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Abstract

We use a geometric approach, similar to Van Leer's MUSCL schemes, to

construct a second-order accurate generalization of Godunov's method for

solving scalar conservation laws. By making suitable approximations we obtain

a scheme which is easy to implement and total variation diminishing. We also

investigate the entropy condition from the standpoint of the spreading of

rarefaction waves. For Godunov's method we obtain quantitative information on

the rate of spreading which explain the kinks in rarefaction waves often

observed at the sonic point.
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I. Introduction

In solving hyperbolic conservation laws of the form

(I.I) ut + f(u)x = 0,

it is desirable to have a method that is at least second-order accurate in

smooth regions of the flow and that also gives sharp resolution of

discontinuities with no spurious oscillations.

There are two basic approaches which have been used to derive difference

schemes for these problems. The first is purely algebraic. A scheme is

defined by its coefficients or numerical fluxes, and algebraic relations are

derived which guarantee that certain desirable properties hold.

The second approach is more geometrical, in that the structure of certain

special solutions to (I.I) is heavily used. The classic method of this type

is Godunov's method [3], based on the solution to Riemann problems. Van Leer

[I0], [II] with his MUSCL schemes, generalized this method to second-order

accuracy by using discontinuous piecewise linear approximations at each time

step. Higher order geometrical methods, such as the piecewise parabolic

method [I], have also been used.

Recently, however, most theoretical progress toward deriving second-order

schemes with desirable properties has been made using the algebraic approach.

Harten [4] introduced the concept of a total variation diminishing (TVD)

scheme which guarantees that monotone profiles remain monotone. He derived

conditions on the coefficients of a scheme that guarantee the TVD property and

second-order accuracy. Since then many other second-order accurate TVD

schemes have been constructed, e.g., [13], [15], [17], [18], but always using

algebraic methods.
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Our goal here is to derive a simple second-order accurate TVD scheme

using a geometric approach in the spirit of Van Leer_s work. This is

accomplished by choosing the slopes properly in the piecewlse linear

approximation and then by also approximating the flux function f in (I.I) by

a piecewise linear function. The purpose of the latter approximation is that

the modified equation with piecewise linear initial data can be efficiently

solved analytically.

The method we derive is written in conservation form and can be viewed,

algebraically, as a "limited" version of the Lax-Wendroff method. For a

linear problem it agrees with one of the flux-limiter methods studied by Roe

[17] and Sweby [18] but differs for nonlinear problems.

One advantage, we feel, of the geometric approach is that it gives more

insight into the behavior of algorithms. It may make it easier to show, for

example, that the resulting numerical solution satisfies the entropy

condition. Toward this end we choose a geometric form of the entropy

condition, namely that solutions satisfy the spreading estimate

(1.2) u(x,t) - u(y,t) < ! if x > y
x-y --t'

for some constant c. Oleinik [12] has shown that weak solutions to (I.I)

satisfying (1.2) are unique.

In Section 3 we prove (1.2) for the approximations produced by Godunov's

method. The analysis shows, moreover, that these grid functions satisfy

(1.2) with the correct constant c away from sonic points and points where

the CFL condition is binding. Thus, Godunov's method spreads rarefaction

waves at the physically correct rate most of the time. At the sonic point,
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(1.2) is satisfied with a constant that is two to four times larger. This

causes a sonic rarefaction to develop a kink, or "dog leg" at the sonic point,

as has frequently been observed without explanation in computations.

Unfortunately, the technical arguments used to prove (1.2) for Godunov's

method do not carry over directly to the second-order scheme so that we have

not obtained the spreading estimate in this case. However, by considering the

sonic rarefaction case we will argue that entropy-vlolating shocks cannot

persist. Moreover, numerical results look very good with spreading at the

correct rate everywhere, including at the sonic point.

2. Godunov's Method and Second-Order Extensions

We consider the scalar version of equation (I.i) and will always assume

that the flux function f is convex: f" > 0. We will denote the numerical

approximation to the solution u(xj,t n) by U_. Here xj = jh and3

tn = nk where h and k are the mesh width and time step, respectively.

Since we will be discussing formulas for a single step from tn to tn+ 1 we

will generally drop the superscripts and replace U_ and U_+I by Uj and3 3

_], respectively.

