
RESEARCH Open Access

A geometric approach to multi-view compressive
imaging
Jae Young Park1* and Michael B Wakin2

Abstract

In this paper, we consider multi-view imaging problems in which an ensemble of cameras collect images

describing a common scene. To simplify the acquisition and encoding of these images, we study the effectiveness

of non-collaborative compressive sensing encoding schemes wherein each sensor directly and independently

compresses its image using randomized measurements. After these measurements and also perhaps the camera

positions are transmitted to a central node, the key to an accurate reconstruction is to fully exploit the joint

correlation among the signal ensemble. To capture such correlations, we propose a geometric modeling

framework in which the image ensemble is treated as a sampling of points from a low-dimensional manifold in

the ambient signal space. Building on results that guarantee stable embeddings of manifolds under random

measurements, we propose a “manifold lifting” algorithm for recovering the ensemble that can operate even

without knowledge of the camera positions. We divide our discussion into two scenarios, the near-field and far-

field cases, and describe how the manifold lifting algorithm could be applied to these scenarios. At the end of this

paper, we present an in-depth case study of a far-field imaging scenario, where the aim is to reconstruct an

ensemble of satellite images taken from different positions with limited but overlapping fields of view. In this case

study, we demonstrate the impressive power of random measurements to capture single- and multi-image

structure without explicitly searching for it, as the randomized measurement encoding in conjunction with the

proposed manifold lifting algorithm can even outperform image-by-image transform coding.

1. Introduction
Armed with potentially limited communication and com-

putational resources, designers of distributed imaging sys-

tems face increasing challenges in the quest to acquire,

compress, and communicate ever richer and higher-reso-

lution image ensembles. In this paper, we consider multi-

view imaging problems in which an ensemble of cameras

collect images describing a common scene. To simplify

the acquisition and encoding of these images, we study the

effectiveness of non-collaborative Compressive Sensing

(CS) [1,2] encoding schemes wherein each sensor directly

and independently compresses its image using a small

number of randomized measurements (see Figure 1). CS is

commonly intended for the encoding of a single signal,

and a rich theory has been developed for signal recovery

from incomplete measurements by exploiting the assump-

tion that the signal obeys a sparse model. In this paper, we

address the problem of how to recover an ensemble of

images from a collection of image-by-image random mea-

surements. To do this, we advocate the use of implicitly

geometric models to capture the joint structure among

the images.

CS is particularly useful in two scenarios. The first is

when a high-resolution signal is difficult to measure

directly. For example, conventional infrared cameras

require expensive sensors, and with increasing resolution

such cameras can become extremely costly. A compres-

sive imaging camera has been proposed [3] that can

acquire a digital image using far fewer (random) mea-

surements than the number of pixels in the image. Such

a camera is simple and inexpensive and can be used not

only for imaging at visible wavelengths, but also for ima-

ging at non-visible wavelengths.

A second scenario where CS is useful is when one or

more high-resolution signals are difficult or expensive to

encode. Such scenarios arise, for example, in sensor net-

works and multi-view imaging, where it may be feasible to

measure the raw data at each sensor, but joint, collaborative
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compression of that data among the sensors would require

costly communication. As an alternative to conventional

Distributed Source Coding (DSC) methods [4], an exten-

sion of single-signal CS known as Distributed CS (DCS) [5]

has been proposed, where each sensor encodes only a ran-

dom set of linear projections of its own observed signal.

These projections could be obtained either by using CS

hardware as described above, or by using a random, com-

pressive encoding of the data collected from a conventional

sensor.

While DCS encoding is non-collaborative, an effective

DCS decoder should reconstruct all signals jointly to

exploit their common structure. As we later discuss,

most existing DCS algorithms for distributed imaging

reconstruction rely fundamentally on sparse models to

capture intra- and inter-signal correlations [5-8]. What

is missing from each of these algorithms, however, is an

assurance that the reconstructed images have a global

consistency, i.e. that they all describe a common under-

lying scene. This may not only lead to possible confu-

sion in interpreting the images, but more critically may

also suggest that the reconstruction algorithm is failing

to completely exploit the joint structure of the

ensemble.

To better extend DCS techniques specifically to pro-

blems involving multi-view imaging, we propose in this

paper a general geometric framework in which many

such reconstruction problems may be cast. We specifi-

cally focus on scenarios where a representation of the

underlying scene is linearly related to the observations.

This is mainly for simplicity, and there is plenty of

room for the development of joint reconstruction algo-

rithms given nonlinear mappings; however, we present a

number of scenarios where a linear mapping can be

found. For these problems, we explain how viewing the

unknown images as living along a low-dimensional

manifold within the high-dimensional signal space can

inform the design of effective joint reconstruction algo-

rithms. Such algorithms can build on existing sparsity-

based techniques for CS but ensure a global consistency

among the reconstructed images. We refine our discus-

sion by focusing on two settings: far-field and near-field

multi-view imaging. Finally, as a proof of concept, we

demonstrate a “manifold lifting” algorithm in a specific

far-field multi-view scenario where the camera positions

are not known a priori and we only observe a small

number of random measurements at each sensor. Even

in such discouraging circumstances, by effectively

exploiting the geometrical information preserved in the

manifold model, we are able to accurately reconstruct

both the underlying scene and the camera positions.

2. Background on signal models and compressive
sensing
A. Concise signal models

Real-world signals typically contain some degree of struc-

ture that can be exploited to simplify their processing

and recovery. Sparsity is one model of conciseness in

which the signal of interest can be represented as a linear

combination of only a few basis vectors from some dic-

tionary. To provide a more formal statement, let us con-

sider a signal x Î ℝ
N. (If the signal is a 2D image, we

reshape it into a length-N vector.) We let Ψ Î ℝ
N × N

denote an orthonormal basisa for ℝN, with its columns

acting as basis vectors, and we write x = Ψa, where a :=

Ψ
T x Î ℝ

N denotes the expansion coefficients of x in the

y1 Φ1
x1

y2 Φ2
x2

yJ ΦJ
xJ

Figure 1 Multi-view compressive imaging setup. A common scene is observed by J cameras from different positions. Each camera j encodes

a small number of random measurements yj of its observed image xj, and a single decoder jointly reconstructs all images {xj} from the ensemble

of compressive measurements {yj}.
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basis Ψ. We say that x is K-sparse in the basis Ψ if a con-

tains only K nonzero entries. Sparse representations with

K ≪ N provide exact or approximate models for wide

varieties of signal classes, as long as the basis Ψ is chosen

to match the structure in x. In the case of images, the 2D

Discrete Wavelet Transform (DWT) and 2D Discrete

Cosine Transform (DCT) are reasonable candidates for Ψ

[9].

As an alternative to sparsity, manifolds have also been

used to capture the concise structure of multi-signal

ensembles [10-14]. Simply put, we can view a manifold

as a low-dimensional nonlinear surface within ℝ
N.

Manifold models arise, for example, in settings where a

low-dimensional parameter controls the generation of

the signal (see Figure 2). Assume, for instance, that x =

xθ Î ℝ
N depends on some parameter θ, which belongs

to a p-dimensional parameter spaceb that we call Θ.

