realizations of the stochastic coefficients, (ζi). It is well
known that such approximation is optimal (in the Frobenius norm) when R = UZT

is obtained by truncating the singular value decomposition (SVD), i.e., by selecting
U to be the singular vectors associated with the r largest singular values of R and
setting Z = R

TU [32, 31]. In 2007, Koch and Lubich [37] proposed a method inspired
by the Dirac–Frenkel variational principle in quantum physics, to evolve dynamically
a rank-r matrix R = UZT that approximates the full dynamical system (2). The
main principle of the method lies in the intuition that one can update optimally
the low rank approximation R by projecting L(t, R) onto the tangent space of the
manifold constituted by low rank matrices. Recently, Musharbash, Nobile, and Zhou
[52] noticed the parallel with the DO method and applied the results obtained in [37] to
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512 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

(a) R(ρ, πρ, φ). (b) R(ρ, φ, ρ− φ).

Fig. 1. Two subsurfaces of the rank-1 manifold M of 2-by-2 matrices.

analyze the error committed by the DO approximation for a stochastic heat equation.
In fact, in the same way the KL expansion is the continuous analogue of the SVD,
the discretization of the DO decomposition [64] is strictly equivalent to the dynamical
low rank approximation of Koch and Lubich [37] when the discretization reduces to
simulate the matrix dynamical system (2) of m realizations spatially resolved with l
nodes.

Simultaneously, new approaches have emerged since the 1990s in optimization
onto matrix sets [18, 2]. The application of Riemannian geometry to manifolds of ma-
trices has allowed the development of new optimization algorithms, which are evolving
orthogonality constraints geometrically rather than using more classical techniques,
such as Lagrange multiplier methods [18]. Matrix dynamical systems that contin-
uously perform matrix operations, such as inversion, eigendecompositions or SVDs,
steepest descents, and gradient optimization, have thus been proposed [10, 14, 70].
These continuous-time systems were extended and applied to adaptive uncertainty
predictions, learning of the dominant subspace, and data assimilation [41, 42].

The purpose of this article is to extend the analysis and the understanding of the
DO method in the matrix framework as initiated by [37] and in the above works, by
furthering its relation to the SVD and its geometric interpretation as a constrained
dynamics on the manifold M of fixed rank matrices. In the vein of [18, 2, 50], this
article utilizes the point of view of differential geometry. To provide a visual intuition,
a 3D projection of two 2D subsurfaces of the manifold M of rank-one 2-by-2 matrices
is visible in Figure 1. This figure has been obtained by using the parameterization

R(ρ, θ, φ) = ρ

(

sin(θ) sin(φ) sin(θ) cos(φ)
cos(θ) sin(φ) cos(θ) cos(φ)

)

, ρ > 0, θ ∈ [0, 2π], φ ∈ [0, 2π],

on M and projecting orthogonally two subsurfaces by plotting the first three elements
R11, R12, and R21. Since the multiplication of singular values by a nonzero constant
does not affect the rank of a matrix, M ⊂ M2,2 is a cone, which is consistent with
the increasing of curvature visible in Figure 1a near the origin. More generally, M

is the union of r-dimensional affine subspaces ofMl,m supported by the manifold of
strictly lower rank matrices. It will actually be proved in section 4 that the curvature
of M is inversely proportional to the lowest singular value, which diverges as matrices
approach a rank strictly less than r. Hence M can be understood either as a collection
of cones (Figure 1b) or as a multidimensional spiral (Figure 1a). Geometrically, a
dynamical system (2) can be seen as a time-dependent vector field L that assigns
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the velocity L(t,R) at time t at each point R of the ambient space Ml,m of l-by-m
matrices (Figure 2a). Similarly, any rank-r model order reduction can be viewed as a
vector field L that must be everywhere tangent to the manifold M of rank-r matrices.
The corresponding dynamical system is

(4) Ṙ = L(t, R) ∈ T (R),

where T (R) denotes the tangent space of M at R.
From this point of view, “combing the hair” formed by the original vector field L

on the manifold M , by setting L(t, R) to the time-dependent orthogonal projection
of each vector X = L(t, R) onto each tangent space T (R), is nothing less than the DO
approximation (Figure 2b). As such, the DO-reduced dynamical system is optimal in
the sense that the resulting vector field L is the best dynamic tangent approximation
of L at every point R ∈M .

Analyzing the error committed by the DO approximation can be done by under-
standing how the best rank-r approximation of the solution R evolves [37, 52]. This
requires the time derivative of the truncated SVD as a function of Ṙ. Nevertheless, to
the best of our knowledge, no explicit expression of the dynamical system satisfied by
the best low rank approximation has been obtained in the literature. To address this
gap, this article brings forward the following novelties. First, a more exhaustive study
of the extrinsic geometry of the fixed rank manifold M is provided. This includes
the characterization and derivation of principal curvatures and of their direct relation
to singular values. Second, the geometric interpretation of the truncated SVD as an
orthogonal projection onto M is utilized, so as to apply existing results relating the
differential of this projection to the curvature of the manifold. It will be demonstrated
in particular (Theorem 25) that the truncated SVD is differentiable so long as the
singular values of order r and r + 1 remain distinct, even if multiple singular values
of lower order occur. As a result, an explicit dynamical system is obtained for the
evolution of the best low rank approximation of the solution R(t) of (2). Finally, this
derivation also allows a sharpening of the initial error analysis of [37].

The article is organized as follows: the Riemannian geometric setting is specified
in section 2. Parameterizations of M and of its tangent spaces are first recalled.
Novel geometric characteristics such as covariant derivative and geodesic equations are
then derived. In section 3, classical results on the differentiability of the orthogonal
projection onto smooth embedded submanifolds [26] are reviewed and reformulated
in a framework that avoids the use of tensor notation. Curvatures with respect to a
normal direction are defined, and their relation to the differential of the projection
map is stated in Theorem 19. These results are applied in section 4, where the
curvature of the fixed rank manifold M is characterized and the new formula for the
differential of the truncated SVD is provided. The DO approximation is studied in
section 5. Two justifications of the “reasonable” character of this approximation are
given. First, it is shown that this reduced-order model corresponds to the dynamical
system that applies the SVD truncation at all instants. The error analysis performed
by [37] is then extended and improved using the knowledge of the differential of
the truncated SVD. The error committed by the DO approximation is shown to be
controlled over large integration times, provided that the original solution remains
close to the low rank manifold M , in the sense that it remains far from the skeleton
of M . This geometric condition can be expressed as an explicit dependence of the
error on the gaps between singular values of order r and r + 1. Lastly, Riemannian
matrix optimization on the fixed rank manifold equipped with the extrinsic geometry
is considered in section 6 as an alternative approach for tracking the truncated SVD.
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514 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

(a) Dynamical systems as vector fields L in the ambient space Ml,m (in
red), or L tangent to M (in blue). The DO approximation sets L to be
the projection of L tangent to M .

(b) Geometric concepts of interest: orthogonal projection X = ΠT (R)X

of an ambient vector X ∈ Ml,m onto the tangent space T (R) of M at
R. Orthogonal projection ΠM (R) of the point R onto M . Normal space
N (R). Geodesic curve expR(tX) starting from R in the direction X.

Fig. 2. Vector fields on the fixed rank manifold M . Schematic adapted from a public domain

file available in [78].
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A novel dynamical system is proposed to compute the best low rank approximation,
which is shown to be convergent for almost any initial data.

Notation. Important notation used in this paper is summarized below.

Ml,m Space of l-by-m real matrices
M∗

m,r Space of m-by-r matrices that have full rank
rank(R) Rank of a matrix R ∈Ml,m

M = {R ∈Ml,m|rank(R) = r} Fixed rank matrix manifold
Or = {P ∈Mr,r | PTP = I} Group of r-by-r orthogonal matrices
Stl,r = {U ∈Ml,r | UTU = I} Stiefel manifold
R = UZT Point R ∈M with U ∈ Stl,r and Z ∈M∗

m,r

T (R) Tangent space at R ∈M

X ∈ T (R) Tangent vector X at R = UZT

H(U,Z) Horizontal space at R = UZT

(XU , XZ) ∈ H(U,Z) X = XUZ
T + UXT

Z ∈ T (R) with
XU ∈Ml,r, XZ ∈Mm,r, and UTXU = 0

ΠT (R) Orthogonal projection onto the plane T (R)
Sk(M ) Skeleton of M

ΠM Orthogonal projection onto M (defined onMl,m\Sk(M ))
I Identity mapping
AT Transpose of a square matrix A
〈A,B〉 = Tr(ATB) Frobenius matrix scalar product
||A|| = Tr(ATA)1/2 Frobenius norm
σ1(A) ≥ · · · ≥ σrank(A)(A) Nonzero singular values of A ∈Ml,m

Ṙ = dR/dt Time derivative of a trajectory R(t)
DXf(R) Differential of a function f in direction X
DΠT (R)(X) · Y Differential of the projection operator ΠT (R) applied to Y

The differential of a smooth function f at the point R ∈ Ml,m (respectively,
R ∈M ) in the direction X ∈Ml,m (respectively, X ∈ T (R)) is denoted DXf(R):

(5) DXf(R) =
d

dt
f(R(t))

∣

∣

∣

∣

t=0

= lim
∆t→0

f(R(t+∆t))− f(R(t))

∆t
,

where R(t) is a curve ofMl,m (respectively, M ) such that R(0) = R and Ṙ(0) = X.
The differential of the orthogonal projection operator R 7→ ΠT (R) at R ∈M , in the
direction X ∈ T (R) and applied to Y ∈Ml,m, is denoted DΠT (R)(X) · Y :

(6) DΠT (R)(X) · Y =

[

d

dt
ΠT (R(t))

∣

∣

∣

∣

t=0

]

(Y ) =

[

lim
∆t→0

ΠT (R(t+∆t)) −ΠT (R(t))

∆t

]

(Y ),

where R(t) is a curve drawn on M such that R(0) = R and Ṙ(0) = X.