To take a single step with Godunov's method, a plecewlse constant

function w(x,t n) is defined which takes the value Uj in the interval

lj = (xj_I/2 ,xj+I/2). The equation (I.I) is then solved exactly up to time

tn+ 1 with this initial data to obtain w(X,tn+l). This can be done easily

if k is sufficiently small by solving a sequence of Riemann problems. The

new approximation U_ is then obtained by averaging the solution w(X,tn+ I)

over lj:
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(2.1) _ i w(x, )dx.
j = _ tn+l

X.

j-I/2

The method can also be rewritten in conservation form as

(2.2) _'3 = Uj _ hk [F(U;j) - F(U;j-I)]

where

1 in+l(2.3) F(U;i) = _ flw(xi+I/2,t))dt
t
n

is the "numerical flux" across xi+i/2 , and depends only Ui and Ui+ I. For

a scalar conservation law this expression for the flux can be simplified.

Assuming for convenience that we are away from the sonic point (so f'(u) _ 0

for u between Ui and Ui+ I) we have

If(Ui) if f. > O,(2.4) F(U;I)

if(Ui+I) if f" < O.

The formula for the sonic case is only slightlymore complicated. Using this

formulationallows Godunov'smethod to be appliedwith any size time step for

which the Courantnumber is less than i. For a scalar conservationlaw the

Courantnumber 9 is definedby

k {f.(u)i"(2.5) v = _ max

For _ < I, Godunov'smethod is TVD, i.e.,
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TV(_) < TV(U)

where the total variation is defined by

TV(U)= IUj+1- Uj[.
J

In modifying Godunov's method to obtain second-order accuracy, we follow

Van Leer [I0], [II] and replace the piecewise constant function w(x,t n)

defined above by a piecewise linear function which we will denote by v. This

replacement is conservative provided v is of the form

(2.6) v(x,t n) = Uj + sj(x - xj) for x Elj.

We wish to pick the slopes sj so that the total variation of v is the same

as with s. _ 0. One simple choice is
3

0 if (Uj+1 - Uj)(Uj - Uj_ I) _< 0
(2.7) sj = U - U. U. - Uj

sgn(Uj+ 1 - Uj) min{l j+l 31, I 3 -Ih "_ I} otherwise.

Using this choice of slopes we can define the following algorithm for solving

(1.1):

Algorithm 2.1.

I) Determine v(X,tn) based on {Uj} using (2.7).

2) Solve (I.I) exactly with initial data v(x,t n) to obtain v(X,tn+l).

3) Average v(X,tn+ I) as in (2.1) to obtain Uj.



-6-

Each of these steps is total variationdiminishing;so this definesa method

which is TVD. Moreover, it can be shown that this method is second-order

accuratein smooth regions,at least away from extremepoints of u.

Unfortunately,this is not a practicalmethod in most situationssince it

requires solving the conservationlaw (I.i) exactly with plecewlse linear

initial data. This is more difficultthan solvingRiemann problems. Various

modificationscan be made to Algorithm2.1 to give a more readilyimplemented

method.

Here we introducea variantwhich remains second-orderaccurate and TVD

and is easily implemented. We solve (i.I) with the plecewlselinear initial

data (2.6), but only after modifying the flux f in (I.I) to make this

tractable. Specifically,we replace f by a plecewlse linear function in

such a fashion that computing the flux across xj+ I/2 reduces to solving a

linear problem with plecewlse linear data. The solution to this problem is

easy to derive.

To computethe flux across xj+I/2,we first computethe _lopes (2.7) and

consider the function v(X,tn) in (2.6). Since the sonic point causes

difficulties,we delay discussionof this case to the end of this sectionand

begin by assumingthat f'Iv(X,tn)) # 0 for x € Ij_Jlj+l. Recall that we

are always assuming f is convex.

Set

±

(2.8) Ui = Ui • ½ hsi.

+ - +

By virtue of our choice of slopes (2.7), the points U_, Uj, Uj+I, Uj+1 are

monotonically ordered (though two or more may coincide). Let g(u) be a
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plecewise linear functionwhich interpolates f(u) at these four points and

set

if si # 0

+ _ UIUi

(2.9) gl =

f'(Ui) if si = 0

for i = j j+l so g[ is the slope of g(u) between U[ and U+' ' i"

Now consider the problem

(2.10) vt + g(v)x = 0

for tn _ t J tn+1 with the piecewiselinear initial data v(X,tn). We can

easily compute the flux across xj+ I/2 during [tn,tn+I] for this problem,

which we will denote G(U;j). Since we can rewrite(2.10) as vt + g'(v)vx = 0

and g'(v(xj+I/2,t)) is constantfor tn ! t ! tn+I, we find that

/

_U_. - (t - tn)Sj g3 if f" > 0(2.11)
v(xj+ I/2,t)

IN3+ I - (t - tn)Sj+ 1 gj+l if f" < 0.