One might imagine photographing some static scene

and letting θ correspond to the position of the camera:

for every value of θ, there is some N-pixel image xθ that

the camera will see. Supposing that the mapping θ ® xθ
is well-behaved, then if we consider all possible signals

that can be generated by all possible values of θ, the

resulting set ℳ: = {xθ : θ Î Θ} ⊂ℝN will in general cor-

respond to a nonlinear p-dimensional surface within ℝ
N.

When the underlying signal x is an image, the resulting

manifold ℳ is called an Image Appearance Manifold

(IAM). Recently, several important properties of IAMs

have been revealed. For example, if the images xθ contain

sharp edges that move as a function of θ, the IAM is

nowhere differentiable with respect to θ [12]. This poses

difficulties for gradient-based parameter estimation tech-

niques such as Newton’s method because the tangent

planes on the manifold (onto which one may wish to pro-

ject) do not exist. However, it has also been shown that

IAMs have a multiscale tangent structure [12,13] that is

accessible through a sequence of regularizations of the

image, as shown in Figure 3. In particular, suppose we

define a spatial blurring kernel (such as a lowpass filter)

denoted by hs, where s >0 indicates the scale (e.g., the

bandwidth or the cutoff frequency) of the filter. Then,

although ℳ: = {xθ : θ Î Θ} will not be differentiable, the

manifold ℳs = {hs * xθ : θ Î Θ} of regularized images will

be differentiable, where * denotes 2D convolution. Tan-

gent planes do exist on these regularized manifolds ℳs,

and as s ® 0, the orientation of these tangent planes

along a given ℳs changes more slowly as a function of θ.

In the past, we have used this multiscale tangent struc-

ture to implement a coarse-to-fine Newton method for

parameter estimation on IAMs [13].

The rich geometrical information that rests within an

IAM makes it an excellent candidate for modeling in

multi-view imaging. Letting θ represent camera position,

all of the images in a multi-view ensemble will live

along a common IAM, and as we will later discuss,

image reconstruction in the IAM framework can ensure

global consistency of the reconstructed images.

B. Compressive sensing

In conventional signal acquisition devices such as digital

cameras and camcorders, we first acquire a full N-

dimensional signal x and then apply a compression tech-

nique such as JPEG or MPEG [9]. These and other

transform coding techniques essentially involve comput-

ing the expansion coefficients a describing the signal in

some basis Ψ, keeping only the K-largest entries of a,

and setting the rest to zero. While this can be a very

effective way of consolidating the signal information,

one could argue that this procedure of “first sample,

then compress” is somewhat wasteful because we must

measure N pieces of information only to retain K < N

coefficients. For certain sensing modalities (such as

infrared), it may be difficult or expensive to acquire so

many high-resolution samples of the signal.

The recently emerged theory of CS suggests an alter-

native acquisition scheme. CS utilizes an efficient

R
N

R
M

xθ1
xθ2

θ1 θ2 Θ

Φθ → xθ

Φxθ1
Φxθ2

M

ΦM

Figure 2 A manifold ℳ can be viewed as a nonlinear surface in ℝ
N. When the mapping between θ and xθ is well-behaved, as we trace out

a path in the parameter space Θ, we trace out a similar path on ℳ. A random projection F from ℝ
N to a lower dimensional space ℝ

M can

provide a stable embedding of ℳ, preserving all pairwise distances, and therefore preserving the structure within an ensemble of images. The

goal of a manifold lifting algorithm is to recover an ensemble of images from their low-dimensional measurements.
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encoding framework in which we directly acquire a

compressed representation of the underlying signal by

computing simple linear inner products with a small set

of randomly generated test functions. Let us denote the

full-resolution discrete signal as x Î ℝ
N and suppose

that we generate a collection of M random vectors, ji Î

ℝ
N , i = 1, 2, . . ., M . We stack these vectors into an M

× N matrix F = [j1 j2 ... jM]
T, which we refer to as a

measurement matrix. A CS encoder or sensor produces

the measurements y = Fx Î ℝ
M, possibly without ever

sampling or storing x itself.

At the decoder, given the random measurements y

and the measurement matrix F, one must attempt to

recover x. The canonical approach in CS is to assume

that x is sparse in a known basis Ψ and solve an optimi-

zation problem of the form [1,2]

min
α

||α||1s.t. y = ��α, (1)

which can be recast as a linear program. When there

is bounded noise or uncertainty in the measurements, i.

e. y = Fx + n with ||n||2 ≤ ε, it is common to solve a

similar problem [15]:

min
α

||α||1s.t. ||y − ��α||2 ≤ ε, (2)

which is again convex and can be solved efficiently.

Depending on the measurement matrix F, recovery of

sparse signals can be provably accurate, even in noise. One

condition on F that has been used to establish recovery

bounds is known as the Restricted Isometry Property

(RIP) [16], which requires that pairwise distances between

sparse signals be approximately preserved in the measure-

ment space. In particular, a matrix F is said to satisfy the

RIP of order 2K with respect to Ψ if there exists a constant

0 < δ2K <1 such that for all K-sparse vectors x1, x2 in the

basis Ψ the following is satisfied,

(1 − δ2K)||x1 − x2||
2
2 ≤ ||�x1 − �x2||

2
2 ≤ (1 + δ2K)||x1 − x2||

2
2. (3)

If F satisfies the RIP of order 2K with δ2K sufficiently

small, it is known that (1) will perfectly recover any K-

sparse signal in the basis Ψ and that (2) will incur a

recovery error at worst proportional to ε [15]. The per-

formance of both recovery techniques also degrades

gracefully if x is not exactly K-sparse but rather is well

approximated by a K-sparse signal.

It has been shown that we can obtain an RIP matrix F

with high probability simply by taking M = O(K log(N/K))

and populating the matrix with i.i.d. Gaussian, Bernoulli, or

more general subgaussian entries [17]. Thus, one of the

hallmarks of CS is that this requisite number of measure-

ments M is essentially proportional to the sparsity level K

of the signal to be recovered.

In addition to families of K-sparse signals, random

matrices can also provide stable embeddings for mani-

folds (see Figure 2). Letting M denote a smoothc p-

dimensional manifold, if we take M = O(p log(N)) and

generate F randomly from one of the distributions

above, we will obtain an embedding Fℳ:= {Fx : x Î

ℳ} Î ℝ
M such that all pairwise distances between

points on the manifold are approximately preserved

[14], i.e. such that (3) holds for all xθ1
, xθ2

∈ M . Geode-

sic distances are also approximately preserved. Again,

the requisite number of measurements is merely propor-

tional to the information level of the signal, which in

this case equals p (the dimension of the manifold),

rather than the sparsity level of the signal in any parti-

cular dictionary. All of this suggests that manifolds may

be viable models to use in CS recovery; see [18] for

additional discussion on the topic of using manifold

models to recover individual signals.

We see from the above that random measurements

have a remarkable “universal” ability to capture the key

information in a signal, and this occurs with a number

of measurements just proportional to the number of

degrees of freedom in the signal. Only the decoder

attempts to exploit the signal structure, and it can do so

by positing any number of possible signal models.

