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Abstract—We explore the geometry of networks in terms  graph centrality — the number of subgraphs of a graph
of an n-dimensional Euclldeqn embedding represe.nted py that a node participates in — has also been proposed
the Moore-Penrose pseudo-inverse of the combinatorial [6]. In principle, a node with high subgraph centrality,

laplacian. The length of the position vector in this n- -
dimensional space yields a structural centrality index(C*) should be better connected to other nodes in the network

for the nodes that captures the detour overhead incurred through redundant paths. Alas, subgraph centrality is
when the random walk between a pair of nodes is forced to computationally intractable and the proposed index in [6]
go through the node in question, averaged over all source- approximates subgraph centrality by the sum of lengths
destination pairs. We demonstrate how this overhead is of all closedwalks, weighed in inverse proportions by

related to the number of alternative/redundant paths be- . . ) _ . .
tween the node in question and the rest of the network: the factorial of their lengths; which inevitably introdugce

thereby reflecting the immunity/vulnerability of a node to  l0cal connectivity bias.
random edge failures. Through empirical evaluation over In this work, we study a geometric embedding of
example and real world networks, we demonstrate how networks using the Moore-Penrose (pseudo) inverse of
the structural centrality of nodes captures their structural o granh | aplacian for the network, denoted henceforth
rples in thg net_work and is suitably sensitive to perturba- by L+ We sh that the di | entries Bt that
tions/rewirings in the network. y - e show that the diagonal entries r, tha
represent the distance of each node to the origin in the
|. INTRODUCTION n—dimensional Euclidean space of the network embed-
Unlike traditional studies on network robustness, thaling, provide a robust structural centrality meas(€)
typically treat networks as combinatoric objects anfbr the nodes in the network. Moreover, the tracd.of,
rely primarily on classical graph-theoretic concepts.(e.dr(L™), also called theKirchoff index (K), provides a
minimum cuts) to characterize network robustness, vatructural robustness measure for the network as a whole.
explore a geometric approach which enables us to em-Through both rigorous mathematical arguments as
ploy more advanced theories and techniques, quantifiell as numerical simulations using synthetic and re-
and compare robustness of networks in terms of thaifistic network topologies, we demonstrate that our
local and global structures. new indices better characterize robustness of nodes in
Robustness of nodes to failures in complex networksimetwork as compared to other existing metrics (e.g.
dependent on their overalbnnectednesa the network. node centrality measured based on degree, shortest paths
Several centralities, that characterize connectednessetd.). A rank-order of nodes in terms of their structural
nodes in complex networks in varying ways, have beamntralities helps distinguish them in terms of their struc
proposed in literature. Perhaps the simplest of all is dasral roles (such as core, gateway etc.). Also, structural
gree — the number of edges incident on a node. Exceggntrality and the Kirchoff index, are both appropriately
in scale freenetworks that displayich club connectivity sensitive to local perturbations in the network, a property
[2], [7], [8], degree is essentially bbcal measure and not displayed by other centralities in literature.
does not determine the overall connectedness of a nodeThe rest of the paper is organized as follows: We begin
A more sophisticated measure of centrality is geodediy describing a geometric embedding of the network
closeness [10], [11]. It is defined as the (reciprocaising the eigen space di™ and introduce structural
of) average shortest-path distance of a node from akntrality and Kirchoff index as measures of robustness
other nodes in the network. However, communication §ll. §lll demonstrates how structural centrality of a
in networks is not always confined to shortest pathsode reflects the average detour overhead in random
alone. Therefore, geodesic based centralities only paralks through a particular node in questigh/ presents
tially capture connectedness of nodes. Recently, sulsmparative empirical analysis and §¥v the paper is



concluded. let u; be the corresponding eigenvector xf such that
|lu;||3 = ulu;. We assume that the eigenvalugss
are ordered such that; > ... > )\, = 0. Then the

matrix formed by the corresponding eigenvectars,
In studying thegeometryof networks, we first need y = [u,,...,u,], is orthogonal i.e.U'U = I, the

to embed a network (e.g. represented abstractly asg@ntity matrix. More importantlyL. admits an eigen

graph) into an appropriate geometric space endowed WifBcompositionl. = UAU’, where A is the diagonal
a metric function (mathematically, a metric space). Ifatrix A = [\;] = A;.