Furthermore,

I U+

f(U_) + (u - Uj)gj+ " for u E int[Uj, j]

(2.12) g(u) =

- ,Uj+lJ_f(U_+I) --(u - Uj+l)g_+1 for u E int[Uj+1 +
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where int[a,b] denotes the interval with endpoints a and b. Using (2.13)

and these formulas, we find that the flux is

tn+ 1

G(U;j) = _ g(v(xj+i/2,t))dt
t
n

U_. 1(2.13a) (f( ) - _ ksj(g3)2 if f" > 0,

1 )2
(2.13b) f(U_.+l) - _ kSj+l(g3+ 1 if f" < 0.

Notice that if s. E 0 for all j, i.e., if we use piecewise constant initial
3

data, we recover the flux (2.4) of Godunov's method. Also note the similarity

of both (2.13a) and (2.13b) to the flux of the Lax-Wendroff method which can

be written in the form (2.2) with flux

In fact, for smooth solutions,

(2.15) G(U;j) = FLw(U;j ) + O(h 2)

and the O(h 2) term is a smooth function of j (except where sj = 0, i.e.,

at extreme points of U). It follows that in computing

(2.16) U--j= Uj - _ [G(U;j) - G(U;j-I)],

the O(h 2) terms cancel to O(h 3) showing that our scheme agrees with Lax-
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Wendroff to O(h 3) locally and hence is second-order accurate in smooth

regions, except near extrema of U (where it seems that all known second-

order TVD schemes reduce to first order accuracy [15]).

The use of the limited values sj and gj in (2.13) rather than the

corresponding expressions in (2.14) gives us a method that, unlike Lax-

Wendroff, is TVD. To see that this is so, note that it suffices to check the

following conditions :

(A) If Uj is a local maximum, i.e., Uj >__Uj_ I and Uj >__Uj+ 1 (resp.

local minimum), then U--j< Uj (resp. U--j>__Uj).

(B) If Uj_ 1 <__Uj < Uj+ 1 (resp. Uj_ 1 >__Uj >__Uj+ I) then

- -- + (resp. - > _. >__ +
Uj_ 1 _< Uj _< Uj+ 1 Uj_ 1 _ J Uj+l).

We are still assuming that we are away from the sonic point, specifically that

f'(u) has one sign on lj_l_J 1.3_Jlj+l. The sonic case is discussed below.

So suppose, for example, that f" > 0 and that Uj >__Uj_ 1 (all other cases

are completely analogous).

If Uj >__Uj+ 1 then we must check (A). In this case sj = 0 and

G(U;j) = f(Uj) while sj_ I >__0 and

+ 1 (gj_l)2 < f(U3 1) < f(Uj).G(U;j-I) = f(Uj_ I) -7 k sj_ I _ _ _

So,

<U.
-- j

and (A) is satisfied.

o
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If Uj _ Uj+ 1 then we must check (B). We require, of course, that the

Courant number be less than I; hence Uj depends only on values of v(X,tn)

in lj_ 1 (J lj _Jlj+ I. Since Uj_ 1 _ Uj d Uj+I we have si _ 0 for i = j-l,

j, j+l; and

- + U_ - +
(2.17) Uj_ I < Uj_ 1 < U7 < ! ! "-- -- 3 -- 3 UJ+I Uj+I

The new value U. is determined by averaging the exact solution to (2.10).
3

In our derivation we defined the piecewise linear flux g(u) locally; it had

one definition in computing G(U;j) and a different definition in computing

G(U;j-I). However, by the condition (2.17) these definitions are consistent

in the region where they overlap, and so we can define a single function

g(u) to compute both fluxes. Specifically, we can take

I + . *

f(U__ I) + (u - Uj_l)gj_ 1 for u J Uj_ I

g(u) f(U_) + (u + " * *= - Uj)gj for Uj_ 1 < u < U.

+ + *

f(Uj+ I) + (u - Uj+l)g_+ 1 for Uj J u,

where

* + . +

Ui = (f(Ui) - f(Ui+1) + gi+l Ui+l - giUil/(g;+1 - g;)

for i = j-l, j are the points of intersection of the piecewise linear

segments. By the convexity of f and (2.17), we find that

+ * , _

uj_ i uj_1! ! ! uj_<uj+t
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so that this definitionis consistentwith the previousdefinitionsand gives

the correct fluxes. Moreover,since gj-I _ gj _ gj+l' this plecewlselinear

approximationis also convex. It follows that Uj is obtained from Ui,

i = j-l, j, j+l, by solving a conservationlaw with a convex flux function

and, hence, by the TVD propertyof the exact solution,

_ __ +

uj_I< uj<_uj+I

so condition(B) is satisfiedand the method is TVD.