In summary, in settings where a high-resolution signal

x is difficult or expensive to measure directly, CS allows

R
N

Θ

Figure 3 The multiscale structure of manifolds. The top

manifold in this figure corresponds to the collection of images of a

teapot that could be acquired from different camera positions θ.

While manifolds like this containing images with sharp edges are

not differentiable, manifolds of images containing smooth images

are differentiable, and the more one smoothes the images, the

smoother the manifold becomes.
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us to replace the “first sample, then compress” paradigm

with a technique for directly acquiring compressive

measurements of x. To do this in practice, we might

resort to CS hardware that directly acquires the linear

measurements y without ever sampling or storing x

directly. Several forms of compressive imaging architec-

tures have been proposed, ranging from existing data

collection schemes in Magnetic Resonance Imaging

(MRI) [19] to more exotic CS-based techniques. One

architecture [3], for example, replaces the conventional

CCD/CMOS sensor in a digital camera with a digital

micromirror device (DMD), which modulates the

incoming light and reflects it onto a single photodiode

for measurement. Some intriguing uses of this inexpen-

sive “single pixel camera” could include infrared or

hyperspectral imaging, where conventional high-resolu-

tion sensors can cost hundreds of thousands of dollars.

Before proceeding, however, we note that CS can also

be useful in settings where it is possible to acquire high-

resolution signals, but is difficult or expensive to subse-

quently encode them. For example, x might represent a

video signal, for which direct measurement is possible,

but for which subsequent compression typically requires

exploiting complicated spatio-temporal correlations

[7,8]. A more straightforward encoder might simply

compute y = Fx for some random, compressive F.

Other scenarios where data are difficult to encode effi-

ciently might be in sensor networks or in multi-view

imaging, which is the topic of this paper and is dis-

cussed further in the next section.

3. Problem setup and related work
A. Multi-view imaging using image-by-image random

measurements

Let us now turn to the problem of distributed image

compression for multi-view imaging. We imagine an

ensemble of J distinct cameras that collect images x1, x2,

. . ., xJ Î ℝ
N describing a common scene, with each

image xj taken from some camera position θjÎ Θ. We

would like to efficiently compress this ensemble of

images, but as in any sensor network, we may be limited

in battery power, computational horsepower, and/or

communication bandwidth. Thus, although we may be

able to posit sparse and manifold-based models for con-

cisely capturing the intra- and inter-signal structures

among the images in the ensemble, directly exploiting

these models for the purpose of data compression may

be prohibitively complex or require expensive collabora-

tion among the sensors. This motivates our desire for

an effective distributed encoding strategy.

The encoding of multiple signals in distributed scenarios

has long been studied under the auspices of the distributed

source coding (DSC) community. The Slepian-Wolf

framework [4] for lossless DSC states that two sources X1

and X2 are able to compress at their conditional entropy

rate without collaboration and can be decoded successfully

when the correlation model (i.e., the joint probability dis-

tribution p(x1, x2)) is known at the decoder. This work

was extended to lossy coding by Wyner and Ziv when side

information is available at the decoder [20], and in subse-

quent years, practical algorithms for these frameworks

have been proposed based on channel coding techniques.

However, one faces difficulties in applying these frame-

works to multi-view imaging because the inter-image cor-

relations are arguably better described geometrically than

statistically. Several algorithms (e.g., [21-23]) have been

proposed for combining these geometric and statistical

frameworks, but fully integrating these concepts remains a

very challenging problem.

As a simple alternative to these type of encoding

schemes, we advocate the use of CS for distributed

image coding, wherein for each sensor j Î {1, 2, . . ., J},

the signal xj Î ℝ
N is independently encoded using an

Mj × N measurement matrix Fj, yielding the measure-

ment vector yj = �jxj ∈ R
Mj . Such an encoding scheme

is known in the CS literature as Distributed CS (DCS)

[5]. While the primary motivation for DCS is to simplify

the encoding of correlated high-resolution signals, one

may of course bypass the potentially difficult acquisition

of the high-resolution signals and directly collect the

random measurements using CS hardware.

After the randomized encoding, the measurement vec-

tors y1, y2, . . ., yJ are then transmitted to a central node for

decoding. Indeed, DCS differs from single-signal CS only

in the decoding process. Rather than recover the signals

one-by-one from the measurement vectors, an effective

DCS decoder should solve a joint reconstruction problem,

exploiting the intra- and inter-signal correlations among

the signals {xj}, while ensuring consistency with the mea-

surements {yj}.

The proper design of a DCS decoder depends very much

on the type of data being collected and on the nature of

the intra- and inter-signal correlations. Ideally, compared

to signal-by-signal recovery, joint recovery should provide

better reconstruction quality from a given set of measure-

ment vectors, or equivalently, reduce the measurement

burden needed to achieve a given reconstruction quality.

For example, if each signal in the ensemble is K-sparse, we

may hope to jointly recover the ensemble using fewer than

the O(K log(N/K)) measurements per sensor that are

required to reconstruct the signals separately. Like single-

signal CS, DCS decoding schemes should be robust to

noise and to dropped measurement packets. Joint recon-

struction techniques should also be robust to the loss of

individual sensors, making DCS well-suited for remote

sensing applications.
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B. Current approaches to DCS multi-view image

reconstruction

For signals in general and images in particular, a variety

of DCS decoding algorithms have been proposed to

date. Fundamentally, all of these frameworks build upon

the concept of sparsity for capturing intra- and inter-

signal correlations.

One DCS modeling framework involves a collection of

joint sparsity models (JSMs) [5]. In a typical JSM, we

represent each signal xj Î ℝ
N in terms of a decomposition

xj = zC + zj, where zC Î ℝ
N is a “common component”

that is assumed to be present in all {xj}, and zj Î ℝ
N is an

“innovation component” that differs for each signal.

Depending on the application, different sparsity assump-

tions may be imposed on zC and zj. In some cases, these

assumptions can dramatically restrict the space of possible

signals. For example, all signals may be restricted to live

within the same K-dimensional subspace. The DCS deco-

der then searches for a signal ensemble that is consistent

with the available measurements and falls within the space

of signals permitted by the JSM. For signal ensembles well

modeled by a JSM, DCS reconstruction can offer a signifi-

cant savings in the measurement rates. While each sensor

must take enough measurements to account for its inno-

vation component zj, all sensors can share the burden of

measuring the common component zC.

Unfortunately, the applicability of JSMs to multi-view

imaging scenarios can be quite limited. While two cam-

eras in very close proximity may yield images having

sparse innovations relative to a common background,

any significant difference in the camera positions will

dramatically increase the complexity of the innovation

components. Because conventional JSMs are not appro-

priate for capturing any residual correlation that may

remain among these innovations, we would expect JSM-

based recovery to offer very little improvement over

independent CS recovery.

