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Abstract—We explore the geometry of networks in terms
of an n-dimensional Euclidean embedding represented by
the Moore-Penrose pseudo-inverse of the combinatorial
laplacian. The length of the position vector in this n-
dimensional space yields a structural centrality index(C∗)
for the nodes that captures the detour overhead incurred
when the random walk between a pair of nodes is forced to
go through the node in question, averaged over all source-
destination pairs. We demonstrate how this overhead is
related to the number of alternative/redundant paths be-
tween the node in question and the rest of the network;
thereby reflecting the immunity/vulnerability of a node to
random edge failures. Through empirical evaluation over
example and real world networks, we demonstrate how
the structural centrality of nodes captures their structural
roles in the network and is suitably sensitive to perturba-
tions/rewirings in the network.

I. I NTRODUCTION

Unlike traditional studies on network robustness, that
typically treat networks as combinatoric objects and
rely primarily on classical graph-theoretic concepts (e.g.
minimum cuts) to characterize network robustness, we
explore a geometric approach which enables us to em-
ploy more advanced theories and techniques, quantify
and compare robustness of networks in terms of their
local and global structures.

Robustness of nodes to failures in complex networks is
dependent on their overallconnectednessin the network.
Several centralities, that characterize connectedness of
nodes in complex networks in varying ways, have been
proposed in literature. Perhaps the simplest of all is de-
gree — the number of edges incident on a node. Except
in scale freenetworks that displayrich club connectivity
[2], [7], [8], degree is essentially alocal measure and
does not determine the overall connectedness of a node.
A more sophisticated measure of centrality is geodesic
closeness [10], [11]. It is defined as the (reciprocal
of) average shortest-path distance of a node from all
other nodes in the network. However, communication
in networks is not always confined to shortest paths
alone. Therefore, geodesic based centralities only par-
tially capture connectedness of nodes. Recently, sub-

graph centrality — the number of subgraphs of a graph
that a node participates in — has also been proposed
[6]. In principle, a node with high subgraph centrality,
should be better connected to other nodes in the network
through redundant paths. Alas, subgraph centrality is
computationally intractable and the proposed index in [6]
approximates subgraph centrality by the sum of lengths
of all closedwalks, weighed in inverse proportions by
the factorial of their lengths; which inevitably introduces
local connectivity bias.

In this work, we study a geometric embedding of
networks using the Moore-Penrose (pseudo) inverse of
the graph Laplacian for the network, denoted henceforth
by L

+. We show that the diagonal entries ofL
+, that

represent the distance of each node to the origin in the
n−dimensional Euclidean space of the network embed-
ding, provide a robust structural centrality measure(C∗)
for the nodes in the network. Moreover, the trace ofL

+,
Tr(L+), also called theKirchoff index(K), provides a
structural robustness measure for the network as a whole.

Through both rigorous mathematical arguments as
well as numerical simulations using synthetic and re-
alistic network topologies, we demonstrate that our
new indices better characterize robustness of nodes in
network as compared to other existing metrics (e.g.
node centrality measured based on degree, shortest paths
etc.). A rank-order of nodes in terms of their structural
centralities helps distinguish them in terms of their struc-
tural roles (such as core, gateway etc.). Also, structural
centrality and the Kirchoff index, are both appropriately
sensitive to local perturbations in the network, a property
not displayed by other centralities in literature.

The rest of the paper is organized as follows: We begin
by describing a geometric embedding of the network
using the eigen space ofL+ and introduce structural
centrality and Kirchoff index as measures of robustness
in §II. §III demonstrates how structural centrality of a
node reflects the average detour overhead in random
walks through a particular node in question,§IV presents
comparative empirical analysis and in§V the paper is



concluded.

II. GEOMETRIC EMBEDDING OF NETWORKS USING

L
+ AND STRUCTURAL CENTRALITY

In studying thegeometryof networks, we first need
to embed a network (e.g. represented abstractly as a
graph) into an appropriate geometric space endowed with
a metric function (mathematically, a metric space). In
this section we describe an n-dimensional embedding of
the complex network using, the Moore-Penrose pseudo-
inverse of the combinatorial laplacian(L+). The squared
length of the position vector for a node in this space
yields a geometric measure of centrality for the node
while the sum of the squared lengths of the position
vectors of all nodes, or the trace ofL

+, yields an overall
robustness index for the graph. But first we need to
introduce some basic notations.