We now turn to the sonic case and derive formulasfor the flux across

xj+i/2 when the sonic point u0 lies in int[ - +Uj,Uj+I]. In some cases the

previous formulas (2.13) are still valid and, to avoid repeating these

expressions,we define

Gj g.j)2

(2.18)

1 )2
Gj+ I = f(U_+ I) - _ kSj+l(gj+1 •

We first note that if g_ and gj+l have the same sign then the

llnearlzed problem (2.10) can be solved just as before and the flux agrees

with (2.13),

/

)Gj if g3 > 0, g3+ 1 > 0G(U;J)

(Gj+I if io, g +1!o.
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If g_ and gj+l have different signs, then we must be more careful.

If g_ < 0 and gj+l > 0, then the discontinuity at xj+ 1/2 is a sonic

rarefaction. By solving (2.10) in this case we find that the flux is f(U_)
- +

if U_ < u0 < U_ and f(U_+l) if Uj+ 1 < u0 < Uj+I In the remaining case,

U_ < u0 < - the sonic point lies within the discontinuity in v(X,tn)
3 Uj+I'

In this case we must take special precautions to ensure that the rarefaction

wave spreads properly and an entropy violating shock does not persist (see

Section 3). Rather than using the usual piecewise linear flux g(u) we

include another interpolating point (u0, f(u0)) in g(u). The flux is then

simply f(u0).

These last three expressions for the flux can be conveniently combined to

give

G(U;j) = f(v0) if g_ < 0, gj+l > 0

where

(2.19) Vo = minimax(U_,uo) ' )j Uj+I •

Now suppose g_ < 0 and gj+l > 0. In order to solve the linearized

problem (2.10) we nmst also specify g(u) for U+ < u _< - in this case.
-- Uj+ 1

We take another linear segment interpolating f at these points with slope

- + if U_.+I# +

(2.20) g_+i/2 =I_ Uj+I- Uj / Uj,

U,.

f'(U ) if Uj+1 3
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In the solution to (2.10) the discontinuity at xj+I/2 is now a shock which

may propagate to the left or right or be stationary. If the shock moves to

the left (for all t E (tn,tn+l)), then the flux across xj+I/2 is Gj+ I

while if it moves to the right the flux is Gj. Unfortunately, since the

initial data is not constant on the two sides of the discontinuity, the shock

may switch direction and cross xj+I/2 at some time t E (tn,tn+ I) at which

point the flux is discontinuous. This is most easily visualized by first

considering the multl-valued solution obtained in solving the llnearized

problem _ and then inserting a shock according to the equal area rule. By

taking the slopes sj and sj+ I quite different one can construct examples

where the shock is first on one side of xj+i/2 and later on the other.

For simplicity we ignore this possibility and always use Gj or Gj+ I

depending on the initial motion of the shock. This is the one situation in

which we do not use the exact solution to the llnearized problem, but

experimentally this approximation seems to work well.

If v(X,tn) is discontinuous at xj+I/2 , i.e., if U_3 _ Uj+I,- then the

initial motion of the shock is determined by the motion of the discontinuity

in the multl-valued solution and hence by the sign of g_+i/2 . We use

f

= IGj if g3+i/2 > 0,G(U;j)

(Gj+I if i/2<0

if g_+i/2 = 0 then the discontinuity is stationary and the initial motion of

the shock is determined by the relative sizes of sj(g_) 2 and Sj+l(g_+l )2.
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Specifically,

G(U;j) = I Gj if sj(g;) 2 _ Sj+l(g;+l)2 'Gj+ 1 otherwise.

It turns out that this is also the appropriate formula if U_ = -
3 Uj+ 1. In

this case sj = sj+ I and we are simply comparing the magnitudes of g_ and

g;+l"

We have now derived formulas for every possible case. Luckily all of

these formulas can be summarized quite neatly as follows:

Algorithm 2.2

U--j= U. k [G(U;J) - G(U;j-I)]j -

where

m

I) If g; > 0, g_+l/2(Uj+ 1 - U?) = 0, and g;+l < 0:J

G(U;j) -- I Gj if sj(g;) 2 >_ Sj+l(g;+l)2Gj+ 1 otherwise.