Recently, a significant extension of the JSM framework

has been proposed specifically for multi-view compres-

sive imaging [6]. This framework assumes that images

of a common scene are related by local or global geo-

metrical transformations and proposes an overcomplete

dictionary of basis elements consisting of various geo-

metrical transformations of a generating mother func-

tion. It is assumed that each image can be decomposed

into its own subset of these atoms plus the geometri-

cally transformed atoms of the neighboring images. The

benefit of this approach is that information about one

image helps reduce the uncertainty about which atoms

should be used to comprise the neighboring images.

Unfortunately, there seems to be a limit as to how

much efficiency may be gained from such an approach.

To reconstruct a given image, the decoder may be

tasked with solving for, say, K sparse coefficients. While

the correlation model may help reduce the measurement

burden at that sensor below O(K log(N/K)), it is not

possible to reduce the number of measurements below

K. As we will later argue, however, there is reason to

believe that alternative reconstruction techniques based

on the underlying scene (rather than the images them-

selves) can succeed with even fewer than K

measurements.

Other approaches for multi-view image reconstruction

could draw naturally from recent work in CS video recon-

struction by ordering the static images {xj} according to

their camera positions and reconstructing the sequence as

a sort of “fly-by” video. One approach for video recon-

struction exploits the sparsity of inter-frame differences

[7]. For multi-view imaging, this would correspond to a

difference image xi - xj having a sparse representation in

some basis Ψ. Again, however, this condition may only be

met if cameras i and j have very close proximity. We have

also proposed a CS video reconstruction technique based

on a motion-compensated temporal wavelet transform [8].

For multi-view imaging, we could modify this algorithm,

replacing block-based motion compensation with disparity

compensation. The challenge of such an approach, how-

ever, would be in finding the disparity information without

prior knowledge of the images themselves. For video, we

have addressed this challenge using a coarse-to-fine recon-

struction algorithm that alternates between estimating the

motion vectors and reconstructing successively higher

resolution versions of the video using the motion-compen-

sated wavelet transform.

What would still be missing from any of these

approaches, however, is an assurance that the recon-

structed images have a global consistency, i.e. that they

all describe a common underlying scene. In the language

of manifolds, this means that the reconstructed images

do not necessarily live on a common IAM defined by a

hypothetical underlying scene. This may not only lead to

possible confusion in interpreting the images, but more

critically may also suggest that the reconstruction algo-

rithm is failing to completely exploit the joint structure

of the ensemble-the images are in fact constrained to live

in a much lower-dimensional set than the algorithm

realizes.

4. Manifold lifting techniques for multi-view
image reconstruction
In light of the above observations, one could argue that

an effective multi-view reconstruction algorithm should

exploit the underlying geometry of the scene by using an

inter-signal modeling framework that ensures global con-

sistency. To inform the design of such an algorithm, we

find it helpful to view the general task of reconstruction

as what we term a manifold lifting problem: we would

like to recover each image xj Î ℝ
N from its
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measurements yj ∈ R
Mj ("lifting” it from the low-dimen-

sional measurement space back to the high-dimensional

signal space), while ensuring that all recovered images

live along a common IAM.

Although this interpretation does not immediately

point us to a general purpose recovery algorithm (and

different multi-view scenarios could indeed require

markedly different algorithms), it can be informative for

a number of reasons. For example, as we have discussed

in Section 2-B, manifolds can have stable embeddings

under random projections. If we suppose that Fj = F Î

ℝ
M×N for all j, then each measurement vector we obtain

will be a point sampled from the embedded manifold

Fℳ ⊂ ℝ
M. From samples of Fℳ in ℝ

M, we would like

to recover samples of (or perhaps all of) ℳ in ℝ
N, and

this may be facilitated if Fℳ preserves the original geo-

metric structure of ℳ. In addition, as we have discussed

in Section 2-A, many IAMs have a multiscale structure

that has proved useful in solving non-compressive para-

meter estimation problems, and this structure may also

be useful in solving multi-view recovery problems.

While this manifold-based interpretation may give us

a geometric framework for signal modeling, it may not

in isolation sufficiently capture all intra- and inter-signal

correlations. Indeed, one cannot disregard the role that

concise models such as sparsity may still play in an

effective manifold lifting algorithm. Given an ensemble

of measurements y1, y2, . . ., yJ, there may be many can-

didates IAMs on which the original images x1, x2, . . ., xJ
may live. In order to resolve this ambiguity, one could

employ either a model for the intra-signal structure

(such as sparsity) or a model for the underlying struc-

ture of the scene (again, possibly sparsity). To do the

latter, one must develop a representation for the under-

lying scene or phenomenon that is being measured and

understand the mapping between that representation

and the measurements y1, y2, . . ., yJ. To keep the pro-

blem simple, this mapping will ideally be linear, and as

we discuss in this section, such a representation and lin-

ear mapping can be found in a number of scenarios.

To make things more concrete, we demonstrate in this

section how the manifold lifting viewpoint can inform the

design of reconstruction algorithms in the context of two

generic multi-view scenarios: far-field and near-field ima-

ging. We also discuss how to address complications that

can arise due to uncertainties in the camera positions. We

hope that such discussions will pave the way for the future

development of broader classes of manifold lifting

algorithms.

A. Far-field multi-view imaging

We begin by considering the case where the cameras are

far from the underlying scene, such as might occur in

satellite imaging or unmanned aerial vehicle (UAV)

remote sensing scenarios. In problems such as these, it

may be reasonable to model each image xj Î ℝ
N as

being a translated, rotated, scaled subimage of a larger

fixed image. We represent this larger image as an ele-

ment x drawn from a vector space such as ℝQ with Q >

N, and we represent the mapping from x to xj (which

depends on the camera position θj) as a linear operator

that we denote as Rθj
: R

Q → R
N . This operator Rθj can

be designed to incorporate different combinations of

translation, rotation, scaling, etc., followed by a restric-

tion that limits the field of view.

This formulation makes clear the dependence of the

IAM ℳ on the underlying scene x: ℳ = ℳ(x) = {Rθx: θ

Î Θ} ⊂ ℝ
N. Supposing we believe x to obey a sparse

model and supposing the camera positions are known,

this formulation also facilitates a joint recovery program

that can ensure global consistency while exploiting the

structure of the underlying scene. At camera j, we have

the measurements yj = �jxj = �jRθj
x . Therefore, by con-

catenating all of the measurements, we can write the

overall system of equations as y = FbigRx, where

y =

⎡
⎢⎢⎢⎣

y1

y2

...

yJ

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎣

Rθ1

Rθ2

...

RθJ

⎤
⎥⎥⎥⎦ , and �big =

⎡
⎢⎢⎢⎣

�1

0
...

0

0

�2

...

0

· · ·

· · ·

. . .

· · ·

0

0
...

�J

⎤
⎥⎥⎥⎦ . (4)

Given y and FbigR, and assuming x is sparse in some

basis Ψ (such as the 2D wavelet domain), we can solve

the usual optimization problem as stated in (1) (or (2) if

the measurements are noisy). If desired, one can use the

recovered image x̂ to obtain estimates x̂j : Rθj
x̂ of the

original subimages. These are guaranteed to live along a

common IAM, namelyM(x̂) .