2. Riemannian setup: Parameterizations, tangent space, geodesics.

This section establishes the geometric framework of low rank approximation by re-
viewing and unifying results sparsely available in [37, 64, 52] and by providing new
expressions for classical geometric characteristics, namely geodesics and covariant
derivative. It is not assumed that the reader is accustomed to differential geometry:
necessary definitions and properties are recalled. Several concepts of this section are
illustrated in Figure 2b.

Definition 1. The manifold of l-by-m matrices of rank r is denoted by M :

M = {R ∈Ml,m|rank(R) = r}.
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Remark 2. The fact that M is a manifold is a consequence of the constant rank
theorem [71, Vol. 1, Chap. 2, Thm. 10] whose assumptions (the map (U,Z) 7→ UZT

from Stl,r ×M∗
m,r to M is a submersion with differential of constant rank) translate

into the requirement that the candidate tangent spaces have constant dimension, as
found later in Proposition 4. Detailed proofs are available in [71, Vol. 1, Chap. 2,
Exercise 34] or [75, Prop. 2.1].

The following lemma [60] fixes the parameterization of M by conveniently repre-
senting its elements R in terms of mode and coefficient matrices, U and Z, respectively.

Lemma 3. Any matrix R ∈M can be decomposed as R = UZT , where U ∈ Stl,r
and Z ∈ M∗

m,r, i.e., UTU = I and rank(Z) = r, respectively. Furthermore, this
decomposition is unique modulo a rotation matrix P ∈ Or, namely, if U1, U2 ∈ Ml,r,
Z1, Z2 ∈Mm,r, and UT

1 U1 = UT
2 U2 = I, then

(7) U1Z
T
1 = U2Z

T
2 ⇔ ∃P ∈ Or, U1 = U2P, and Z1 = Z2P.

In the following, the statement “let UZT ∈ M ” always implicitly assumes U ∈
Ml,r, Z ∈ Mm,r, U

TU = I, and rank(Z) = r. Other parameterizations of M are
possible and give equivalent results [50].

The tangent space T (UZT ) at a point R = UZT is the set of all possible vectors
tangent to smooth curves R(t) = U(t)Z(t)T drawn on the manifold M . Therefore,
such a tangent vector at R(0) = UZT is of the form Ṙ = U̇ZT + UŻT , where U̇
and Ż are the time derivatives of the matrices U(t) and Z(t) at time t = 0. In the
following, the notation XU , XZ , and X = XUZ

T + UXT
Z will be used to denote

the tangent directions U̇ , Ż, and Ṙ for the respective matrices U , Z, and R. The
orthogonality condition that UTU = I must hold for all times implies that XU must
satisfy U̇TU + UT U̇ = XT

UU + UTXU = 0.
Nevertheless, this is not sufficient to parameterize uniquely tangent vectors X

from the displacements XU and XZ for U and Z: two different couples (XU , XZ) 6=
(X ′

U , X
′
Z) satisfying XT

UU + UTXU = X
′T
U U + UTX ′

U = 0 may exist for a single

tangent vector X = XUZ
T + UXT

Z = X ′
UZ

T + UX
′T
Z . Indeed, rotations U ← UP

of the columns of the mode matrix U do not change the subspace span(ui) sup-
porting the modal decomposition (3), and hence can be captured by updating the
values of the coefficients (ζi) contained in the matrix Z with the same rotation
Z ← ZP . This translates infinitesimally in the tangent space by the invariance
of tangent vectors X = XUZ

T + UXT
Z under the transformations XU ← XU + UΩ

and XZ ← XZ + ZΩ for any skew-symmetric matrix Ω = −ΩT . This can easily be
seen by inserting the transformations into the expression for X or by differentiating
the relation UZT = (UP )(ZP )T with Ṗ = ΩP . A unique parameterization of the
tangent space can be obtained by fixing this infinitesimal rotation Ω, for example, by
adding the condition that the reduced subspace spanned by the columns of U must
dynamically evolve orthogonally to itself, in other words, by requiring UTXU = 0.
This gauge condition has thus been called the “dynamically orthogonal” condition by
[64] and is the origin of the name “dynamically orthogonal approximation,” as further
investigated in section 5.

Proposition 4. The tangent space of M at R = UZT ∈M is the set

(8) T (UZT ) = {XUZ
T + UXT

Z | XU ∈Ml,r, XZ ∈Mm,r, U
TXU +XT

UU = 0}.
T (UZT ) is uniquely parameterized by the horizontal space

(9) H(U,Z) = {(XU , XZ) ∈Ml,r ×Mm,r | UTXU = 0};
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that is, for any tangent vector X ∈ T (UZT ), there exists a unique (XU , XZ) ∈
H(U,Z) such that X = XUZ

T + UXT
Z . As a consequence, M is a smooth manifold of

dimension dim(H(U,Z)) = (l +m)r − r2.

Proof. (See also [37, 2].) One can always write a tangent vector X as

X = UŻT + U̇ZT

= U(ŻT + UT U̇ZT ) + ((I − UUT )U̇)ZT = XUZ
T + UXT

Z

for some U̇ ∈ Stl,r and Ż ∈Mm,r with XU = (I−UUT )U̇ZT satisfying XT
UU = 0 and

XT
Z = ŻT + UT U̇ZT . This implies T (UZT ) = {XUZ

T + UXT
Z |(XU , XZ) ∈ H(U,Z)}.

Furthermore, if X = UXT
Z +XUZ

T with UTXU = 0, then the relations XZ = XTU
and XU = (I − UUT )XZ(ZTZ)−1 show that (XU , XZ) ∈ H(U,Z) is defined uniquely
from X.

Remark 5. The denomination horizontal space for the set H(U,Z) (9) refers to the
definition of a nonambiguous representation of the tangent space T (UZT ) (8). This
notion is developed rigorously in the theory of quotient manifolds, e.g., [50, 18].

In the following, the notation X = (XU , XZ) is used equivalently to denote a tan-
gent vector X = XUZ

T + UXT
Z ∈ T (UZT ), where UTXU = 0 is implicitly assumed.

A metric is needed to define how distances are measured on the manifold by
prescribing a smoothly varying scalar product on each tangent space. In [50] and
other works in matrix optimization, e.g., [4, 75, 67], one uses the metric induced by the
parameterization of the manifold M : the norm of a tangent vector (XU , XZ) ∈ H(U,Z)

is defined to be ||(XU , XZ)||2 = ||XU ||2Stl,r + ||XZ ||2Mm,r
, where || ||Stl,r is a canonical

norm on the Stiefel manifold (see [18]) and || ||Mm,r
is the Frobenius norm onMm,r.

In this work, one is rather interested in the metric inherited from the ambient full space
Ml,m, since it is the metric used to estimate the distance from a matrix R ∈ Ml,m

to its best r-rank approximation, namely the error committed by the truncated SVD.

Definition 6. At each point UZT ∈M , the metric g on M is the scalar product
acting on the tangent space T (UZT ) that is inherited from the scalar product ofMl,m:

(10)
g((XU , XZ), (YU , YZ)) = Tr((XUZ

T + UXT
Z )

T (YUZ
T + UY T

Z ))

= Tr(ZTZXT
UYU +XT

ZYZ).

A main object of this paper is the orthogonal projection ΠT (R) onto the tangent

space T (R) at a point R on M . This map projects displacements X = Ṙ ∈Ml,m of a
matrix R of the ambient spaceMl,m to the tangent directions X = ΠT (R)X ∈ T (R).

Proposition 7. At every point UZT ∈ M , the orthogonal projection ΠT (UZT )

onto the tangent space T (UZT ) is the application

(11)
ΠT (UZT ) : Ml,m → H(U,Z),

X 7→ ((I − UUT )XZ(ZTZ)−1,XTU).

Proof. (See also [37].) ΠT (R)X is obtained as the unique minimizer of the convex

functional J(XU , XZ) =
1
2 ||X−XUZ

T −UXT
Z ||2 on the space H(U,Z). The minimizer

(XU , XZ) is characterized by the vanishing of the gradient of J :

∀∆ ∈Ml,r, ∆
TU = 0⇒ ∂J

∂XU
·∆ = −〈X−XUZ

T − UXT
Z ,∆ZT 〉 = 0,
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∀∆ ∈Mm,r,
∂J

∂XZ
·∆ = −〈X−XUZ

T − UXT
Z , U∆T 〉 = 0,

yielding, respectively, XU = (I − UUT )XZ(ZTZ)−1 and XZ = X
TU .

The orthogonal complement of the tangent space T (R) is obtained from the iden-
tity (I −ΠT (UZT )) · X = (I − UUT )X(I − Z(ZTZ)−1ZT ).