Il. GEOMETRIC EMBEDDING OF NETWORKS USING
LT AND STRUCTURAL CENTRALITY

(Z3

this section we describe an n-dimensional embedding of| jke L, its Moore-Penrose (pseudo) inveisé is also

the complex network using, the Moore-Penrose pseudspsitive semi-definite, and admits an eigen decompo-
inverse of the combinatorial laplacigh™). The squared sjtion of the form, Lt = U'A~'U, whereA~! is a
length of the position vector for a node in this spacgiagonal matrix consisting ok~! if \; > 0, and O if
yields a geometric measure of centrality for the nodg — (for simplicity of notation, in the following we
while the sum of the squared lengths of the positiofill use the convention\;! = 0 if A, = 0). Define
vectors of all nodes, or the trace bf, yields an overall X — A-1/2U. Hence, Lt = X’X which means that
robustness index for the graph. But first we need {@e network can be embedded into the Euclidean space
introduce some basic notations. R" where the coordinates of nodeare given byx;,
Given a complex network, its topology is in generaje jt» column of X. As the centroid of the position
represented as a (weighted) gragh, = (V. E,W), vectors lies at the origin in this n-dimensional space
where V(G) is the set of nodes representing, sayp], the squared distance of nodefrom the origin
switches, routers or end systems in the netwdtki= s exactly the corresponding diagonal entry Iof i.e.
{ew : u,v € V}is the set of edges connecting pairg|x;||2 — /* and the squared distance between two
of nodes representing, for example, the (physical @desi,; ¢ V(G),[|x; — x;]|2 = Vol(G)~'C;; where
logical) communication links between the pair of nodesy () = S d(i) is called thevolumeof the graph
and W = wy, € RF : ey € E(G) is a set of weights (a constant for the graph) arfd, is called thecommute
assigned to each edge of the graph (hire denotes time defined as the expected length of commute in a
the set of nonnegative real numbers). These weights Gaihdom walk between and j in the network [4].
be used to represent, for example, the capacity, latencygased on the geometric embedding of the graph
or geographical distance, or an (administrative) routiqgging L+ described above, we now put forth two new
cost associated with the edge (communication link).  robustness metrics. First, a rank order for individual
Note that ifw,, is simply0 or 1, we have a simple and nodes in terms of their relative robustness properties
unweighted graph. called structural centrality defined asC*(i) = 1/1;},
GivenG = (V, E, W), we introduce am x n affinity  for ; ¢ v(@). Specifically, closer a node is to the origin
matrix A = [a;;] associated witfG;, wheren = [V(G)|  in this n-dimensional space, more structurally central it
is the number of nodes i (theorderof G), anda;; > 0 s and vice versa. Next, the sum of the squared lengths
is some function of the weight;;. For a simple graph of the position vectors of all nod&gr(L*) = S I,
wherew;; € {0, 1}, settinga;; = w; yields the standard cajled the Kirchoff indexX), is a measure of the overall
adjacency matrix of the grapfi. In general, each entry ropustness of the network. Geometrically, more compact
a;; captures some measure of affinity between nadeshe embedding is, or equivalently lower the value of
and j: the largera;; is, nodesi and j are in a sense f((7), more robust the network is. We can therefore
closer or more strongly connectedHence in general, yse Kirchoff index to compare the robustness of two
we refer toA as an affinity matrix associated with. graphs with the same order and volume.
We assume that;; = aj;i, i.e. A is symmetric. For — |n what follows, we demonstrate how these two met-
1 < i < n, defined(i) = >, a;;, and refer tod(i) rics indeed reflect robustness of nodes and the overall
as the (generalized) degree of nodgNote that if G graph respectively, first through rigorous mathematical

is a simple unweighted graphand A is its adjacency analysis and then with empirical evaluations.
matrix, thend(i) is the degree of nodg)

The combinatorial Laplaciarof A (or the associated !!l. STRUCTURAL CENTRALITY, RANDOM WALKS
graph@), is defined ad. = D — A, whereD = [d;] = AND ELECTRICAL VOLTAGES
d(i) is a diagonal matrix withd(i)’s on the diagonal. = To show that structural centralitfC*) and Kirchoff
The Laplacian is a positive semidefinite matrix, and thuedex (X) indeed provide a measures of robustness, we
hasn non-negative Eigen value;’s. For1 < i < n, relate them to the lengths of random walks on the graph.



In §llI-A, we demonstrate howZ* (k) for node captures Proof: Using AH k=7 = (Ciy, + Cy; — Ci;)/2:
an overhead in randordetoursthrough nodek as a

) . : . 1 L
transit vertex. Next in§lll-B, we provide an electrical Ag® - -~ Cip & Cpi — Cys
interpretation for the same. 2n* Vol(G) ;; ’ ’
A. Detours in Random Walks ObservingC., = Vol(G) (I}f, + 1}, — 2If,) [14] and

A simple random walki — j), is a discrete stochasticthat L™ is doubly centered (all rows and columns sum
process that starts at a nodethe source, visits other t0 0) [9], we obtain the proof.

nodes in the grapli? and stops on reaching the destil]

nation j [12]. In contrast, we define sandom detour Therefore, a low value of H*) implies higherC* (k)
as: and more structurally central nodeis in the network.