Given a complex network, its topology is in general
represented as a (weighted) graph,G = (V, E, W ),
where V (G) is the set of nodes representing, say,
switches, routers or end systems in the network;E =
{euv : u, v ∈ V } is the set of edges connecting pairs
of nodes representing, for example, the (physical or
logical) communication links between the pair of nodes;
and W = wuv ∈ ℜ+ : euv ∈ E(G) is a set of weights
assigned to each edge of the graph (hereℜ+ denotes
the set of nonnegative real numbers). These weights can
be used to represent, for example, the capacity, latency,
or geographical distance, or an (administrative) routing
cost associated with the edge (communication link)euv.
Note that ifwuv is simply0 or 1, we have a simple and
unweighted graph.

GivenG = (V, E, W ), we introduce ann×n affinity
matrix A = [aij ] associated withG, wheren = |V (G)|
is the number of nodes inG (theorderof G), andaij ≥ 0
is some function of the weightwij . For a simple graph
wherewij ∈ {0, 1}, settingaij = wij yields the standard
adjacency matrix of the graphG. In general, each entry
aij captures some measure of affinity between nodesi
and j: the largeraij is, nodesi and j are in a sense
closer or more strongly connected. Hence in general,
we refer toA as an affinity matrix associated withG.
We assume thataij = aji, i.e. A is symmetric. For
1 ≤ i ≤ n, defined(i) =

∑
j aij , and refer tod(i)

as the (generalized) degree of nodei. (Note that if G
is a simple unweighted graphj andA is its adjacency
matrix, thend(i) is the degree of nodei.)

The combinatorial Laplacianof A (or the associated
graphG), is defined asL = D−A, whereD = [dii] =
d(i) is a diagonal matrix withd(i)’s on the diagonal.
The Laplacian is a positive semidefinite matrix, and thus
hasn non-negative Eigen valuesλi’s. For 1 ≤ i ≤ n,

let ui be the corresponding eigenvector ofλi such that
||ui||

2
2 = u

′

iui. We assume that the eigenvaluesλi’s
are ordered such thatλ1 ≥ ... ≥ λn = 0. Then the
matrix formed by the corresponding eigenvectorsu

′

is,
U = [u1, ...,un], is orthogonal i.e.U′

U = I, the
identity matrix. More importantly,L admits an eigen
decompositionL = UΛU

′, where Λ is the diagonal
matrix Λ = [λii] = λi.

Like L, its Moore-Penrose (pseudo) inverseL
+ is also

positive semi-definite, and admits an eigen decompo-
sition of the form,L+ = U

′Λ−1
U, where Λ−1 is a

diagonal matrix consisting ofλ−1 if λi > 0, and 0 if
λi = 0 (for simplicity of notation, in the following we
will use the conventionλ−1

i = 0 if λi = 0). Define
X = Λ−1/2

U. Hence,L+ = X
′
X which means that

the network can be embedded into the Euclidean space
ℜn where the coordinates of nodei are given byxi,
the ith column of X. As the centroid of the position
vectors lies at the origin in this n-dimensional space
[9], the squared distance of nodei from the origin
is exactly the corresponding diagonal entry ofL

+ i.e.
||xi||

2
2 = l+ii and the squared distance between two

nodesi, j ∈ V (G), ||xi − xj ||
2
2 = V ol(G)−1Cij where

V ol(G) =
∑n

i=1 d(i) is called thevolumeof the graph
(a constant for the graph) andCij is called thecommute
time defined as the expected length of commute in a
random walk betweeni andj in the network [4].

Based on the geometric embedding of the graph
using L

+ described above, we now put forth two new
robustness metrics. First, a rank order for individual
nodes in terms of their relative robustness properties
called structural centrality, defined asC∗(i) = 1/l+ii ,
for i ∈ V (G). Specifically, closer a node is to the origin
in this n-dimensional space, more structurally central it
is and vice versa. Next, the sum of the squared lengths
of the position vectors of all nodesTr(L+) =

∑n
i=1 l+ii ,

called the Kirchoff index(K), is a measure of the overall
robustness of the network. Geometrically, more compact
the embedding is, or equivalently lower the value of
K(G), more robust the networkG is. We can therefore
use Kirchoff index to compare the robustness of two
graphs with the same order and volume.