B. Near-field multi-view imaging

Near-field imaging may generally be more challenging

than far-field imaging. Defining a useful representation

for the underlying scene may be difficult, and due to

effects such as parallax and occlusions, it may seem

impossible to find a linear mapping from any such

representation to the measurements. Fortunately, how-

ever, there are encouraging precedents that one could

follow.

One representative application of near-field imaging is

in Computed Tomography (CT). In CT, we seek to

acquire a 3D volumetric signal x, but the signals xj that

we observe correspond to slices of the Fourier transform

of x. (We may assume yj = xj in such problems, and so

the challenge is actually to recover ℳ(x), or equivalently

just x, rather than the individual {xj}.) Given a fixed

viewing angle θj, this relationship between x and xj is
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linear, and so we may set up a joint recovery program

akin to that proposed above for far-field imaging. Simi-

lar approaches have been used for joint recovery from

undersampled frequency measurements in MRI [19].

For near-field imaging using visible light, there is gen-

erally no clear linear mapping between a 3D volumetric

representation of the scene and the observed images xj.

However, rather than contend with complicated non-

linear mappings, we suggest that a promising alternative

may be to use the plenoptic function [24] as a centralized

representation of the scene. The plenoptic function f is a

hypothetical 5D function used to describe the intensity of

light that could be observed from any point in space,

when viewed in any possible direction. The value f(px, py,

pz, pθ, pj) specifies the light intensity that would be mea-

sured by a sensor located at the position (px, py, pz) and

pointing in the direction specified by the spherical coor-

dinates pθ, and pj. (Additional parameters such as color

channel can be considered.) By considering only a

bounded set of viewing positions, the plenoptic function

reduces to a 4D function known as the lumigraph [24].

Any image xj Î ℝ
N of the scene has a clear relation-

ship to the plenoptic function. A given camera j will be

positioned at a specific point (px, py, pz) in space and

record light intensities arriving from a variety of direc-

tions. Therefore, xj simply corresponds to a 2D “slice” of

the plenoptic function, and once the camera viewpoint

θj is fixed, the mapping from f to xj is a simple linear

restriction operator. Consequently, the structure of the

IAM ℳ = ℳ(f) is completely determined by the ple-

noptic function.

Plenoptic functions contain a rich geometric structure

that we suggest could be exploited to develop sparse mod-

els for use in joint recovery algorithms. This geometric

structure arises due to the geometry of objects in the

scene: when a physical object having distinct edges is

photographed from a variety of perspectives, the resulting

lumigraph will have perpetuating geometric structures

that encode the shape of the object under study. As a sim-

ple illustration, a Flatland-like scenario (imaging an object

in the plane using 1D cameras) is shown in Figure 4a. The

resulting 2D lumigraph is shown in Figure 4b, where each

row corresponds to a single “image”. We see that geo-

metric structures in the lumigraph arise due to shifts in

the object’s position as the camera viewpoint changes. For

the 4D lumigraph these structures have recently been

termed “plenoptic manifolds” [25] due to their own non-

linear, surface-like characteristics. If a sparse representa-

tion for plenoptic functions can be developed that exploits

these geometric constraints, then it may be possible to

recover plentopic functions from incomplete, random

measurements using a linear problem formulation and

recovery algorithms such as (1) or (2). One possible ave-

nue to developing such a sparse representation could

involve parameterizing local patches of the lumigraph

using the wedgelet [26] or surflet [27] dictionaries. Wedge-

lets (see Figure 4c) can be tiled together to form piecewise

linear approximations to geometric features; surflets offer

piecewise polynomial approximations.

As a proof of concept, we present a simple experiment

in support of this approach. For the lumigraph shown in

Figure 4b, which has J = 128 1D “images” that each con-

tain N = 128 pixels, we collect M = 5 random measure-

ments from each image. From these measurements, we

attempt to reconstruct the entire lumigraph using wedge-

lets [27] following a multiscale technique outlined in

Chapter 6 of [28]. The reconstructed lumigraph is shown

in Figure 4d and is relatively accurate despite the small

number of measurements.

Finally, to illustrate the rich interplay between geometry

within the lumigraph and the underlying geometry of the

scene, we show that it is actually possible to use the recon-

structed lumigraph to estimate the underlying scene geo-

metry. While we omit the precise details of our approach,

the estimated wedgelets help us to infer three pieces of

information: the positions of each local wedgelet patch in

the v and t directions indicate a camera position and view-

ing direction, respectively, while the orientation of the

wedgelet indicates a depth at which a point in the scene

belongs to the object. Putting these estimates together, we

obtain the reconstruction of the scene geometry shown in

Figure 4e. This promising proof of concept suggests that

wedgelets or surflets could indeed play an important role

in the future for developing improved concise models for

lumigraph processing.

C. Dealing with uncertainties in camera positions

In all of our discussions above, we have assumed the

camera positions θj were known. In some situations,

however, we may have only noisy estimates θ̂j = θj + nj of

the camera positions. Supposing that we can define linear

mappings between the underlying scene and the images

xj, it is straightforward to extend the CS recovery pro-

blem to account for this uncertainty. In particular, letting

R denote the concatenation of the mappings Rθj as in (4),

and letting R̂ denote the concatenation of the mappings

R
θ̂j corresponding to the noisy camera positions, it fol-

lows that y = �bigRx = �bigR̂x + n for some noise vector

n, and so (2) can be used to obtain an approximation x̂
of the underlying scene. Of course, the accuracy of this

approximation will depend on the quality of the camera

position estimates.

When faced with significant uncertainty about the

camera positions, the multiscale properties of IAMs

help us to conceive of a possible coarse-to-fine recon-

struction approach. As in Section 2-A, let hs denote a

Park and Wakin EURASIP Journal on Advances in Signal Processing 2012, 2012:37

http://asp.eurasipjournals.com/content/2012/1/37

Page 8 of 15



blurring kernel at scale s and suppose for simplicity that

Θ = ℝ. Based on the arguments presented in [13], it fol-

lows that for most reasonable mappings θ ® xθ, we will

have ||
∂(hs∗xθ )

∂θ

||2 → 0 as s ® 0. What this implies is

that, on manifolds of regularized images ℳs = {hs * xθ :

θ Î Θ}, the images will change slowly as a function of

camera position, and so we can ensure that hs ∗ (R
θ̂j

x)

is arbitrarily close to hs ∗ (Rθj
x) by choosing s suffi-

ciently small (a sufficiently “coarse” scale). Now, suppose

that some elements of each yj are devoted to measuring

hs ∗ xj = hs ∗ (Rθj
x) . We denote these measurements by

yj, s = Fj, s(hs * xj). In practice, we may replace the con-

volution operator with a matrix Hs and collect

yj,s = �j,sHsxj = �j,sHsRθj
x instead. Concatenating all of

the {yj,s}
J
j=1 , we may then use the noisy position esti-

mates to define operators {R
θ̂j
} and solve (2) as above to

obtain an estimate x̂ of the scene. This estimate will

typically correspond to a lowpass filtered version of x,

since for many reasonable imaging models, we will have

hs ∗ (Rθj
x) ≈ Rθj

(h′
s ∗ x) for some lowpass filter h′

s , and

this implies that yj,s ≈ �j,sRθj
(h′

s ∗ x) contains only low

frequency information about x.