2) Otherwise:

Gj if g; > 0, g_+ 1/2 > 0

G(U;j) = Gj+ 1 if g_+ I/2 <__0, g;+l -< 0

_f(v 0) if g_ < 0, g;+l > 0.
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Here we have used the expressions (2.7), (2.8), (2.9), (2.18), (2.19),

and (2.20). These formulas cover all cases: the sonic shock, sonic

rarefaction and also the usual nonsonlc case (2.13). However, in implementing

this method it is of course best to use (2.13) whenever gj gj+l > 0. We

should compute g_+i/2 and perform the various tests above only in the

relatively rare sonic case.

It is possible to show that the method remains TVD even near sonic points

when these formulas are used. This is done in precisely the same way as

before but is slightly more complicated since several cases must be

considered. We omit the details.

Numerical experiments confirm that the method is second-order accurate

and TVD. To check the second-order accuracy we applied the method to Burgers"

equation ut + uux = 0 with smooth (sine wave) initial data and periodic

boundary conditions. Both the L1 and L_ norm of the errors decrease at

the correct rate as the mesh is refined.

Figures 2.1a and 2.1b show the results of a typical calculation in which

a shock forms. Again the method is applied to Burgers" equation with initial

data

= _-.5, x < .5

/

u(x_0)

.2 + .7 cos(2_x) x > .5

and periodic boundary conditions. The discontinuity at x = .5 spreads into

a rarefaction fan, and the smooth decreasing profile sharpens into a shock.

Figures 2.1a and 2.1b show the results at time t = 0.2 and t = 0.4,

respectively. For comparison, Figure 2.2 shows the results of Godunov's

method. Notice the improved accuracy in the smooth portion of the solution

with the second-order method and the lack of oscillations near the shock.
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Godunov's method suffers in particular from a lack of smoothness in the

rarefaction wave at the sonic point u0 = 0 which does not occur with the

second-order scheme. This is discussed in Section 3.

It is interesting to compare this method to the flux-limiter methods. We

find that for a linear problem it is the same as one of the flux-limiter

methods of [18] but that it differs for nonlinear problems.

First consider the linear problem

ut + au = 0x

with constant a > 0. Then accordlng to (2.13),

G(U;j) = aU_ _ I 2 1 k
3 _ ks.3 a = aUj + _ ha(l - a _)s.3

so that

(2.21) _'3 = Uj -_k [G(U;j+I) - G(U;j)]

_ 1 sj-I)= Uj v(Uj+I - Uj) - _ h_(l - v)(sj -

where _ = ak/h. If we define rj to be the ratio

U. - uj(2.22) r. = $ -I

3 Uj+ 1 - Uj

then by virtue of (2.7),

sj = _(rj)(Uj+ 1 - Uj)
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where

0 if r _<0,

(2.23) _(r) = r if 0 <__r <_ i,

I if r> I.

Then (2.2 I) becomes

-- I

Uj_ = U.3 - V(UJ+I - 5 ) - _ (I - v)_A_[_(rj)(Uj+ 1 - Uj)]
(2.24)

where A m. = m. This is precisely the flux-limiter method of [18]
- 3 3 - mj-l"

with the so-called "minmod" limiter given by (2.23). We note in passing that

other flux-limiter methods are given by different choices of the limiter

and that taking _(r) = 1 for all r gives the Lax-Wendroff method.

The flux-limiter method is extended to the nonlinear problem (I.i) by

generalizing (2.24) to

-- =U k
(2.25) Uj j - _ [f(Uj) - f(Uj_l)]

21hkA_ [_(rj)(l - _j+I/2)(f(Uj+l) - f(Uj))]

in the case f" > 0, where

k[f(Uj+l) - f(Uj)l
_j+ I/2 = _[ Uj+ I Uj J

and

(I - 9j_I/2)(f(Uj) - f(Uj_l) )

rj - (I _j+i/2)(f(Uj+l) - f(Uj)) "

By contrast, our method in the same situation gives
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_. =U k U_. 13 J - _ A_[f( ) - _ ksj(g_)2].

Using the definitions of the various quantities appearing here, we can

rearrange this to obtain a form similar to (2.25):

-- k (f(Uj) - f(Uj)) 1 k A [(I k 3(2.26) Uj = Uj - _ - _ _ _ - _ g_)(f(U ) - f(Uj))].

This is very similar to (2.25) but the limiting is done in a different manner.