Definition 8. The normal space N (R) of M at R = UZT is defined as the
orthogonal complement to the tangent space T (R). For the fixed rank manifold M ,

(12)
N (R) = {N ∈Ml,m|(I − UUT )N(I − Z(ZTZ)−1ZT ) = N}

= {N ∈Ml,m | UTN = 0 and NZ = 0}.

In model order reduction, a matrix R = UZT ∈ M is usually a low rank-r
approximation of a full rank matrix R ∈Ml,m. The following proposition shows that
the normal space at R, N (R), can be understood as the set of all possible completions
of the approximation (3).

Proposition 9. Let N be a given normal vector N ∈ N (R) at R = UZT ∈M ,
and denote k = rank(N). Then there exist an orthonormal basis of vectors (ui)1≤i≤l

in R
l, an orthonormal basis (vi)1≤i≤m of R

m, and r + k nonzero singular values
(σi)1≤i≤r+k such that

(13) UZT =
r

∑

i=1

σiuiv
T
i and N =

k
∑

i=1

σr+iur+iv
T
r+i.

Proof. Consider N = UNΘV T
N the SVD of N [31]. Since UTN = 0, r columns of

UN are spanned by U and associated with zero singular values of N ; therefore ui is
obtained from the columns of U for 1 ≤ i ≤ r and from the left singular vectors of N
associated with nonzero singular values for r + 1 ≤ i ≤ r + k, k ≥ 0. The vectors vi
and vr+j are obtained similarly. The singular values σi are obtained by union of the
respective r and k nonzero singular values of Z and N .

In differential geometry, one distinguishes the geometric properties that are in-
trinsic, i.e., that depend only on the metric g defined on the manifold, from those
that are extrinsic, i.e., that depend on the ambient space in which the manifold M

is defined. The following proposition recalls the link between the extrinsic projection
ΠT (R) and the intrinsic notion of derivation onto a manifold. For embedded mani-
folds, i.e., defined as subsets of an ambient space, the covariant derivative at R ∈M

is obtained by projecting the usual derivative onto the tangent space T (R), and the
Christoffel symbol corresponds to the normal component that has been removed [18].

Proposition 10. Let X and Y be two tangent vector fields defined on a neigh-
borhood of R ∈M . The covariant derivative ∇XY with respect to the metric inherited
from the ambient space is the projection of DXY onto the tangent space T (R):

∇XY = ΠT (R)(DXY ).

The Christoffel symbol Γ(X,Y ) is defined by the relationship ∇XY = DXY +Γ(X,Y )
and is characterized by the formula

Γ(X,Y ) = −(I −ΠT (R))DXY = −DΠT (R)(X) · Y.

The Christoffel symbol is symmetric: Γ(X,Y ) = Γ(Y,X).
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Proof. For the proof, see [71, Vol. 3, Chap. 1].

Remark 11. An important feature of this definition is that the Christoffel symbol
Γ(X,Y ) = −DΠT (R)(X) · Y depends only on the projection map ΠT at the point R
and not on neighboring values of the tangent vectors X,Y , which is a priori not clear
from the equality Γ(X,Y ) = −(I − ΠT (R))DXY . The Christoffel symbol Γ(X,Y ) is
computed explicitly for the matrix manifold M in Remark 23.

The covariant derivative allows us to obtain equations for the geodesics of the
manifold M . These geodesics (Figure 2b) are the shortest paths among all possible
smooth curves drawn on M joining two points sufficiently close. Mathematically,
they are curves R(t) = U(t)Z(t) characterized by a velocity Ṙ = U̇ZT +UŻT that is
stationary under the covariant derivative [71], i.e., ∇ṘṘ = 0. Since DṘṘ = R̈, this
leads to

(14) ∇ṘṘ = R̈−DΠT (R)(Ṙ) · Ṙ = 0.

Theorem 12. Consider X = (XU , XZ) ∈ H(U,Z) and Y = (YU , YZ) ∈ H(U,Z)

two tangent vector fields. The covariant derivative ∇XY on M is given by

(15) ∇XY = (DXYU +UXT
UYU + (XUY

T
Z + YUX

T
Z )Z(ZTZ)−1, DXYZ −ZY T

U XU ).

Therefore, geodesic equations on M are given by

(16)

{

Ü + UU̇T U̇ + 2U̇ ŻTZ(ZTZ)−1 = 0,

Z̈ − ZU̇T U̇ = 0.

Proof. Writing X = XUZ
T + UXT

Z and Y = YUZ
T + UY T

Z , one obtains

DXY = DXYUZ
T + YUX

T
Z +XUY

T
Z + UDXY T

Z

= DXYUZ
T + UDXY T

Z +XUY
T
Z + YUX

T
Z .

Applying the projection ΠT (UZT ) using (11), i.e.,

∇XY = Π(U,Z)(DXY ) = ((I − UUT )DXY Z(ZTZ)−1, DXY TU),

yields in the coordinates of the horizontal space

∇XY = ((I −UUT )DX(YU ) + (XUY
T
Z + YUX

T
Z )Z(ZTZ)−1, DX(YZ) +ZDX(Y T

U )U).

Equation (15) is obtained by differentiating the constraint UTYU = 0 along the di-
rection X, i.e., XT

UYU + UTDXYU = 0, and replacing accordingly UTDXYU into the
above expression. Since D(U̇,Ż)(U̇) = Ü and D(U̇,Ż)(Ż) = Z̈, ∇(U̇,Ż)(U̇ , Ż) = 0 yields

equations (16).

Remark 13. Physically, a curve R(t) = U(t)Z(t)T describes a geodesic on M if
and only if its acceleration lies in the normal space at all instants (14) [18, 71].

Geodesics allow us to define the exponential map [71], which indicates how to
walk on the manifold from a point R ∈M along a straight direction X ∈ T (R).

Definition 14. The exponential map expUZT at R = UZT ∈M is the function

(17)
expUZT : T (UZT ) → M ,

X 7→ R(1),
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where R(1) = U(1)Z(1)T is the value at time 1 of the solution of the geodesic equation
(16) with initial conditions U(0)Z(0)T = R and (U̇(0), Ż(0)) = X. The value of the
velocity of the point R(1) = expUZT (X),

(18) τRR(1)X = U̇(1)Z(1)T + U(1)Ż(1)T ,

is called the parallel transport of X from R to R(1).

3. Curvature and differentiability of the orthogonal projection onto

smooth embedded manifolds. Differentiability results for the orthogonal projec-
tion onto smooth embedded manifolds, as presented with tensor notation in [7], are
now centralized and adapted to the present study. The main motivation is that the
SVD truncation (section 4) is an example of such orthogonal projection in the partic-
ular case of the fixed rank manifold. Hence, general geometric differentiability results
for the projections will transpose directly into a formula for the differential of the
application mapping a matrix to its best low rank approximation. The same analysis
can be applied to other matrix manifolds to obtain the differential of other algebraic
operations, and can even be generalized to non-Euclidean ambient spaces, which is
the object of [23]. In this section, the space of l-by-m matricesMl,m is replaced with
a general finite dimensional Euclidean space E, and the fixed rank manifold with any
given smooth embedded manifold M ⊂ E.

Definition 15. Let M be a smooth manifold embedded in an Euclidean space E.
The orthogonal projection of a point R onto M is defined whenever there is a unique
point ΠM (R) ∈M minimizing the Euclidean distance from R to M , i.e.,

||R−ΠM (R)|| = inf
R∈M

||R−R||.

A fundamental property of the orthogonal projection is that the vector R−R is
normal to M for the point R = ΠM (R), as geometrically illustrated in Figure 2b.

Proposition 16. Whenever ΠM (R) is defined, the residual R−ΠM (R) ∈ N (R)
must be normal to M at R, namely

(19) ΠT (ΠM (R))(R−ΠM (R)) = 0.

Proof. For any tangent vector X ∈ T (R), consider a curve R(t) drawn on M

such that R(0) = R and Ṙ(0) = X where R is minimizing J(R) = 1
2 ||R−R||2. Then

the stationarity condition d
dt

∣

∣

t=0
J(R(t)) = −〈R−R,X〉 = 0 states precisely (19).

The following proposition, also used in the proofs of [37], provides an equation
for the differential of ΠM , which will be solved by the study of the curvature of M .

Proposition 17. Suppose the projection ΠM is defined and differentiable at R.
Then the differential DXΠM (R) of ΠM at the point R in the direction X ∈ E satisfies

(20) DXΠM (R) = ΠT (ΠM (R))(X) + DΠT (ΠM (R))(DXΠM (R)) · (R−ΠM (R)).

Proof. Differentiating (19) along the direction X yields

DΠT (ΠM (R))(DΠM (R)(X)) · (R−ΠM (R)) + ΠT (ΠM (R))(X−DXΠM (R)) = 0.

Since ΠM (R) ∈M for any R, the differential DXΠM (R) is a tangent vector, and the
result follows from the relation ΠT (ΠM (R))(DXΠM (R)) = DXΠM (R).
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Let R = ΠM (R) be the projection of the point R on M , and let N = R − R
be the corresponding normal residual vector. Solving (20) for the differential X =
DXΠM (R) requires inverting the linear operator I − LR(N), where LR(N) is the
map X 7→ DΠT (R)(X) · N . The map LR(N) can be interpreted as a correction
accounting for the curvature of M , in particular, it would be zero if M were a
“flat” vector subspace. In fact, LR(N) is nothing other than the Weingarten map,
at the origin of the definition of principal curvatures. For embedded hypersurface,
this application maps tangent vectors X to the tangent variations −DXN of the
unit normal vector field N , and the eigenvalues and eigenvectors of this symmetric
endomorphism define the principal curvatures and directions of the hypersurface [71,
Vol. 2]. For general smooth embedded submanifolds, a Weingarten map is defined for
every possible normal direction [68, 7, 3, 5].