Given this estimate, we may then re-estimate the cam-

era positions by projecting the measurement vectors yj, s
onto the manifold M(x̂) . (This may be accomplished,

for example, using the parameter estimation techniques

described in [13].) Then, having improved the camera

position estimates, we may reconstruct a finer scale (lar-

ger s) approximation to the true images {xj}, and so on,

alternating between the steps of estimating camera posi-

tions and reconstructing successively finer scale approxi-

mations to the true images. This multiscale, iterative

algorithm requires the sort of multiscale randomized

measurements we describe above, namely yj, s = Fj, s(hs
* xj) for a sequence of scales s. In practice, the noiselet

transform [29] offers one fast technique for implement-

ing these measurement operators Fj, sHs at a sequence

of scales. Noiselet scales are also nested, so measure-

ments at a scale s1 can be re-used as measurements at

any scale s2 > s1.

The manifold viewpoint can also be quite useful in

situations where the camera positions are completely
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Figure 4 Lumigraph geometry in compressive multi-view imaging. a Flatland-like illustration for collecting 1D images of an object in the 2D

plane. At each camera position, all viewing directions may be considered. b Resulting 128 × 128 lumigraph for the ellipse-shaped object. Each

row corresponds to a single “image”. (In the real world, each image is 2D and the full lumigraph is 4D.) The lumigraph can be repeated for

viewing from all four sides of the object. c Wedgelets provide a simple parametric model for local patches of a 2D lumigraph; only two

parameters are needed to describe the orientation and offset of the linear discontinuity. d Wedgelet-based lumigraph reconstruction from M = 5

compressive samples of each image (row of lumigraph). e Scene geometry estimated using local edge positions/orientations in the

reconstructed lumigraph. Each blue line connects an estimated point on the object to a camera from which that point is visible. The true ellipse

is shown in red.
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unknown, as they might be in applications such as cryo-

electron microscopy (Cryo-EM) [30]. Because we antici-

pate that an IAM ℳ will have a stable embedding Fℳ

in the measurement space, it follows that the relative

arrangement of the points {xj} on ℳ will be preserved

in Fℳ. Since this relative arrangement will typically

reflect the relative arrangement of the values {θj} in Θ,

we may apply to the compressive measurementsd any

number of “manifold learning” techniques (such as ISO-

MAP [11]) that are designed to discover such parame-

terizations from unlabeled data. An algorithm such as

ISOMAP will provide an embedding of J points in ℝ
p

whose relative positions can be used to infer the relative

camera positions; a similar approach has been developed

specifically for the Cryo-EM problem [30]. (Some side

information may be helpful at this point to convert

these relative position estimates into absolute position

estimates.) Once we have these estimates, we may resort

to the iterative refinement scheme described above,

alternating between the steps of estimating camera posi-

tions and reconstructing successively finer scale approxi-

mations to the true images.

5. Manifold lifting case study
A. Problem setup

As a proof of concept, we now present a comprehensive

multi-view reconstruction algorithm inspired by the mani-

fold lifting viewpoint. We do this in the context of a far-

field imaging simulation in which we wish to reconstruct a

Q-pixel high-resolution image x of a large scene. Informa-

tion about this scene will be acquired using an ensemble

of J satellites, which will collect N-pixel photographs xj of

the scene from different positions and with limited but

overlapping fields of view, as illustrated with red boxes in

Figure 5a.

We denote the vertical and horizontal position of satel-

lite j by θj = (θV
j , θH

j ) ∈ R
2 . The satellite positions take

real values and are chosen randomly except for the caveats

that the fields of view all must fall within the square sup-

port of x and that each of the four corners of x must be

seen by at least one camera. (These assumptions are for

convenience but can be relaxed without major modifica-

tions to the recovery algorithm.) We let Rθj denote the N

× Q linear operator that maps x to the image xj. This

operator involves a resampling of x to account for the

real-valued position vector θj, a restriction of the field of

view, and a spatial lowpass filtering and decimation, as

we assume that xj has lower resolution (larger pixel size)

than x.

In order to reduce data transmission burdens, we sup-

pose that each satellite encodes a random set of measure-

ments yj = �jxj ∈ R
Mj of its incident image xj. Following

the discussion in 4-C, these random measurements are

collected at a sequence of coarse-to-fine scales s1, s2, . . .,

sT using noiselets. (The noiselet measurements can actu-

ally be collected using CS imaging hardware [3], bypass-

ing the need for a conventional N-pixel sensor.) We

concatenate all of the measurement vectors {yj,si
}T
i=1 into

the length-Mj measurement vector yj = Fjxj. Finally, we

assume that all satellites use the same set of measure-

ment functions, and so we define M := M1 = M2 = MJ

and F:= F1 = F2 = ... = FJ.

Our decoder will be presented with the ensemble of

the measurement vectors y1, y2, . . ., yJ but will not be

given any information about the camera positions (save

for an awareness of the two caveats mentioned above)

and will be tasked with the challenge of recovering the

underlying scene x. Although it would be interesting to

consider quantization in the measurements, it is beyond

Figure 5 Manifold lifting demonstration. a Setup. The original image x (courtesy USGS) has size 192 × 192 and is observed by J = 200

satellites. The red boxes illustrate the limited field of view for a few such cameras. b Image-by-image reconstruction from random

measurements, PSNR 14.4 dB. c Joint reconstruction using our manifold lifting algorithm with unknown camera positions, PSNR 23.6 dB.
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the scope of this paper and we did not implement any

quantization steps in the following simulations.

B. Manifold lifting algorithm

We combine the discussions provided in Sections 4-A

and 4-C to design a manifold lifting algorithm that is

specifically tailored to this problem.

1) Initial estimates of satellite positions

The algorithm begins by obtaining a preliminary esti-

mate of the camera positions. To do this, we extract

from each yj the measurements corresponding to the

two or three coarsest scales (i.e., yj,s1
, yj,s2 and possibly

yj,s3), concatenate these into one vector, and pass the

ensemble of such vectors (for all j Î {1, 2, . . ., J}) to the

ISOMAP algorithm. ISOMAP then delivers an embed-

ding of points v1, v2, . . ., vJ in ℝ
2 that best preserves

pairwise geodesic distances compared to the input

points; an example ISOMAP embedding is shown in

Figure 6a. What can be inferred from this embedding

are the relative camera positions; a small amount of side

information is required to determine the proper scaling,

rotation, and (possible) reflection of these points to cor-

rectly align them with an absolute coordinate system.

Assuming that we know the correct vertical and hori-

zontal reflections, after reflecting these camera positions

correctly, we then rotate and scale them to fill the

square support of x.