III. Spreading of Rarefaction Waves

Weak solutions to conservation laws are not necessarily unique. In

general there is some additional condition, such an an entropy condition,

required to identify the unique physically relevant solution [5], [9]. For

the scalar conservation law (I.I) with a convex flux f, such conditions are

well known in several equivalent forms. One form considered by Oleinik [12]

requires that the solution satisfy the spreading estimate

(3.1) u(x,t) - u(y,t) < x - y
-- at

for all x > y and t > 0 where a > 0 is some constant. In fact, one can

take a = a where

(3.2) e = inf f"(u)

and a > 0 by convexity. We can define a locally to obtain more precise
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information on the rate of spreading of rarefaction waves in different regions

of the solution. Note that at points where Ux(X,t ) exists we obtain

1

(3.3) Ux(X,t) <_-_- .

We would like to prove an estimate analogous to (3.1) for the numerical

solutions generated by a particular scheme as the mesh is refined with k/h

held fixed. If there exists a constant c > 0 such that

n _un< 1
(3.4) UJ+I 3 --

for each point on every grid, then the limit solution satisfies (3.1) with

a = ch/k and hence satisfies the entropy condition. The possibility of

proving estimates of this form was independently noticed by Tadmor [19]. He

proved the estimate (3.4) for the Lax-Friedrichs scheme using essentially the

same technique.

This form of the entropy condition seems easiest to deal with when

studying second-order schemes of the type considered here. Moreover, by

obtaining an estimate of the form (3.4) we can compare the rate of spreading

in the numerical solution with the correct rate. Ideally we would like

c = ak/h in (3.4).

Our interest in obtaining such quantitative information stems from the

observation that rarefaction waves computed with some numerical methods,

including Godunov's method, do not always spread at the proper rate in spite

of the fact that the entropy condition is satisfied. This difficulty is most

frequently observed at the sonic point. As we will show with Godunov's
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method, rarefaction waves spread with at best one-half the correct rate in

this region. This leads to a kink in the rarefaction wave at the sonic

point. This is frequently observed in practice and has been termed a "dog-

leg" by Sweby [18]. For an example see Figure 2.2 where we have applied

Godunov's method to the Burgers equation ut + uux = 0.

Although our main interest is in the second-order methods of Section 2,

we will begin by analyzing Godunov's method in some detail. This will provide

a basis of comparison and also provides some insight and quantitative

information on the dog-leg phenomenon.

Let

Dn = max (U_+lj - U_).

Then our goal is to find a constant c > 0 so that

(3.5) Dn <i
-- cn

for all n. In fact we will consider only a single time step and, as in

Section 2, replace Dn and Dn+l by D and D respectively. We will

determine a constant c > 0 for which

(3.6) _ < D - cD2

from which (3.5) follows by induction.

We also let

(3.7) D = - Uj3 Uj+I
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and note that

(3.8) D. < 2_.h
3 --k_

for all time steps by virtue of the Courant number restriction

[_.kf'(u)[_<I. Here a is as in (3.2) and (3.8) followsfrom

j+lk D_ a < k f,,
J _ _-j (_)d_

U

J

k

= _ [f'(Uj+ I) - f'(Uj)]

< 2.

Now consider the mesh point xj and suppose to begin with that

f'(u) > 0 on lj_l_J lj L_Jlj+I. Then we will show that

(3.9) D. < D - cD2
3 --

with c > =k/2h and that, in fact, we can generally use c = ak/h. Since

f" > 0, applying Godunov's method (2.2) and (2.4),

-- k

Uj+ 1 = Uj+ I - _ [f(Uj+ I) - f(Uj)],

(3.10)

k [f(Uj) - f(Uj 1)]55

Subtracting these and using (3.7) gives
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D.j = D.j_ _k [f(Uj+l) - 2f(Uj) + f(Uj_l) ]

= D. k [(Dj - D )f'(Uj) + I D2 f,,(_j) + I 23 - _ j-I _ j _ Dj-I f"(_j-I )]

where we have expanded both f(Uj+ I) and f(Uj_ I) in Taylor series about

Uj and Uj_ 1 <_ _j-i <- Uj _< _j <__Uj+ I. Rearranging gives

(3.11) Dj = (I _ _k f'(Uj))Dj + _k f'(Uj)Dj_I

I k [D_ f"(_j) + 2 f,,(2 h Dj-I _j-i )]"

k

Since 0 < _ f'(Uj)< I, the first two terms are a convex combination of Dj

and Dj_ I and consequently bounded by

(3.12) D, = max(Dj_ I,Dj).