In what follows, we demonstrate how these two met-
rics indeed reflect robustness of nodes and the overall
graph respectively, first through rigorous mathematical
analysis and then with empirical evaluations.

III. STRUCTURAL CENTRALITY, RANDOM WALKS

AND ELECTRICAL VOLTAGES

To show that structural centrality(C∗) and Kirchoff
index (K) indeed provide a measures of robustness, we
relate them to the lengths of random walks on the graph.
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In §III-A, we demonstrate howC∗(k) for node captures
an overhead in randomdetours through nodek as a
transit vertex. Next in§III-B, we provide an electrical
interpretation for the same.

A. Detours in Random Walks

A simple random walk(i → j), is a discrete stochastic
process that starts at a nodei, the source, visits other
nodes in the graphG and stops on reaching the desti-
nation j [12]. In contrast, we define arandom detour
as:

Definition 1: Random Detour(i → k → j): A
random walk starting from a source nodei, that must
visit a transit nodek, before it reaches the destinationj
and stops.
Effectively, such a random detour is a combination of
two simple random walks:(i → k) followed by(k → j).
We quantify the difference between the random detour
(i → k → j) and the simple random walk(i → j) in
terms of the number of steps required to complete each
of the two processes given by hitting time.

Definition 2: Hitting Time (Hij): The expected num-
ber of steps in a random walk starting at nodei before
it reaches nodej for the first time.
Clearly, Hik + Hkj is the expected number of steps in
the random detour(i → k → j). Therefore, the overhead
incurred is:

∆Hi→k→j = Hik + Hkj − Hij (1)

Intuitively, more peripheral transitk is, greater the over-
head in (1). The overall peripherality ofk is captured by
the following average:

∆H(k) =
1

n2 V ol(G)

n∑

i=1

n∑

j=1

∆Hi→k→j (2)

Alas, hitting time is not a Euclidean distance asHij 6=
Hji in general. An alternative is to use commute time
Cij = Hij + Hji = Cji, a metric, instead. More
importantly [14],

Cij = V ol(G)(l+ii + l+jj − l+ij − l+ji) (3)

and in the overhead form(1), (non-metric) hitting and
(metric) commute times are in fact equivalent (see propo-
sitions9 − 58 in [13] and Theorem1 in [18]):

∆Hi→k→j = (Cik + Ckj − Cij)/2 = ∆Hj→k→i (4)

We now exploit this equivalence to equate the cumulative
detour overhead through transitk from (2) to l+kk in the
following theorem.

Theorem 1: ∆H(k) = l+kk

Proof: Using ∆Hi→k→j = (Cik + Ckj − Cij)/2:

∆H(k) =
1

2n2 V ol(G)

n∑

i=1

n∑

j=1

Cik + Ckj − Cij

ObservingCxy = V ol(G) (l+xx + l+yy − 2l+xy) [14] and
that L+ is doubly centered (all rows and columns sum
to 0) [9], we obtain the proof.
�

Therefore, a low value of∆H(k) implies higherC∗(k)
and more structurally central nodek is in the network.
Theorem 1 is interesting for several reasons. First and
foremost, note that:

n∑

j=1

Ckj = V ol(G) (n l+kk + Tr(L+)) (5)

As Tr(L+) is a constant for a given graph and an
invariant with respect to the setV (G), we obtain
l+kk ∝

∑n
j=1 Ckj ; lower l+kk or equivalently higherC∗(k),

implies shorter average commute times betweenk and
the rest of the nodes in the graph on an average. It is
well understood that lowCkj reflects greater number
of alternative (redundant) paths between nodesk andj;
which in turn shows better connectivity between the two
nodes [4]. Therefore, lower the value ofC∗(k), greater
the number of redundant paths between the nodek and
the rest of the network and consequently more immune
is nodek to random failures in the network. Moreover,

K(G) = Tr(L+) =

n∑

k=1

l+kk =
1

2nV ol(G)

n∑

k=1

n∑

j=1

Ckj

(6)
As K(G) reflects the average commute time between
any pair of nodes in the network, it is a measure of
overall structural robustness ofG. For two networks of
the same order(n) and volume(V ol(G)), the one with
lower K(G) has a greater number of redundant paths
between any pair of nodes in the network and hence is
more immune to random edge failures.