2) Iterations

Given the initial estimates {θ̂j} of our camera positions,

we can then define the operators {R
θ̂j
} and consequently

R̂ . By concatenating the measurement vectors and mea-

surement matrices, initially only those at the coarsest

scale (i.e., yj,s1 across all j), we write the overall system of

equations as y = �R̂x + n as in Section 4-A, and solve for

α̂ = arg min
α

||α||1 subject to ||y − �bigR̂x�α||2 ≤ ε,

where Ψ is a wavelet basis and ε is chosene to reflect

the uncertainty in the camera positions θj
. Given α̂ , we

can then compute the corresponding estimate of the

underlying scene as x̂ = �α̂ .

After we obtain the estimate x̂ , we refine the camera

positions by registering the measurement vectors yj with

respect to this manifold. In other words, we solve the

following optimization problem:

θ̂j = arg min
θ

||yj − �Rθ x̂||2,

where again in each yj we use only the coarse scale

measurements. To solve this problem, we use the multi-

scale Newton algorithm proposed in [13].

With the improved estimates θ̂j , we may then refine

our estimate of x̂ but can do so by incorporating finer

scale measurements. We alternate between the steps of

reconstructing the scene x̂ and re-estimating the camera

positions θ̂j , successively bringing in the measurements

yj,s2
, yj,s3

, . . . , yj,sT . (At each scale, it may help to alternate

once or twice between the two estimation steps before

bringing in the next finer scale of measurements. One

can also repeat until convergence or until reaching a

designated stopping criterion.) Finally, having brought in

all of the measurements, we obtain our final estimate x̂
of the underlying scene.

3) Experiments

We run our simulations on an underlying image x of

size Q = 192 × 192 that is shown in Figure 5a. We sup-

pose that x corresponds to 1 square unit of land area.

We observe this scene using J = 200 randomly posi-

tioned cameras, each with a limited field of view.

(a) (b) (c)

Figure 6 Camera position estimates in manifold lifting demonstration. a Initial ISOMAP embedding v1, v2, . . ., vJ of the measurement

vectors. b Initial estimates {θ̂j} of camera positions after rotating and scaling the {vj}. c Final camera position estimates after running the

manifold lifting algorithm. In b and c, the colored points represent the estimated camera positions (color coded by the true θ
H
j value), while

the blue vectors represent the error with respect to the true (but unknown) camera position.
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Relative to x, each field of view is of size 128 × 128, cor-

responding to 0.44 square units of land area as indicated

by the red boxes in Figure 5a. Within each field of view,

we observe an image xj of size N = 64 × 64 pixels that

has half the resolution (twice the pixel size) compared

to x. The total number of noiselet scales for an image of

this size is 6. For each image, we disregard the coarsest

noiselet scale and set s1, s2, . . ., s5 corresponding to the

five finest noiselet scales. For each image, we collect 96

random noiselet measurements: 16 at scale s1, and 20 at

each of the scales s2, . . ., s5. Across all scales and all

cameras, we collect a total of 96 · 200 = 19, 200 ≈ 0:52Q

measurements.

Based on the coarse scale measurements, we obtain

the ISOMAP embedding v1, v2, . . ., vJ shown in Figure

6a. After rotating and scaling these points, the initial

estimates {θ̂j} of camera positions are shown in Figure

6b. These initial position estimates have a mean abso-

lute error of 1.8 and 2.0 pixels (relative to the resolution

of x) in the vertical and horizontal directions, respec-

tively. Figure 6c shows the final estimated camera posi-

tions after all iterations of our manifold lifting

algorithm. These estimates have a mean absolute error

of 0.0108 and 0.0132 pixels in the vertical and horizon-

tal directions, respectively. The final reconstruction x̂
obtained using these estimated camera positions is

shown in Figure 5c. We note that the border areas are

not as accurately reconstructed as the center region

because fewer total measurements are collected near the

borders of x. The scale-by-scale progression of the

reconstruction of x and the estimated camera positions

are shown in Figure 7. Figure 7a shows the recon-

structed images of x at each scale s1, s2, . . ., s5, where

the left most image is the reconstruction at the coarsest

scale s1 and the right most image is the reconstructed

image at the finest scale s5. Figure 7b shows the corre-

sponding camera position estimates that were used in

the reconstruction of the images in Figure 7a. As we

have mentioned above, it can help to alternate between

reconstruction of the image and estimation of the cam-

era positions at the same scale more than once before

moving on to the next finer scale. In this particular

simulation, we have alternated between reconstruction

and camera position estimation 3 to 4 times at each

scale but the finest and 6 times at the finest scale.

In order to assess the effectiveness of our algorithm,

we compare it to three different reconstruction meth-

ods. In all of these methods, we assume that the exact

camera positions are known and we keep the total num-

ber of measurements fixed to 19,200. First, we compare

to image-by-image CS recovery, in which we reconstruct

the images xj independently from their random mea-

surements yj and then superimpose and average them at

the correct positions. As expected, and as shown in Fig-

ure 5b, this does not yield a reasonable reconstruction

because there is far too little data collected (just 96

measurements) about any individual image to recon-

struct it in isolation. Thus, we see the dramatic benefits

of joint recovery.

Second, for the sake of completeness, we compare to a

non-distributed encoding scheme in which one measures

the entire image x using a fully populated 19, 200 × N

Figure 7 Reconstruction results in manifold lifting demonstration. a Scale-by-scale reconstruction of the underlying image proceeding from

the coarsest scale s1 on the left to the finest scale s5 on the right. b The corresponding camera position estimates used in the reconstruction of

the images in a proceeding from the coarsest scale s1 on the left to the finest scale s5 on the right.
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Gaussian random matrix. Figure 8a shows the recon-

structed image obtained using a single invocation of

ℓ1-minimization. Perhaps surprisingly, the reconstruc-

tion quality is actually inferior to that obtained using the

manifold lifting algorithm with distributed measurements

(shown in Figure 8c). This is somewhat counterintuitive

since one would expect that the spatially limited mea-

surement functions would have inferior isometry proper-

ties compared to global measurement functions.

Although we do not have a concrete theoretical explana-

tion for this phenomenon, we believe that this difference

in reconstruction quality is mainly due to the multiscale

nature of the measurement functions employed in our

manifold lifting example. To support this argument with

an experiment, we run the manifold lifting algorithm

with spatially limited but non-multiscale measurement

functions: for each window, we measure a total of 96

noiselet measurements at the finest scale only, where pre-

viously these 96 measurements were spread across sev-

eral scales. In this case, the reconstructed image has a

PSNR of 19.8 dB, which is worse than that obtained

using a global Gaussian measurement matrix. This is

consistent with our intuition that, when using measure-

ments with limited spatial support, one could pay a pen-

alty in terms of reconstruction quality.