Dropping the term corresponding to the smaller of Dj and Dj_ 1 from the sum

in brackets in (3.11) and using (3.2) gives

(3.13) D < D, 1 k 2j _ -y_ a D, .

The term on the right of this inequaiity is an increasing function of D,

for D, satisfying (3.8), and so we can replace D, by D = max Dj and

conclude that (3.9) holds with c = ek/2h.

Moreover, except near the extreme points of U (i.e., the edge of the

rarefunction wave) we can do better than this. Typically in the interior of

the rarefaction wave we have Dj_ 1 - Dj.
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If in fact

(3.14) Dj_ 1 = Dj,

then by retaining both terms in the sum in brackets in (3.11) we remove the

factor 1/2 in (3.13) and obtain

(3.15) D. < D k
3 -- - h" a D2"

Even if (3.14) does not hold exactly we can consider modifying the data by

increasing Uj+ 1 or decreasing Uj_ 1 so that (3.14) does hold. Then (3.15)

holds for the modified DL, but it is easy to verify (using the fact that

Godunov's method is monotone) that the original D. is bounded above by the
3

modified Dj so (3.15) holds for the original data. This argument works

provided modifying the data does not violate the Courant number restriction,

which it might near extreme points of U.

Exactly the same arguments can be applied to the case where f'(u) < 0

on IjU lj+l _lj+ 2. We conclude that, away from the sonic point,

rarefaction waves spread at the correct rate except perhaps near the edge of

the rarefaction wave if the Courant number restriction is binding there.

Now consider the sonic case, where Uj_ 1 _ u0 _ Uj+ I. Applying

Godunov's method in this case gives

-- k [f(Uj+l) _ f(u0)]Uj+ 1 = Uj+ 1 - _

k [f(u0) - f(Uj)].
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Subtracting gives

-- k

(3.16) Dj = Dj - _ F2

where

F2 = f(Uj+ I) - 2f(u 0) + f(Uj).

Since f'(u0) = 0, expanding f(Uj+I) and f(Uj) about u0 gives

1 2 f,, A2-
(3.17) F2 = _ IAJ+I (_J+I) + 3 f"(_J))

where Aj+ 1 = Uj+ I - u0, Aj = u0 - Uj, and Uj < Sj _< u0 < _j+l --<Uj+I"

Since Aj + Aj+ 1 = Dj we have

1 D2 < F2 < I 2(3.18) _ _ J _ __ a Dj.

So from (3.16) we obtain (3.6) with a value of c which is at worst 1/4 the

correct value and at best one-half the correct value. The worst case occurs

i

when Aj = Aj+ 1 = _ Dj, i.e., if the sonic point falls half way between Uj

and Uj+ I. The best case occurs when Aj Aj+ I = 0 and either Uj or Uj+ 1

is equal to u0.

Summarizing these results, we can obtain a global bound of the form (3.5)

with c = _k/4h which shows that the entropy condition is satisfied.

Moreover, we generally have spreading at the correct rate except near the

sonic point, where the rate is at best one-half the correct rate.
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These results can be seen more geometrically by considering Figures 3.1 -

3.4, which for simplicity we have shown for Burgers _ equation where

rarefaction waves are linear in x. Moreover, we have taken Dj_ 1 = Dj.

Figure 3.1 shows the initial conditions U as the solid piecewise constant

function. After solving Burgers _ equation with this data, we obtain the

dashed line. It is this function which is averaged to give U., indicated by
J

dots. Clearly Uj and Uj+ 1 both decrease, but Uj+ I decreases by a greater

amount so that the difference Dj also decreases. A little reflection shows

that Dj decreases by i/h times the area of the shaded rectangle drawn in

Figure 3.2. The height of this rectangle is Dj, and the length is easily

computed to be kD._, where = = f" = 1 for Burgers _ equation. So,
3

_. = D k (Dj 2J J )

which agrees with (3.15).

Now consider the sonic case and suppose first that Uj = 0. Then we have

the situation in Figure 3.3, and Dj decreases by I/h times the shaded

triangle, which is one-half the area of the rectangle in Figure 3.2. This

accounts for the spreading rate being one-half the correct rate in this case.

Finally, considering the worst possible sonic case, where

1 (Uj + U. ) we obtain Figure 3.4. Again, Dj decreases by 1/h timesUo = _ _+I '

the shaded area, which is now one quarter the original area.

We now turn to the second-order accurate scheme given by Algorithm 2.2.