B. An Electrical Interpretation and Recurrence

Interestingly, the detour overhead in(1) is related to
recurrencein random walks — the expected number of
times a random walk(i → j) returns to the sourcei
[5]. We now explore how recurrence in detours related
to structural centrality of nodes. But first we need to
introduce some terminology.

The equivalent electrical network (EEN) [5] for
G(V, E, W ) is formed by replacing an edgeeij ∈ E(G)
with a resistance equal tow−1

ij ). Theeffective resistance
(Ωij) is defined as the voltage developed across a pair
of terminalsi and j when a unit current is injected at
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i and is extracted fromj, or vice versa. In the EEN,
let V ij

k be the voltage of nodek when a unit current
is injected ati and a unit current is extracted fromj.
From [19], U ij

k = d(k)V ij
k . Substitutingk = i we get,

U ij
i = d(i)V ij

i ; the expected number of times a random
walk (i → j) returns to the sourcei. For a finite graph
G, U ij

i > 0. The following theorem connects recurrence
to the detour overhead.

Theorem 2:

∆Hi→k→j =
V ol(G) (U ik

i + Ukj
i − U ij

i )

d(i)

Proof: From [19] we have, ∆Hi→k→j =
d(i)−1 V ol(G) U jk

i . The rest of this proof follows by
provingU jk

i = U ik
i + Ukj

i − U ij
i .

From thesuperposition principleof electrical current,
we haveV xz

x = V xz
y + V zx

y . Therefore,

V ik
i + V kj

i − V ij
i = (V ik

j + V ki
j ) + V kj

i − (V ij
k + V ji

k )

Rearranging the terms in the RHS,

V ik
i + V kj

i − V ij
i = V ik

j + (V ki
j + V kj

i − V ij
k − V ji

k )

From thereciprocity principle, V xy
z = V zy

x . Therefore,
V ik

i + V kj
i − V ij

i = V jk
i . Multiplying by d(i) on both

sides we obtain the proof.
�

The term(U ik
i +Ukj

i )−U ij
i can be interpreted as the

expected extra number of times a random walk returns
to the sourcei in the random detour(i → k → j)
as compared to the simple random walk(i → j). Each
instance of the random process that returns to the source,
must effectively start all over again. Therefore, more
often the walk returns to the source greater the expected
number of steps required to complete the process and
less central the transitk is, with respect to the source-
destination pair(i, j).

IV. EMPIRICAL EVALUATIONS

We now empirically study the properties of structural
centrality (C∗) and Kirchoff index (we useK∗ = K−1

to maintainhigher is better). We first show in§IV-A,
how structural centrality can capture the structural roles
played by nodes in the network and then in§IV-B
demonstrate how it, along with Kirchoff index, is appro-
priately sensitivity to rewiring and local perturbations in
the network.

A. Identifying Structural Roles of Nodes

Consider the router level topology of the Abilene
network (FIG. 1(a)) [1]. At the core of this topology, is
a ring of11 POP’s, spread across mainland US, through
which several networks interconnect. Clearly, the con-
nectedness of such a network is dependent heavily on
the low degree nodes on the ring. For illustration, we
mimic the Abilene topology, with a simulated network
(FIG. 1(b)) which has a 4-node core{v1, ..., v4} that con-
nects10 networks through gateway nodes{v5, ..., v14}
(FIG.1(b)). FIG. 2 shows the (max-normalized) val-
ues of SC andC∗ for the core{v1, ..., v4}, gateway
{v5, ..., v14} and nine other nodes{v15, ..., v23} in topol-
ogy (FIG.1(b)). Notice thatv5, v6 are the highest degree
nodes(d(v5) = d(v6) = 10) in the network whilev14

has the highest SC. In contrast,C∗ rank the core nodes
higher than the gateway nodes withv1 at the top. The
relative peripherality ofv5, v6 and v14 as compared to
the core nodes requires no elaboration. As far asGC
is concerned it ranks all the nodesv15 − v23 as equally
well connected whereas in factv22, v23 have redundant
connectivity to the network through each other and are,
ever so slightly, better connected than the others in the
subnet abstracted byv5.