Definition 18 (Weingarten map). For any point R ∈ M , with tangent and
normal vector fields X,Y ∈ T (R), and N ∈ N (R) defined on a neighborhood of R,
the following relation, called the Weingarten identity, holds:

(21) 〈ΠT (R)(DXN), Y 〉 = 〈N,Γ(X,Y )〉.

Also, the tangent variations ΠT (R)(DXN) depend only on the value of the normal
vector field N at R as can be seen from the identity

(22) DΠT (R)(X) ·N = −ΠT (R)(DXN).

The application
LR(N) : T (R) → T (R),

X 7→ DΠT (R)(X) ·N
is therefore a symmetric map of the tangent space into itself and is called the Wein-
garten map in the normal direction N . The corresponding eigenvectors and eigenval-
ues are respectively called the principal directions and principal curvatures of M in
the normal direction N . The induced symmetric bilinear form on the tangent space,

(23) II(N) : (X,Y ) 7→ −〈N,Γ(X,Y )〉,

is called the second fundamental form in the direction N .

Proof. See [68] or the proof of Theorem 5 in [71, Vol. 3, Chap. 1].

The differentiability of the projection map for arbitrary sets has been studied
in [81, 1] and more recently in the context of smooth manifolds in [7, 26, 11] with
recent applications in shape optimization [6]. The following theorem reformulates
these results in the framework of this article. The proof given in Appendix A is
essentially a justification that one can indeed invert the operator I −LR(N) by using
its eigendecomposition. Recall that the adherence M is the set of limit points of M .
In this paper, the boundary of a manifold is defined as the set ∂M = M \M .

Theorem 19. Let Ω ⊂ E be an open set of E, and assume that for any R ∈ Ω,
there exists a unique projection ΠM (R) ∈M such that

(24) ||R−ΠM (R)|| = inf
R∈M

||R−R||,

and that, in addition, there is no other projection on the boundary ∂M of M :

(25) ∀R ∈M \M , ||R−R|| > ||R−ΠM (R)||.
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Fig. 3. A parabola M = P and its skeleton set Sk(P). The orthogonal projection ΠM is not

differentiable on the adherence Sk(P). Projected values R(t) = ΠM (R(t)) jump from R1 to R2

when R(t) crosses the skeleton. A center of curvature C, for which κi(C−ΠM (C)) = 1, may admit

a unique projection, A, but is a limit point of the skeleton Sk(P).

For R ∈ Ω, denote κi(N) and Φi the respective eigenvalues and eigenvectors of the
Weingarten map LR(N) at R = ΠM (R) with the normal direction N = R−ΠM (R).
Then all the principal curvatures satisfy κi(N) < 1, and the projection ΠM is differ-
entiable at R. The differential DXΠM (R) at R in the direction X satisfies

(26)

DXΠM (R) =
∑

κi(N)

1

1− κi(N)
〈Φi,X〉Φi

= ΠT (ΠM (R))(X) +
∑

κi(N) 6=0

κi(N)

1− κi(N)
〈Φi,X〉Φi.

Proof. For the proof, see Appendix A or [7].

The set Sk(M ) ⊂ E of points that admit more than one possible projection is
called the skeleton of M (see [15]). One cannot expect the projection map to be
differentiable at points that are in the adherence Sk(M ), as there is a “jump” of the
projected values across Sk(M ) (Figure 3).

Equation (26) is analogous to the formula presented in [26, Lemma 14.17] for hy-
persurfaces. In this framework, one retrieves the usual notion of principal curvature
by considering the eigenvalues κi(N) for a normalized normal vector N . With cur-

vature radius being defined as inverse of curvatures, ρi = κi

(

N
||N ||

)−1
, the condition

κi(N) = ||R − ΠM (R)||/ρi 6= 1 states that the projection ΠM is differentiable at
points R that are not center of curvature. Note that assumption (25) is required to
deal with nonclosed manifolds (boundary points being considered as not part of the
manifold), which is the case for the fixed rank matrix manifold.

4. Curvature of the fixed rank matrix manifold and the differentiability

of the SVD truncation. In the following, M ⊂Ml,m denotes again the fixed rank
matrix manifold of Definition 1, and E =Ml,m is the space of l-by-m matrices. It is
well known [27, 32] that the truncated SVD, i.e., the map that sets all singular values
of a matrix R to zero except the r highest, yields the best rank-r approximation.
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Definition 20. Let R ∈ Ml,m be a matrix of rank at least r, i.e., r + k, k ≥ 0,

and denote R =
∑r+k

i=1 σi(R)uiv
T
i its SVD. If σr(R) > σr+1(R), then the rank-r

truncated SVD

ΠM (R) =

r
∑

i=1

σi(R)uiv
T
i ∈M

is the unique matrix R ∈M minimizing the Euclidean distance R 7→ ||R−R||.
Remark 21. The skeleton of M (Figure 3) is therefore the set

Sk(M ) = {σr(R) = σr+1(R)}

characterized by the crossing of the singular values of order r and r + 1.

In the following, the Weingarten map for the fixed rank manifold is derived. Note
that its expression has been previously found by [3] under the form of (31) below.

Proposition 22. The Weingarten map LR(N) of the fixed rank manifold M in
the normal direction N ∈ N (R) is the application

(27)
LR(N) : H(U,Z) −→ H(U,Z),

(XU , XZ) 7−→ (NXZ(Z
TZ)−1, NTXU ).

Or, denoting R =
∑r

i=1 σiuiv
T
i and N =

∑k
j=1 σr+jur+jv

T
r+j as in Proposition 9,

this can be rewritten more explicitly as

(28) ∀X ∈ T (R), LR(N)X =
∑

1≤i≤r
1≤j≤k

σr+j

σi

[

uiv
T
i X

Tur+jv
T
r+j + ur+jv

T
r+jX

Tuiv
T
i

]

.

The second fundamental form is given by

(29) II : (X,Y ) 7→ 〈X,LR(N)(Y )〉 = Tr((XUY
T
Z + YUX

T
Z )

TN).

Proof. Differentiating (11) along the tangent direction X = (XU , XZ) ∈ H(U,Z),
and using the relations UTN = 0 and NZ = 0, yields

(30) LR(N)X = UXT
UN +NXZ(Z

TZ)−1ZT .

The normality of N implies that (NXZ(Z
TZ)−1, NTXU ) is a vector of the horizontal

space and therefore (27) follows. Equation (30) can be rewritten as

(31) LR(N)X = U(ZTZ)−1ZTXTN +NXTU(ZTZ)−1ZT

by expressing XU = (I − UUT )XZ(ZTZ)−1 and XZ = XTU in terms of X (11),
from which (28) is derived by introducing singular vectors (ui), (vi) and singular
values (σi). One obtains (29) by evaluating the scalar product 〈X,LR(N)(Y )〉 with
the metric g (10).

Remark 23. The Christoffel symbol is deduced from (29) and (23):

(32) Γ(X,Y ) = −(I −ΠT (R))(XUY
T
Z + YUX

T
Z ).

Theorem 24. Consider a point R = UZT =
∑r

i=1 σiuiv
T
i ∈ M and a normal

vector N =
∑k

j=1 σr+jur+jv
T
r+j ∈ N (R) (no ordering of the singular values is as-

sumed). At R and in the direction N , there are 2kr nonzero principal curvatures

κ±
i,j(N) = ±σr+j

σi
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for all possible combinations of nonzero singular values σr+j , σi for 1 ≤ i ≤ r and
1 ≤ j ≤ k. The normalized corresponding principal directions are the tangent vectors

(33) Φ±
i,r+j =

1√
2
(ur+jv

T
i ± uiv

T
r+j).

The other principal curvatures are null and associated with the principal subspace

Ker(LR(N)) = span{(uiv
T )1≤i≤r|Nv = 0} ⊕ span{(uvTi )1≤i≤r|uTN = uTU = 0}.

Proof. From (28), it is clear that LR(N)Φ±
i,r+j = κ±

i,r+j(N)Φ±
i,r+j . In addition,

Φ±
i,r+j is indeed a tangent vector as one can write Φ±

i,r+j = XUZ
T ± UXT

Z with

(XU , XZ) =
1√

2σr+jσi

(Nvr+ju
T
i U,N

Tur+jv
T
i Z).

Therefore (Φ±
i,r+j) is a family of 2kr independent eigenvectors. Then it is easy to

check that span{(uiv
T )1≤i≤r|Nv = 0} and span{(uvTi )1≤i≤r|uTN = uTU = 0} are

null eigenspaces of respective dimension (m−k)r and (l−k−r)r. The total dimension
obtained is (m−k)r+(l−k−r)r+2kr = mr+ lr−r2, implying that the full spectral
decomposition has been characterized.

This theorem shows that the maximal curvature of M (for normalized normal
directions ||N || = 1) is σr(R)−1 and hence diverges as the smallest singular value
goes to 0. This fact confirms what is visible in Figure 1: the manifold M can be
seen as a collection of cones or as a multidimensional spiral, whose axes are the lower
dimensional manifolds of matrices of rank strictly less than r. Applying directly the
formula (26) of Theorem 19, one obtains an explicit expression for the differential of
the truncated SVD.