Third, we compare to another alternative encoding

scheme, where rather than encode 96 random noiselet

measurements of each image, we encode the 96 largest

wavelet coefficients of the image in the Haar wavelet

basis. (We choose Haar due to its similarity with the

noiselet basis, but the performance is similar using other

wavelet bases.) This is a rough approximation for how a

non-CS transform coder might encode the image, and

for the encoding of a single image in isolation, this is

typically a more efficient encoding strategy than using

random measurements. (Recall that for reconstructing a

single signal, one must encode about K log(N/K) ran-

dom measurements to obtain an approximation compar-

able to K-term transform coding.) However, when we

concatenate the ensemble of encoded wavelet coeffi-

cients and solve (1) to estimate x̂ , we see from the

result in Figure 8b that the reconstructed image has

lower quality than that we obtained using a manifold

lifting algorithm based on random measurements, even

though the camera positions were unknown for the

manifold lifting experiment. In a sense, by using joint

decoding, we have reduced the CS overmeasuring factor

from its familiar value of log(N/K) down to something

below 1! We believe this occurs primarily because the

images {xj} are highly correlated, and the repeated

encoding of large wavelet coefficients (which tend to

concentrate at coarse scales) results in repeated encod-

ing of redundant information across the multiple satel-

lites. In other words, it is highly likely that prominent

features will be encoded by many satellites over and

over again, whereas other features may not be encoded

at all. As a result, by examining Figure 8b, we see that

strong features such as streets and the edges of build-

ings (which have large wavelet coefficients) are relatively

more accurately reconstructed than, for example, forests

or cars in parking lots (which have smaller wavelet coef-

ficients). Random measurements capture more diverse

information within and among the images. To more

clearly illustrate the specific benefit that random mea-

surements provide over transform coding (for which the

camera positions were known), we show in Figure 8c a

reconstruction obtained using random measurements

with known camera positions.

Finally, we carry out a series of simulations with the

same image x using different numbers J of camera posi-

tions. We keep the total number of measurements

(19,200) and the sizes of the subimages (64 × 64)

Figure 8 Comparative reconstructions for manifold lifting demonstration. a Reconstruction using fully dense Gaussian random matrix, PSNR

21.9 dB. b Joint reconstruction using transform coding measurements with known camera positions, PSNR 22.8 dB. c Joint reconstruction using

random measurements with known camera positions, PSNR 24.7 dB.
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constant. The results are summarized in Table 1. In all

cases, our manifold lifting algorithm without knowledge

of the camera positions outperforms transform coding

with knowledge of the camera positions. We do note

that as J decreases, the performance of transform coding

improves. This is likely because each satellite now has

more measurements to devote to encoding information

about the underlying scene, and there are fewer total

cameras to encode redundant information.

6. Discussion and conclusion
In summary, we have discussed in this paper how non-

collaborative CS measurement schemes can be used to

simplify the acquisition and encoding of multi-image

ensembles. We have presented a geometric framework

in which many multi-view imaging problems may be

cast and explained how this framework can inform the

design of effective manifold lifting algorithms for joint

reconstruction. We conclude with a few remarks con-

cerning practical and theoretical aspects of the manifold

lifting framework.

First, let us briefly discuss the process of learning

camera positions when they are initially completely

unknown. In our satellite experiments, we have observed

that the accuracy of the ISOMAP embedding depends

on the relative size of the subimages xj to the underlying

scene x, with larger subimages leading us to higher qual-

ity embeddings. As the size of the subimages decreases,

we need more and more camera positions to get a rea-

sonable embedding, and we can reach a point where

even thousands of camera positions are insufficient. In

such cases, and in applications not limited to satellite

imaging, it may be possible to get a reliable embedding

by grouping local camera positions together. On a dif-

ferent note, once an initial set of camera position esti-

mates has been obtained, it may also be possible to

build on an idea suggested in [31] and seek a refinement

of these position estimates that minimize the overall ℓ1

norm of the reconstructed image. A multiscale approach

could again help such a technique converge if the initial

estimates are far off.

Second, an interesting open question is whether the

measurement matrices utilized in DCS multi-view ima-

ging scenarios satisfy the RIP with respect to some

reconstruction basis Ψ. Establishing an RIP bound

would give a guide for the requisite number of measure-

ments (ideally, at each scale) and also give a guarantee

for reconstruction accuracy. Although we do not yet

have a definitive answer to this question, we suggest

that there may be promising connections between these

matrices and other structured matrices that have been

studied in the CS literature. For example, the measure-

ment matrix FbigR employed in the satellite experiment

is closely related to a partial circulant matrix, where the

relative shifts between the rows represent the relative

offsets between the camera positions. RIP results have

been established for circulant matrices [32] that are gen-

erated by a densely populated random row vector. In

our case, FbigR has more of a block circulant structure

because it is generated by the submatrices Fj, and so

there may also be connections with the analysis in [33].

However, each row of FbigR will contain a large number

of zeros, and it is conceivable that this could degrade

the isometric property of FbigR. We believe, though,

that by collecting multiple measurements from each

camera, we are compensating for this degradation.

Other possible directions for analysis could be to build

on the concentration of measure bounds recently estab-

lished for block diagonal matrices [34] and Toeplitz

matrices [35].

Finally, another open question in the manifold lifting

framework is what could be said about the uniqueness

of ℳ(x) given samples of Fℳ(x). When all points on

the manifold ℳ(x) are K-sparse, the RIP can be one

avenue to proving uniqueness, but since our objective is

to sample fewer than O(K log(N/K)) measurements for

each signal, a stronger argument would be preferable.

By considering the restricted degrees of freedom that

these signal ensembles have, it seems reasonable to

believe that we can in fact establish a stronger result.

We are currently exploring geometric arguments for

proving uniqueness.

Endnotes
aIt is also possible to consider other more general non-

orthonormal dictionaries. bDepending on the scenario,

the parameter space Θ could be a subset of ℝp, or it

could be some more general topological manifold such

as SO(3), e.g. if θ corresponds to the orientation of

some object in 3D space. cAlthough an IAM ℳ may

not itself be smooth, a regularized manifold ℳs will be

smooth, and later in this paper we discuss image

Table 1 Reconstruction results with varying numbers of

camera positions J

ML w/out cam.

J Independent
CS

TC w/
cam.

ML w/
cam.

PSNR 1
J

∑
j|θj − θ̂j|

200 14.4 22.8 24.7 23.6 (0.0108, 0.0132)

150 13.7 22.9 24.6 23.7 (0.0110, 0.0148)

100 15.1 23.5 25.1 23.9 (0.0177, 0.0121)

70 15.6 23.7 24.6 23.8 (0.0059, 0.0143)

From left to right, the columns correspond to the PSNR (in dB) of image-by-

image CS reconstruction from random measurements, joint reconstruction

from transform coding measurements with known camera positions, joint

reconstruction from random measurements with known camera positions, and

joint reconstruction from random measurements with unknown camera

positions. The final subcolumn lists the mean absolute error of the estimated

camera positions in the vertical and horizontal directions, respectively
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reconstruction strategies based on random projections

of ℳs at a sequence of scales s. dWe have found that

this process also performs best using measurements of

hs * xj for s small because of the smoothness of the

manifold ℳs at coarse scales. eIn our experiments, we

choose the parameter ε as somewhat of an oracle, in

particular as 1.1 ||y − �bigR̂x||2 . In other words, this is

slightly larger than the error that would result if we

measured the true image x but with the wrong positions

as used to define R̂ . This process should be made more

robust in future work.
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