Unfortunately, we have not yet been able to prove the desired spreading

estimates in general. The approach used above for Godunov's method does not
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apply directly since it is possible to construct initialdata for which the

difference Dn actually increases in a single time step. This undesirable

behavior does not persist in later time steps, and experimental evidence

indicatesthat rarefactionwaves do spreadat the correctrate asymptotically,

but clearlywe can no longeruse a bound of the form (3.9) to prove this.

Nonetheless,we can gain some theoreticalconfidence in the method by

considering the sonic rarefaction case. In practice this is the most

worrisome case; violationof the entropy conditionis usually manifested in

the form of a sonic shock which fails to spread. Intuitively,we expect that

the second-ordermethod, being an extension of Godunov's method, will not

permit such behavior. In fact, if we considerdata for which

U_< u0 < -3 Uj+l

so that the sonic point lles within the discontinuitybetween Uj and Uj+I,

we find that

+ 1 +i)2G(U;j+I)= f(Uj+ I) - _ k Sj+l(g _ Z f(Uj+l),

(3.19) G(U;j) = f(u0),

1 _ f(Uj).G(U;j-I)= f(U ) - _ k sj(g_)2

The inequalitieshere followfrom the Courantnumber restrictionand the

convexityof f. For example,0 > kg_>__-handby thedefinitionof g_,

f(Uj) = f(U3)+ hsj g_
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so that

f(Uj) <__y

1 hsj= f(U_.) + _ g_

1

<__f(U_.) - _ ksj(g_) 2

and similarly for the other inequality.

From (3.19) we obtain

-- k [G(U;j+I) - 2G(U;j) + G(U;j-I)]
oj+1 -_j = oj+1 - oj -_

k

>__Uj+1 - % -_ [f(Uj+I) - 2f(u0) + f(Uj)].

Comparing this to (3.16) shows that the second-order method has spreading with

at least the same rate as Godunov's method in this situation.

In practice, it seems to be much better than Godunov's method as in

Figure 2.1. The prominent kinks in the rarefaction wave computed with

Godunov's method are entirely missing in the second-order calculation.

As a final comment about entropy, we note that by placing additional

constraints on the slopes sj we could obtain the standard entropy inequality

for all entropies of the form n(u) = lu - cI with c any real constant.

Kruzkov [7] has shown that this is sufficient to guarantee uniqueness. We

will sketch this only briefly since we do not feel that such a modification is

necessary in practice.

For Godunov's method it follows from Jensen's inequality for convex

functions that the entropy condition is satisfied. If (n,q) is any convex
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entropy pair (see, e.g., [9]) then

iJ+ I/2 /

_J+ I/2

I - 1 n(w(x, ))dx
n(_j) = _ n(Uj)dx <___ tn+ 1

xj_i/2 x._-1/2

where, as in Section 1, w(x,t) is the exact solution to (I.I) on (tn,tn+ I)

with piecewise constant initial data Uj. It follows that

k [q(w(xj+ ) q(w(xj_ , ))]
(3.20) n(_j) - n(Uj) < _ 1/2,tn+I) - i/2 tn+ 1

which is the discrete form of the entropy inequality.

For the second-order method we must also consider the step going from

Uj to the new piecewise linear function v(X,tn+ I) = Uj +_j(x - xj) on

(xJ-IL'vZ xJ+ll-)'vZ For the Kruzkov entropies we would like to show that

X, Xo

.1+ 1/2 .J+ 1/2

(3.21) J Iv(X'tn+l) - cldx--<7 Iv(X'tn+l) - cldX
X. X.

J-I/2 ]-1/2

since we can then show the discrete entropy inequality

--Ej- Ej _<_k [Q(U;j+I) - Q(U;j)]

where
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X,

If+½
Ej = _j Iv(x,tn) - c Idx,

xj_i/2

in+lQ(U;j) =- q(v(xj_i/2,t))dt.

t
n

Here v(x,t) is the solution to the linearized form of (I.I) with piecewise

linear initial data.

However, (3.21) may fail to hold for some values of c if the slopes

sj defining v are chosen according to (2.7). Since (3.21) does hold if

s. = 0, it should also hold for s. sufficiently small. In particular, we
3 3

can show that a sufficient condition for (3.21) is

-- min

(3.22) ]sj[ < x E I. [Vx(X'tn+l)["
3

Since in smooth regions of the flow we expect s. - u , this is not much of a
3 x

restriction and the modified method should still be second-order accurate. On

the other hand, the restriction (3.22) would be difficult to impose in

practice and does not seem necessary since we have not encountered any

difficulties with the unmodified method.
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