Theorem 25. Consider R ∈ Ml,m with rank greater than r, and denote R =
∑r+k

i=1 σiuiv
T
i its SVD, where the singular values are ordered decreasingly: σ1 ≥ σ2 ≥

· · · ≥ σr+k. Suppose that the orthogonal projection ΠM (R) = UZT of R onto M

is uniquely defined, that is, σr > σr+1. Then ΠM , the truncated SVD of order r, is
differentiable at R, and the differential DXΠ(R) in a direction X ∈Ml,m is given by
the formula

(34) DXΠM (R) = ΠT (ΠM (R))(X)

+
∑

1≤i≤r
1≤j≤k

[

σr+j

σi − σr+j
〈X,Φ+

i,r+j〉Φ+
i,r+j −

σr+j

σi + σr+j
〈X,Φ−

i,r+j〉Φ−
i,r+j

]

,

where Φ±
i,r+j are the principal directions of (33). More explicitly,

(35) DXΠM (R) = (I − UUT )XZ(ZTZ)−1ZT + UUT
X

+
∑

1≤i≤r
1≤j≤k

σr+j

σ2
i − σ2

r+j

[(σiu
T
r+jXvi + σr+ju

T
i Xvr+j)ur+jv

T
i

+ (σr+ju
T
r+jXvi + σiu

T
i Xvr+j)uiv

T
r+j ].

Proof. The set {R ∈Ml,m, σr+1(R) > σr(R)} is open by continuity of the singu-
lar values; therefore condition (24) of Theorem 19 is fulfilled. The boundary M \M
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is the set of matrices of rank strictly lower than r; hence condition (25) is also ful-
filled. Equation (34) follows by replacing κi(N) and Φi in (26) by the corresponding
curvature eigenvalues ±σr+j

σi
and eigenvectors Φ±

i,r+j of Theorem 24.

Remark 26. Dehaene [14] and Dieci and Eirola [17] have previously derived formu-
las for the time derivative of singular values and singular vectors of a smoothly varying
matrix. One can also certainly use these results to find formula (35) by differentiating
singular values (σi) and singular vectors (ui), (vi) separately in

∑r
i=1 σiuiv

T
i . In the

present paper, the proof of Theorem 25 does not require singular values to remain
simple, and formula (34) is obtained directly from its geometric interpretation.

5. The DO approximation. The above results are now utilized for model
order reduction. Following the introduction, the DO approximation is defined to be
the dynamical system obtained by replacing the vector field L(t, ·) with its tangent
projection on the manifold (Figure 2b).

Definition 27. The maximal solution in time of the reduced dynamical system
on M ,

(36)

{

Ṙ = ΠT (R)(L(t, R)),
R(0) = ΠM (R(0)),

is called the dynamically orthogonal (DO) approximation of (2). The solution R(t) =
U(t)ZT (t) is governed by a dynamical system for the mode matrix U and the co-
efficient matrix Z such that (U̇ , Ż) ∈ H(U,Z) satisfies the dynamically orthogonal

condition UT U̇ = 0 at every instant:

(37)







U̇ = (I − UUT )L(t, UZT )Z(ZTZ)−1,

Ż = L(t, UZT )TU,
U(0)Z(0)T = ΠM (R(0)).

Remark 28. Equations (37) are exactly those presented as DO equations in [64,
63]. With the notation of (1) and (3), using 〈· , · 〉 to denote the continuous dot product
operator (an integral over the spatial domain) and E to denote the expectation, they
were written as the following set of coupled stochastic PDEs:

(38)















∂tζi = 〈L (t,uDO;ω),ui〉,
r

∑

j=1

E[ζiζj ]∂tuj = E



ζi



L (t,uDO;ω)−
r

∑

j=1

〈L (t,uDO;ω),uj〉uj







 .

However, when dealing with infinite dimensional Hilbert spaces, the vector space of
solutions of (1) depends on the PDEs, which complicates the derivation of a general
theory for (38). Considering the DO approximation as a computational method for
evolving low rank matrices relaxes these issues through the finite dimensional setting.

Remark 29. One can relate (36) to projected dynamical systems encountered in
optimization [53], where the manifold M is replaced with a compact convex set.

In the following, two justifications of the accuracy of this approximation are given.
First, the DO approximation is shown to be the continuous limit of a scheme that
would truncate the SVD of the full matrix solution after each time step, and hence
is instantaneously optimal among any other possible model order reduced system.
Then, its dynamics is compared to that of the best low rank approximation, yielding
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error bounds on global integration times. The efficiency of the DO approach in the
context of the discretization of a stochastic PDE is not discussed here. These points
are examined in [22] and in references cited therein.

5.1. The DO system applies instantaneously the truncated SVD. This
paragraph first details a “computational” interpretation of the DO approximation.
Consider the temporal integration of the dynamical system (2) over (tn, tn+1),

(39) R
n+1 = R

n +∆tL(tn,Rn,∆t),

where L(t,R,∆t) denotes the full-space integral L(t,R,∆t) = 1
∆t

∫ t+∆t

t
L(s,R(s))ds

for the exact integration or the increment function [28] for a numerical integra-
tion. Examples of the latter include L(t,R,∆t) = L(t,R) for forward Euler and
L(t,R,∆t) = L(t+∆t/2,R+∆t/2L(t,R)) for a second-order Runge–Kutta scheme.
Assume that the solution R

n at time tn is well approximated by a rank-r matrix Rn.
A natural way to estimate the best rank-r approximation ΠM (Rn+1) at the next time
step is then to set

(40)

{

Rn+1 = ΠM (Rn +∆tL(t, Rn,∆t)),

R0 = ΠM (R(0)).

Such a numerical scheme uses the truncated SVD, ΠM , to remove after each time
step of the initial time-integration (39) the optimal amount of information required
to constrain the rank of the solution. A data-driven adaptive version of this approach
was used, for example, in [41, 42]. One can then look for a dynamical system for
which (40) would be a temporal discretization. One then finds that for any rank-r
matrix R ∈M ,

(41)
ΠM (R+∆tL(t, R,∆t))−R

∆t
−→
∆t→0

DL(t,R,0)ΠM (R) = ΠT (R)(L(t, R))

holds true since the curvature term depending on N = R − ΠM (R) = 0 vanishes
in (26), and L(t, R, 0) = L(t, R) by consistency of the time marching with the exact
integration (39) [28]. This implies, under sufficient regularity conditions on L, that
the continuous limit of the scheme (40) is the DO dynamical system (36).

Theorem 30. Assume that the DO solution (36) is defined on a time interval
[0, T ] discretized with NT time steps ∆t = T/NT , and denote tn = n∆t. Consider
Rn the sequence obtained from the class of schemes (40). Assume that L is Lipschitz
continuous, that is, there exists a constant K such that

(42) ∀t ∈ [0, T ], ∀A,B ∈Ml,m, ||L(t, A)− L(t, B)|| ≤ K||A−B||.

Then the sequence Rn converges uniformly to the DO solution R(t) in the following
sense:

sup
0≤n≤NT

||Rn −R(tn)|| −→
∆t→0

0.

Proof. It is sufficient to check that the scheme (40) is both consistent and stable
(see [28]). Denote Φ the increment function of the scheme (40):

(43) Φ(t, R,∆t) =
ΠM (R+∆tL(t, R,∆t))−R

∆t
=

1

∆t

∫ 1

0

d

dτ
ΠM (g(R, t, τ,∆t))dτ
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with g(R, t, τ,∆t) = R + τ∆tL(t, R,∆t). Consider a compact neighborhood U of
Ml,m containing the trajectory R(t) on the interval [0, T ] and sufficiently thin such
that U does not intersect the skeleton of M . In particular, ΠM is differentiable
with respect to R on the compact neighborhood U , hence Lipschitz continuous. The
consistency of (40) and continuity of Φ on [0, T ]× U ×R follow from (41). For usual
time marching schemes (e.g., Runge–Kutta), the Lipschitz condition (42) also holds
for the map R 7→ L(t, R,∆t). Therefore Φ is also Lipschitz continuous with respect
to R on U by composition. This is a sufficient stability condition.

As such, the DO approximation can be interpreted as the dynamical system that
applies instantaneously the truncated SVD to constrain the rank of the solution.
Therefore, other reduced-order models of the form (4) are characterized by larger
errors on short integration times for solutions whose initial value lies on M .

Remark 31. Other dynamical systems that perform instantaneous matrix opera-
tions have been derived in [10, 70], and in, e.g., [14, Lemma 3.4 and Corollary 3.5]
or [17, sections 2.1 and 2.3] for tracking the full SVD or QR decomposition. Con-
tinuous SVD has been combined with adaptive Kalman filtering in uncertainty quan-
tification to continuously adapt the dominant subspace supporting the stochastic so-
lution [41, 42, 43]. All of these results utilized the instantaneous truncated SVD
concept and formed the computational basis of the continuous DO dynamical system.
In fact, the dominant singular vectors of state transition matrices and other opera-
tors have found varied applications in atmospheric and ocean sciences for some time
[19, 20, 56, 33, 45, 51, 35, 16].

