A Geometric Approach to Free Boundary Problems

Luis Caffarelli Sandro Salsa

Graduate Studies in Mathematics Volume 68

American Mathematical Society Providence, Rhode Island

Contents

....

Introduc	tion
----------	------

Part 1. Elliptic Problems

Chapter 1. An Introductory Problem	3
§1.1. Introduction and heuristic considerations	3
$\S1.2.$ A one-phase singular perturbation problem	6
§1.3. The free boundary condition	17
Chapter 2. Viscosity Solutions and Their Asymptotic Developments	25
$\S2.1.$ The notion of viscosity solution	25
§2.2. Asymptotic developments	27
§2.3. Comparison principles	30
Chapter 3. The Regularity of the Free Boundary	35
$\S3.1.$ Weak results	35
$\S3.2.$ Weak results for one-phase problems	36
3.3. Strong results	40
Chapter 4. Lipschitz Free Boundaries Are $C^{1,\gamma}$	43
$\S4.1$. The main theorem. Heuristic considerations and strategy	43
$\S4.2.$ Interior improvement of the Lipschitz constant	47
§4.3. A Harnack principle. Improved interior gain	51
$\S4.4.$ A continuous family of <i>R</i> -subsolutions	53
§4.5. Free boundary improvement. Basic iteration	62

vii

Chapter	5. Flat Free Boundaries Are Lipschitz	65
§5.1.	Heuristic considerations	65
$\S{5.2.}$	An auxiliary family of functions	70
$\S{5.3.}$	Level surfaces of normal perturbations of ε -monotone	
	functions	72
$\S{5.4.}$	A continuous family of R -subsolutions	74
$\S{5.5.}$	Proof of Theorem 5.1	76
$\S{5.6.}$	A degenerate case	80
Chapter	6. Existence Theory	87
$\S6.1.$	Introduction	87
$\S6.2.$	u^+ is locally Lipschitz	90
$\S6.3.$	u is Lipschitz	91
$\S6.4.$	u^+ is nondegenerate	95
$\S6.5.$	u is a viscosity supersolution	96
$\S6.6.$	u is a viscosity subsolution	99
$\S6.7.$	Measure-theoretic properties of $F(u)$	101
$\S6.8.$	Asymptotic developments	103
$\S 6.9.$	Regularity and compactness	106
Part 2.	Evolution Problems	
Chapter	7. Parabolic Free Boundary Problems	111
§7.1.	Introduction	111
§7.2.	A class of free boundary problems and their viscosity solutions	113
§7.3.	Asymptotic behavior and free boundary relation	115
§7.4.	R-subsolutions and a comparison principle	110
0		
-	8. Lipschitz Free Boundaries: Weak Results	121
$\S8.1.$	Lipschitz continuity of viscosity solutions	121
§8.2.	Asymptotic behavior and free boundary relation	124
§8.3.	Counterexamples	125
Chapter	9. Lipschitz Free Boundaries: Strong Results	131
$\S{9.1.}$	Nondegenerate problems: main result and strategy	131
$\S{9.2.}$	Interior gain in space (parabolic homogeneity)	135
$\S{9.3.}$	Common gain	138
$\S{9.4.}$	Interior gain in space (hyperbolic homogeneity)	141

55

Contents

16

$\S{9.5.}$	Interior gain in time	143
$\S{9.6.}$	A continuous family of subcaloric functions	149
$\S{9.7}.$	Free boundary improvement. Propagation lemma	153
$\S{9.8.}$	Regularization of the free boundary in space	157
$\S{9.9.}$	Free boundary regularity in space and time	160
Chapter	10. Flat Free Boundaries Are Smooth	165
$\S{10.1}.$	Main result and strategy	165
$\S{10.2}.$	Interior enlargement of the monotonicity cone	168
$\S{10.3}.$	Control of u_{ν} at a "contact point"	172
$\S{10.4}.$	A continuous family of perturbations	174
$\S{10.5}.$	Improvement of ε -monotonicity	177
$\S{10.6}.$	Propagation of cone enlargement to the free boundary	180
$\S{10.7}.$	Proof of the main theorem	183
$\S{10.8}.$	Finite time regularization	185
Part 3.	Complementary Chapters: Main Tools	
Chapter	11. Boundary Behavior of Harmonic Functions	191
$\S{11.1.}$	Harmonic functions in Lipschitz domains	191
$\S{11.2.}$	Boundary Harnack principles	195
$\S{11.3.}$	An excursion on harmonic measure	201
$\S{11.4.}$	Monotonicity properties	203
$\S{11.5}.$	ε -monotonicity and full monotonicity	205
$\S{11.6}.$	Linear behavior at regular boundary points	207
Chapter	12. Monotonicity Formulas and Applications	211
$\S{12.1.}$	A 2-dimensional formula	211
$\S{12.2.}$	The n -dimensional formula	214
$\S{12.3.}$	Consequences and applications	222
$\S{12.4.}$	A parabolic monotonicity formula	230
$\S{12.5.}$	A singular perturbation parabolic problem	233
Chapter	13. Boundary Behavior of Caloric Functions	235
$\S{13.1}.$	Caloric functions in $Lip(1, 1/2)$ domains	235
$\S{13.2.}$	Caloric functions in Lipschitz domains	241
$\S{13.3.}$	Asymptotic behavior near the zero set	248
$\S{13.4.}$	ε -monotonicity and full monotonicity	256

v

$\S{13.5.}$	An excursion on caloric measure	262
Bibliograp	hy	265
Index		269

÷...,