We see similar characterization of nodes in the social
network of co-authorships [16], as shown through a
color scheme based onC∗ values in FIG. 3. Core-
nodes connecting different subcommunities of authors
are recognized effectively by structural centrality as
being more central than several higher degree peripheral
nodes.

Fig. 3. A network of co-authorships in network sciences [16],
Red → Turqoise reducing order ofC∗.

B. Sensitivity to Local Perturbations

An important property of centrality measures is their
sensitivity to perturbations in network structure. Tra-
ditionally, structural properties in real world networks
have been equated to average statistical properties like
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Fig. 1. Abilene Network and a simulated topology.
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Fig. 2. Max-normalized centralities for simulated topology.

power-law/scale-free degree distributions and rich club
connectivity [2], [7], [8]. However, the same degree
sequenceD = {d(1) ≥ d(2) ≥ ... ≥ d(n)}, can result
in graphs of significantly varying topologies. LetG(D)
be the set of all connected graphs with scaling sequence
D. The generalized Randic indexR1(G) [3], [17]:

R1(G) =
∑

eij∈E(G)

d(i)d(j) (7)

where G ∈ G(D), is considered to be a measure of
overall connectedness ofG as higherR1(G) suggests
rich club connectivity(RCC) in G [15]. We now exam-
ine the sensitivity of each index with respect to local
perturbations in the subnetwork abstracted by the core
nodev1 and its two gateway neighborsv5 andv6.

First, we rewire edgese15,5 and e6,1 to e15,1 and

e6,5 respectively (PERT-I FIG. 1(c)). PERT-I is a degree
preserving rewiring which only alters local connectivi-
ties. FIG. 4(a) shows the altered values of centralities
after PERT-I. Note,v15 is now directly connected tov1

which makesC∗(v15) comparable to other gateway nodes
while SC(v15) seems to be entirely unaffected. PERT-
I also results inv6 losing its direct link to the core,
reflected in the decrease inC∗(v6) and a corresponding
increase inC∗(v5). C∗, however, still ranks the core
nodes higher thanv5 because PERT-I is local and should
not affect nodes outside the sub-network —v1 continues
to abstract the same sub-networks from the rest of the
topology. We, therefore, observe thatC∗ is appropriately
sensitive to the changes in connectedness of nodes in the
event of local perturbations. But what about the network
on a whole?
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Fig. 4. Max-normalized values of centralities for core, gateway and some other nodes.

Let G andG1 be the topologies before and after PERT-
I. G1 is less well connected overall thanG as the failure
of e5,1 in G1 disconnects19 nodes from the rest of the
network as compared to10 nodes inG. However,

∆R1(G → G1) =
R1(G1) − R1(G)

R1(G)
= 0.029

as the two highest degree nodes (v5 andv6) are directly
connected inG1. In contrast,∆K∗(G → G1) = −0.045,
which rightly reflects the depreciation in overall connect-
edness after PERT-I. A subsequent perturbation PERT-II
of G1, rewiring e22,23 and e24,25 to e22,25 and e23,24,
to obtainG2 significantly improves local connectivities
in the sub-network safeguarding against the failure of
edge e5,6. However, ∆R1(G1 → G2) = 0 while
∆K∗(G1 → G2) = 0.036 which once again shows
the efficacy of Kirchoff index as a measure of global
connectedness of networks.

V. CONCLUSION AND FUTURE WORK

In this work we presented a geometric perspective on
robustness in complex networks. We proposed structural
centrality and Kirchoff index respectively as measures of
robustness of individual nodes and the overall network
against random edge failures in the network. Both in-
dices reflect the number of redundant/ alternative paths
in the network thereby capturing global connectedness.
We also demonstrated that these indices are suitably
sensitive to perturbations/rewirings in the network. In
future, we aim at investigating similar metrics for the
case of strongly connected weighted directed graphs to
further generalize our work.
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