5.2. The DO approximation is close to the dynamics of the best low

rank approximation of the original solution. Ideally, a model order reduced so-
lution R(t) would coincide at all times with the best rank-r approximation ΠM (R(t)),
so as to keep the error ||R(t)−R(t)|| minimal. However, ΠM (R(t)) is not the solution
of a reduced system of the form (4) as its time derivative depends on the knowledge
of the true solution R in the full space Ml,m. Indeed, formula (35) for the differen-
tial of the SVD yields the following system of ODEs for the evolution of modes and
coefficients of the best rank-r approximation ΠM (R(t)):
(44)



























































U̇ = (I − UUT )ṘZ(ZTZ)−1

+









∑

1≤i≤r
1≤j≤k

σr+j

σ2
i − σ2

r+j

(σiu
T
r+jṘvi + σr+ju

T
i Ṙvr+j)ur+jv

T
i









Z(ZTZ)−1,

Ż = Ṙ
TU +









∑

1≤i≤r
1≤j≤k

σr+j

σ2
i − σ2

r+j

(σr+ju
T
r+jṘvi + σiu

T
i Ṙvr+j)vr+ju

T
i









U,

where the (time-dependent) SVD of R(t) at the time t is
∑r+k

i=1 σiuiv
T
i with k =

min(m, l) (allowing possibly σr+j = 0 for 1 ≤ j ≤ k). One therefore sees from this
best rank-r governing differential (44) that its reduced DO system (36) is obtained by
(i) replacing the derivative Ṙ = L(t,R) with the approximation L(t, R) (first terms in
each of the right-hand sides of (44)), and (ii) neglecting the dynamics corresponding
to the interactions between the low rank-r approximation (singular values and vectors
of order 1 ≤ i ≤ r) and the neglected normal component (singular values and vectors

D
o
w

n
lo

ad
ed

 1
2
/1

2
/1

8
 t

o
 1

8
.5

1
.0

.9
6
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

528 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

of order r + j for 1 ≤ j ≤ k). These interactions are the last summation terms in
each of the right-hand sides of (44). Estimating these interactions in all generality
would require, in addition to the knowledge of a rank-r approximation R ≃ ΠM (R),
either external observations [42] or closure models [76], so as to estimate the otherwise

neglected normal component R−ΠM (R) =
∑k

j=1 σr+jur+jv
T
r+j .

Comparing the dynamics (37) of the DO approximation to that of the governing
differential (44) of the best low rank-r approximation, a bound for the growth of the
DO error is now obtained.

Theorem 32. Assume that both the original solution R(t) ∈ Ml,m (2) and its
DO approximation R(t) (36) are defined on a time interval [0, T ] and that the following
conditions hold:

1. L is Lipschitz continuous, i.e., (42) holds.
2. The original (true) solution R(t) remains close to the low rank manifold M ,

in the sense that R(t) does not cross the skeleton of M on [0, T ]; i.e., there
is no crossing of the singular value of order r:

∀t ∈ [0, T ], σr(R(t)) > σr+1(R(t)).

Then, the error of the DO approximation R(t) (36) remains controlled by the best
approximation error ||R−ΠM (R(t))|| on [0, T ]:

(45) ∀t ∈ [0, T ], ||R(t)−ΠM (R(t))||

≤
∫ t

0

||R(s)−ΠM (R(s))||
(

K +
||L(s,R(s))||

σr(R(s))− σr+1(R(s))

)

eη(t−s)ds,

where η is the constant

(46) η = K + sup
t∈[0,T ]

2

σr(R(t))
||L(t,R(t))||.

Proof. A proof is given in Appendix B.

This statement improves the result expressed in [37, Theorem 5.1], since no as-
sumption is made on the smallness of the best approximation error ||R − ΠM (R)||
or on the boundedness of ||R − ΠM (R)||. Theorem 32 also highlights two sufficient
conditions for the error committed by the DO approximation to remain small.

Condition 1. The discrete operator L must not be too sensitive to the error
R(t)−R(t); namely the Lipschitz constant K must be small. This error is commonly
encountered by any approximation made for evaluating the operator of a dynamical
system (as a consequence of Gronwall’s lemma [29]). The Lipschitz constant K also
quantifies how fast the vector field L may deviate from its values when getting away
from the low rank manifold M .

Condition 2. Independently of the choice of the reduced-order model, the solu-
tion of the initial system (2), R(t), must remain close to the manifold M , or in other
words, must remain far from the skeleton Sk(M ) of M . As visible in Figure 3, the
best rank-r approximation ΠM (R) of R exhibits a jump when R crosses the skeleton,
i.e., when σr(R) = σr+1(R) occurs. At that point, the discontinuity of ΠM (R(t)) can-
not be tracked by the DO or any other smooth dynamical approximation. Condition
2 in some sense supersedes the stronger condition of “smallness of the initial trunca-
tion error” of the error analysis of [37]. Indeed, when σr(R) ≃ σr+1(R) occurs, as
observed numerically in [52], the DO solution may then diverge sharply from the SVD
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truncation. From the point of view of model order reduction, the resulting error can
be related to the evolution of the residual R−ΠM (R) that is not accounted for by the
reduced-order model. When the crossing of singular values occurs, neglected modes
ur+k(t, ·), k ≥ 1, become suddenly “dominant,” but cannot be captured by a reduced-
order model which can only update continuously the first modes uk(t, ·), 1 ≤ k ≤ r,
initially dominant. In such cases, one has to restart the simulations from the initial
conditions with a larger subspace size, or the size of the DO subspace has to be in-
creased and corrections applied from external information. The latter learning of the
subspace can be done from measurements or from additional Monte Carlo simulations
and breeding of the best low rank-r approximation [42, 35, 65].

Last, it should be noted that the growth rate η (46) of the error increases as the
evolved trajectory becomes close to being singular, i.e., when σr(R(t)) goes to zero.
This growth rate comes mathematically from the Gronwall estimates of the proofs and
is intuitively related to the fact that the tangent projection ΠT in (36) is applied at
the location of the DO solution R(t) instead of at the one of the best approximation
ΠM (R(t)). If the evolved trajectory is close to being singular, the local curvature of
M experienced by the DO solution R(t) and the best approximation ΠM (R(t)) is
high. Therefore the tangent spaces T (R(t)) and T (ΠM (R(t))) may be oriented very
differently because of this curvature, resulting in increased error when approximating
the tangent projection operator ΠT (ΠM (R(t))) by ΠT (R(t)) in the DO system (36).

Remark 33. Theorems 30 and 32 may be generalized in a straightforward manner
to the case of any smooth embedded manifolds M ⊂ E (Theorems 2.5 and 2.6 in [21]).

6. Optimization on the fixed rank matrix manifold for tracking the

best low rank approximation. This section applies the framework of Riemannian
matrix optimization [18, 5] as an alternative approach to the direct tracking of the
truncated SVD of a time-dependent matrix R(t) ∈ Ml,m. At the end, we provide a
remark (Remark 38) linking the two approaches within the context of the DO system.

Consider a given (full rank) matrix R ∈ Ml,m, and recall that ΠM (R), when it
is nonambiguously defined, is the unique minimizer of the distance functional

(47)
J : M −→ R,

R 7−→ 1
2 ||R−R||2.

Riemannian optimization algorithms, namely gradient descents and Newton methods
on the fixed rank manifold M , are now used to provide alternatives to more standard
direct algebraic algorithms [27] for evaluating the truncated SVD ΠM (R). Such
optimizations can be useful in dynamically updating the best low rank approximation
of a time-dependent matrix R(t): this is because for a sufficiently small time step
∆t, R(t) = ΠM (R(t)) is expected to be close to R(t+∆t) = ΠM (R(t+∆t)); hence
ΠM (R(t)) provides a good initial guess for the minimization of R 7→ ||R(t+∆t)−R||.
The minimization of the distance functional J has already been considered in the
matrix optimization community [2, 75, 50] that derived gradient descent and Newton
methods on the fixed rank manifold, but not in the case of the metric inherited from
the ambient space Ml,m (10), which is done in what follows. As a benefit of this
“extrinsic” approach already noticed in [3], the covariant Hessian of J relates directly
to the Weingarten map at critical points: this will allow obtaining the convergence of
the gradient descent for almost every initial datum (Proposition 36).

Ingredients required for the minimization of J on the manifold M are first derived,
namely the covariant gradient and Hessian. As reviewed in [18], usual optimization
algorithms such as gradient and Newton methods can be straightforwardly adapted
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to matrix manifolds. They differ from their Euclidean counterparts in that (i) usual
gradient and Hessians must be replaced by their covariant equivalents; (ii) one needs to
follow geodesics instead of straight lines to move on the manifold; and (iii) directions
followed at the previous time steps, needed, for example, in the conjugate gradient
method, must be transported to the current location (18). Covariant gradient and
Hessian are recalled in the following definition (for details, see [2, Chap. 5]).

Definition 34. Let J be a smooth function defined on M and R ∈ M . The
covariant gradient of J at R is the unique vector ∇J ∈ T (R) such that

∀X ∈ T (R), J(expR(tX)) = J(R) + t〈∇J,X〉+ o(t).

The covariant Hessian HJ of J at R is the linear map on T (R) defined by

HJ(X) = ∇X∇J,

and the following second-order Taylor approximation of J holds:

J(expR(tX)) = J(R) + t〈∇J,X〉+ t2

2
〈X,HJ(X)〉+ o(t2).

The following proposition (see [3]) explains how these quantities are related to
the usual gradient and Hessian, so that they become accessible for computations.

Proposition 35. Let J be a smooth function defined in the ambient spaceMl,m,
and denote DJ and D2J its respective Euclidean gradient and Hessian. Then the
covariant gradient and Hessian are given by

(48) ∇J = ΠT (R)(DJ),

(49) HJ(X) = ΠT (R)(D
2J(X)) + DΠT (R)(X) ·

[

(I −ΠT (R))(DJ)
]

.

Applying directly Proposition 35, the gradient and the Hessian of J at R =
UZT ∈M are given by

(50) ∇J = ((I − UUT )(UZT −R)Z(ZTZ)−1, (UZT −R)TU),

(51)

HJ : H(U,Z) → H(U,Z),
(

XU

XZ

)

7→
(

XU −NUZT (R)XZ(Z
TZ)−1

XZ −NUZT (R)TXU

)

,

where NUZT (R) = (I − ΠT (UZT ))(R − UZT ) = (I − UUT )R(I − Z(ZTZ)−1ZT ) is
the orthogonal projection of R−R onto the normal space. The Newton direction X
is found by solving the linear system HJ(X) = −∇J(R), which reduces to

{

XUA+BXZ = E,
BTXU +XZ = F,

with A = (ZTZ), B = −NUZT (R), E = (I − UUT )RZ, and F = −Z +R
TU . This

requires solving the Sylvester equation XUA − BBTXU = E − BF for XU , which
can be done in theory by using standard techniques [36], before computing XZ from
XZ = F −BTXU .
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It is now proven that, if the distance function J may admit several critical points,
there is a unique local, hence global, minimum on M . As a consequence, saddle
points of J are unstable equilibrium solutions of the gradient flow Ṙ = −∇J(R) and
hence are expected to be avoided by gradient descent, which will converge in practice
to the global minimum ΠM (R). This “almost surely” convergence guarantee for
the gradient descent may be compared to probabilistic analyses investigated in more
general contexts [59, 77]. Our result also shows that one cannot expect the Newton
method to converge for initial guesses that are far from the optimal. Indeed, this
method seeks a zero of the gradient ∇J rather than a true minimum, and hence may
converge or oscillate around several of the saddle points of the objective function.

Proposition 36. Consider R ∈ Ml,m such that its projection onto M is well
defined, that is, σr(R) > σr+1(R). Then the distance function J to R (47) admits no
other local minima than ΠM (R). In other words, for almost any initial rank-r matrix
U(0)Z(0)T , the solution U(t)Z(t)T of the gradient flow

(52)

{

U̇ = (I − UUT )RZ(ZTZ)1,

Ż = R
TU − Z

converges to ΠM (R), the rank-r truncated SVD of R.

Proof. It is known from Proposition 16 that the points R for which ∇J vanishes
are such that DJ = R −R ∈ N (R) is a normal vector. Since, in addition, D2J = I,
Proposition 35 yields the identity

∀X ∈ T (R), 〈HJ(X), X〉 = 〈X,X〉 − 〈DΠT (R)(X) ·N,X〉
= ||X||2 − 〈LR(N)(X), X〉,

where N = −(I − ΠT (R))(DJ) = −DJ = R − R ∈ N (R), since ∇J = ΠT (R)(DJ)

vanishes at R. Let R =
∑r+k

i=1 σi(R)uiv
T
i be the SVD of R. For R−R to be a normal

vector, R must necessarily be of the form R =
∑

i∈A σiuiv
T
i , where A is a subset of r

indices 1 ≤ i ≤ r + k. Then the minimum eigenvalue of the Hessian H is 1 − σ1(N)
σr(R) ,

which is positive if and only if σr(R) > σ1(N). This happens only for R = ΠM (R).

Remark 37. The reader is referred to [34] for details regarding the almost surely
convergence of sufficiently smooth gradient flows towards the unique minimizer of a
function (Morse theory).

In Figure 4, a matrix R ∈ Ml,m with m = 100 and l = 150 is considered,
with singular values chosen to be equally spaced in the interval [1, 10]. Three op-
timization algorithms detailed in [18] (gradient descent with fixed step, conjugate
gradient descent, and Newton method) are implemented to find the best rank r = 5
approximation of R, with a random initialization. Convergence curves are plotted in
Figure 4: linear and quadratic rates characteristic of gradient and Newton methods,
respectively, are obtained. As expected from Proposition 36, gradient descents glob-
ally converge to the truncated SVD, while Newton iterations may be attracted to any
saddle point.

Remark 38. The above gradient descent and Newton methods can be combined
with previously derived numerical schemes for the time-integrated DO equations (40).
One class of schemes consists of discretizing the ODEs (37) in time, as in [64, 73, 52,
37]. Another follows (40) directly and aims to compute the SVD truncation ΠM (R) of
R = UZT +∆tL(t, UZT ,∆t), where the increment function can be that of Euler or of
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Fig. 4. Convergence curves of optimization algorithms for minimizing the distance function

J (47). Newton does not converge to the global minimum and hence is not represented on the left

curve.

higher-order explicit time marching (of course, the total rank of this R depends on the
dynamics and numerical scheme and can be greater than r). Examining the expression
of the gradient of J (50), one time step of the above schemes can be interpreted as
one gradient descent step for minimizing the functional J . Therefore, optimization
algorithms on the Riemannian manifold M can be combined with such DO time-
stepping schemes, as further investigated in [22]. A key advantage of such optimization
is the capability of altering the rank r of the dynamical approximation over a time step
or stage (e.g., a rank p > r approximation can be used in the target cost functional
J). These strategies may also be utilized for the computation of nonlinear singular
vectors [74] or for continuous dominant subspace estimation [43]. Finally, it can also be
combined with adaptive learning schemes [42, 45, 65] which use system measurements
and/or Monte Carlo breeding nonlinear simulations to estimate the missing fastest
growing modes. Such additional information can then correct the predictor of the SVD
of R(t + ∆t) in directions orthogonal to the discrete DO increments and essentially
increase the subspace size, e.g., when the estimates of σr+1(R(t)) become close to
these of σr(R(t)).

7. Conclusion. A geometric approach was developed for dynamical model order
reduction, through the analysis of the embedded geometry of the fixed rank manifold
M . The extrinsic curvatures of matrix manifolds were studied and geodesic equations
obtained. The relationships among these notions and the differential of the orthogonal
projection of the original system dynamics onto the tangent spaces of the manifold
were derived and linked to the DO approximation. These geometric results allowed us
to derive the differential of the truncated SVD interpreted as an orthogonal projection
onto the fixed rank matrix manifold. The DO approximation, with its instantaneous
application of the SVD truncation of the stochastic/parametric dynamics, was shown
to be the natural dynamical reduced-order model that is optimal on small integration
times among all other reduced-order models that evaluate the operator of the full-
space dynamics exclusively onto low rank approximations. Additionally, the explicit
dynamical system satisfied by the best low rank approximation was derived and used
to sharpen the error analysis of the DO approximation.

The DO method was related to Riemannian matrix optimization, for which gra-
dient descent methods were applied and shown to be capable of adaptively tracking
the best low rank approximation of dynamic matrices. This may prove beneficial in
the integration of the time stepping of the DO approximation. Such approaches, in
contrast with classic numerical integrations of the governing differential equations for
the DO modes and their coefficients, open new future avenues for efficient DO nu-

D
o
w

n
lo

ad
ed

 1
2
/1

2
/1

8
 t

o
 1

8
.5

1
.0

.9
6
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GEOMETRIC DYNAMICAL MODEL ORDER REDUCTION 533

merical schemes. In general, there are now many promising directions for developing
new, efficient, dynamic reduced-order methods, based on the geometry and shape of
the full-space dynamics. Opportunities abound over a wide range of needs and appli-
cations of uncertainty quantification and dynamical system analyses and optimization
in oceanic and atmospheric sciences, thermal-fluid sciences and engineering, electrical
engineering, and chemical and biological sciences and engineering.

Appendix A. Proof of Theorem 19.

Lemma 39. Let Ω be an open set over which the projection ΠM is uniquely defined
by (24) and such that condition (25) holds. Then ΠM is continuous on Ω.

Proof. Consider a sequence Rn converging in E to R, and denote ΠM (Rn) the
corresponding projections. Let ǫ > 0 be a real such that for all n ≥ 0, ||Rn −R|| < ǫ.
Since

||ΠM (Rn)−R|| ≤ ||ΠM (Rn)−Rn||+ ||Rn −R||
≤ ||Rn −ΠM (R)||+ ||Rn −R||
≤ 2ǫ+ ||R−ΠM (R)||,

the sequence ΠM (Rn) is bounded. Denote R ∈ M a limit point of this sequence.
Passing to the limit the inequality ||Rn − ΠM (Rn)|| ≤ ||Rn − ΠM (R)||, one obtains
||R − R|| ≤ ||R − ΠM (R)||. The uniqueness of the projection, and the fact that
there is no R ∈ M \M satisfying this inequality, show that R = ΠM (R). Since the
bounded sequence (ΠM (Rn)) has a unique limit point, one deduces the convergence
ΠM (Rn)→ ΠM (R) and hence the continuity of the projection map at R.

Lemma 40. At any point R ∈ Ω, any principal curvature κi(N) in the direction
N at ΠM (R) must satisfy κi(N) < 1.

Proof. It is shown in Proposition 35 that the covariant Hessian of the distance
function J(R) = 1

2 ||R− J ||2 at R = ΠM (R) is given by

(53)
HJ : T (R) → T (R),

X 7→ X − LR(N)(X),

where N is the normal direction N = R − ΠM (R). Since R = ΠM (R) must be a
local minimum of J , this Hessian must be positive; namely, any eigenvalue κi(N) of
the Weingarten map LR(N) must satisfy 1 − κi(N) ≥ 0. Now, consider s > 1 such
that R+ sN ∈ Ω and notice that ||R+ sN −ΠM (R)|| = s||N ||. Since

||R+ sN −ΠM (R+ sN)|| ≤ ||R+ sN −ΠM (R)|| = s||N ||,

the uniqueness of the projection in Ω implies that ΠM (R+ sN) = R (i.e., the projec-
tion is invariant along orthogonal rays). The linearity of the Weingarten map in N
implies κi(sN) = sκi(N), hence κi(N) ≤ 1

s < 1, which concludes the proof.

Proof of Theorem 19. Consider the function f(R, R) = ΠT (R)(R−R) defined on
M ×E. The differential of f with respect to the variable R in a direction X ∈ T (R)
at R = ΠM (R) is the application

X 7→ ΠT (R)X −DXΠT (R)(R−R) = (I − LR(N))(X).

Lemma 40 implies that the Jacobian ∂R,Xf has no zero eigenvalue and hence is
invertible. The implicit function theorem ensures the existence of a diffeomorphism
φ mapping an open neighborhood ΩE ⊂ E of R to an open neighborhood ΩM ⊂M
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of R, such that for any R
′ ∈ ΩE , φ(R′) is the unique element of ΩM satisfying

f(R′, φ(R′)) = 0. By continuity of the projection (Lemma 39), one can assume, by
replacing ΩE with the open subset ΩE ∩Π−1

M
(ΩM ), that ΠM (ΩE) ⊂ ΩM . Then, the

equality f(R′,ΠM (R′)) = 0 implies by uniqueness φ(R′) = ΠM (R′). Hence ΠM = φ
on ΩE , and, in particular, ΠM is differentiable. Finally, for a given X ∈ E, one can
now solve (20) by projection onto the eigenvectors of LR(N) and obtain (26).

Appendix B. Proof of Theorem 32.

Lemma 41. For any R ∈Ml,m satisfying σr(R) > σr+1(R) and X ∈Ml,m,

||DXΠM (R)−ΠT (ΠM (R))X|| ≤
σr+1(R)

σr+1(R)− σr(R)
||X||.

Proof. The proof is a consequence of the fact that the maximum eigenvalue in
the decomposition (26) is

max
i,j

σr+j(R)
σi(R)

1− σr+j(R)
σi(R)

=
σr+1(R)

σr(R)− σr+1(R)
.

The following lemma can be found in [77] and Theorem 2.6.1 in [27].

Lemma 42. For any points R1, R2 ∈M the following estimate holds:

(54) ||ΠT (R1) −ΠT (R2)|| ≤ min

(

1,
2

σr(R1)
||R1 −R2||

)

,

where the norm of the left-hand side is the operator norm.

Remark 43. This result from [77] enhances the “curvature estimates” of Lemma
4.2 of [37], which allows us to have a global bound and hence avoids the smallness
assumption of the initial truncation error. Note that such a bound always exists at
every point of smooth manifolds (Definition 2.17 of [21]). A purely geometric analysis
(Lemma 3.1 in [21]) may also be used to yield locally a sharper bound than (54) but
with a larger constant 5/2 instead of 2 as a global estimate.

Proof of Theorem 32. Denote R∗(t) = ΠM (R(t)). Since Ṙ∗(t) = D
Ṙ
ΠM (R(t)),

bounding (20) and using (2) and Lemma 41 yields

||Ṙ− Ṙ∗|| ≤ ||ΠT (R∗)(L(t,R))−ΠT (R)(L(t, R))||+ σr+1(R)

σr(R)− σr+1(R)
||L(t,R)||.

Furthermore, by the triangle inequality,

||ΠT (R∗)(L(t,R))−ΠT (R)(L(t, R))|| ≤ ||ΠT (R∗)(L(t,R))−ΠT (R)(L(t,R))||
+ ||ΠT (R)(L(t,R))−ΠT (R)(L(t, R∗))||
+ ||ΠT (R)(L(t, R∗))−ΠT (R)(L(t, R))||.

Lemma 42 (first equation) and Lipschitz continuity of L (last two equations) then
imply

||ΠT (R∗)(L(t,R))−ΠT (R)(L(t,R))|| ≤ 2

σr(R∗)
||R−R∗|| ||L(t,R)||,

||ΠT (R)(L(t,R))−ΠT (R)(L(t, R∗))|| ≤ K||R−R∗||,
||ΠT (R)(L(t, R∗))−ΠT (R)(L(t, R))|| ≤ K||R−R∗||.
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Finally, the following inequality is derived, combining all above equations together:

(55) ||Ṙ− Ṙ∗||

≤
(

K +
2||L(t,R)||
σr(R∗)

)

||R−R∗||+
(

K +
||L(t,R)||

σr(R)− σr+1(R)

)

||R−R∗||.

An application of Gronwall’s lemma (see Corollary 4.3 in [29]) yields (45).
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[39] S. Lall, J. E. Marsden, and S. Glavaški, A subspace approach to balanced truncation for

model reduction of nonlinear control systems, Internat. J. Robust Nonlinear Control, 12
(2002), pp. 519–535.

[40] T. Lee, F. Wang, and R. Newell, Robust model-order reduction of complex biological pro-

cesses, J. Process Control, 12 (2002), pp. 807–821.
[41] P. F. J. Lermusiaux, Error Subspace Data Assimilation Methods for Ocean Field Estimation:

Theory, Validation and Applications, Ph.D. thesis, Harvard University, Cambridge, MA,
1997.

[42] P. F. J. Lermusiaux, Estimation and study of mesoscale variability in the Strait of Sicily, Dyn.
Atmospheres Oceans, 29 (1999), pp. 255–303, https://doi.org/10.1016/S0377-0265(99)
00008-1.

[43] P. F. J. Lermusiaux, Evolving the subspace of the three-dimensional multiscale ocean variabil-

ity: Massachusetts Bay, J. Mar. Syst., 29 (2001), pp. 385–422, https://doi.org/10.1016/
S0924-7963(01)00025-2.

[44] P. F. J. Lermusiaux, Uncertainty estimation and prediction for interdisciplinary ocean dynam-

ics, J. Comput. Phys., 217 (2006), pp. 176–199, https://doi.org/10.1016/j.jcp.2006.02.010.
[45] P. F. J. Lermusiaux, Adaptive modeling, adaptive data assimilation and adaptive sampling,

Phys. D, 230 (2007), pp. 172–196, https://doi.org/10.1016/j.physd.2007.02.014.
[46] P. F. J. Lermusiaux, C.-S. Chiu, G. G. Gawarkiewicz, P. Abbot, A. R. Robinson, R. N.

Miller, P. J. Haley, Jr., W. G. Leslie, S. J. Majumdar, A. Pang, and F. Lekien,
Quantifying uncertainties in ocean predictions, Oceanography, 19 (2006), pp. 90–103, https:
//doi.org/10.5670/oceanog.2006.93.

[47] B. Lin and D. McLaughlin, Real-time ensemble control with reduced-order modeling, SIAM

D
o
w

n
lo

ad
ed

 1
2
/1

2
/1

8
 t

o
 1

8
.5

1
.0

.9
6
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

https://doi.org/10.1137/1.9780898719222
https://doi.org/10.1137/1.9780898719222
https://doi.org/10.1137/050639703
https://doi.org/10.1016/S0377-0265(99)00008-1
https://doi.org/10.1016/S0377-0265(99)00008-1
https://doi.org/10.1016/S0924-7963(01)00025-2
https://doi.org/10.1016/S0924-7963(01)00025-2
https://doi.org/10.1016/j.jcp.2006.02.010
https://doi.org/10.1016/j.physd.2007.02.014
https://doi.org/10.5670/oceanog.2006.93
https://doi.org/10.5670/oceanog.2006.93


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GEOMETRIC DYNAMICAL MODEL ORDER REDUCTION 537

J. Sci. Comput., 36 (2014), pp. B749–B775, https://doi.org/10.1137/130921878.
[48] M. Loève, Probability Theory. II, Grad. Texts in Math. 46, Springer-Verlag, New York, Hei-

delberg, 1978.
[49] A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden, Systematic strategies for stochastic

mode reduction in climate, J. Atmospheric Sci., 60 (2003), pp. 1705–1722.
[50] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre, Fixed-rank matrix factorizations

and Riemannian low-rank optimization, Comput. Statist., 29 (2014), pp. 591–621.
[51] A. M. Moore, H. G. Arango, E. Di Lorenzo, B. D. Cornuelle, A. J. Miller, and D. J.

Neilson, A comprehensive ocean prediction and analysis system based on the tangent

linear and adjoint of a regional ocean model, Ocean Model., 7 (2004), pp. 227–258.
[52] E. Musharbash, F. Nobile, and T. Zhou, Error analysis of the dynamically orthogonal ap-

proximation of time dependent random PDEs, SIAM J. Sci. Comput., 37 (2015), pp. A776–
A810, https://doi.org/10.1137/140967787.

[53] A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with

Applications, Internat. Ser. Oper. Res. Management Sci. 2, Springer Science+Business
Media, New York, 2012.
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