Definition 1: Random Detour(i — k — j); A Theorem 1 is interesting for several reasons. First and

random walk starting from a source nodethat must foremost, note that:

visit a transit nodek, before it reaches the destinatign n

and stops. Z Crj = Vol(G) (n l,jk + TT(L+)) (5)

Effectively, such a random detour is a combination of J=1

two simple random walkgi — k) followed by (k — j). ~ as 77(L+) is a constant for a given graph and an

We quantify the diﬁerer_wce between the random qetOH{variant with respect to the set’(G), we obtain

(i - k — j) and the simple randqm walk — j) in g+ S, Cyy: lowerl}, or equivalently highe€* (k),

terms of the number of_ steps requed_to complete ea#ﬁplies éhorter average commute times betwéeand

of the two processes given by hitting time. the rest of the nodes in the graph on an average. It is
Definition 2: Hitting Time (H;): The expected nUm- o) ynderstood that lowCy,; reflects greater number

ber of steps in a random walk starting at nadeefore o giternative (redundant) paths between nodesid ;

it reaches nodg for the first time. _which in turn shows better connectivity between the two

Clearly, Hi, + Hy; is the expected number of steps imodes [4]. Therefore, lower the value 6f (k), greater

the random detouti — k — j). Therefore, the overheadine number of redundant paths between the noded

incurred is: the rest of the network and consequently more immune
AH™F= — H,, + Hy; — Hy; (1) is nodek to random failures in the network. Moreover,
Intuitively, more peripheral transit is, greater the over- () — 7p(L*) = - [ 1 Shy Chs
. ) . . = = = k
head in (1). The overall peripherality éfis captured by @ ) ,; M 2nVol(G) ;; !
the following average: (6)
n n As K(G) reflects the average commute time between
1 i—k—j ir of nodes in the network, it is a measure of
AH® — AHi—k—i 2y any pair of nodes in ,
n? Vol(G) Z Z 2 overall structural robustness 6f. For two networks of

L 171_]71 ) the same ordefn) and volume(Vol(G)), the one with
Alas, hitting time is not a Euclidean distance Hs; # ower k() has a greater number of redundant paths
Hj; in general. An alternative is to use commute iMBeyeen any pair of nodes in the network and hence is
Cy = Hy + Hj = Cji, a metric, instead. MOre mgre immune to random edge failures.

importantly [14],
Cis = Vol(G)(IF + lfj B l;; B l;;) 3 B. An Ele.ctrical Interpretation and Recu.rrence
Interestingly, the detour overhead (i) is related to

and in the overhead forrfil), (non-metric) hitting and recurrencein random walks — the expected number of
(metric) commute times are in fact equivalent (see propimes a random walki — j) returns to the source
sitions9 — 58 in [13] and Theoreni in [18]): [5]. We now explore how recurrence in detours related

AH—k—0 — (Cir + Crj — Cij) /2 = AHI—k—i 4) _to structural centralit_y of nodes. But first we need to

introduce some terminology.

We now exploit this equivalence to equate the cumulative The equivalent electrical network (EEN) [5] for
detour overhead through transitfrom (2) tol/f, in the G(V, E, W) is formed by replacing an edgg; € E(G)

following theorem. with a resistance equal to;jl ). Theeffective resistance
(©2;) is defined as the voltage developed across a pair
Theorem 1: AH® = of terminals: and j when a unit current is injected at



i and is extracted frony, or vice versa. In the EEN, A. Identifying Structural Roles of Nodes

let V;” be the voltage of nodé when a unit current  consider the router level topology of the Abilene
is injected ati and a unit current is extracted frof  network (FIG. 1(a)) [1]. At the core of this topology, is
From [19], U}’ = d(k)V}”. Substitutingk = i we get, g ring of 11 POP’s, spread across mainland US, through
Uy = d(i)V;”; the expected number of times a randoryhich several networks interconnect. Clearly, the con-
walk (i — j) returns to the source For a finite graph nectedness of such a network is dependent heavily on
G, U;? > 0. The following theorem connects recurrencéhe low degree nodes on the ring. For illustration, we

to the detour overhead. mimic the Abilene topology, with a simulated network
Theorem 2: (FIG. 1(b)) which has a 4-node cofe, ..., v, } that con-
i k) i nects10 networks through gateway nodé¢ss, ..., v14}
AH—k=T — Vol(G) (Ui +U;” —U/7) (FIG.1(b)). FIG. 2 shows the (max-normalized) val-
d(i) ues of SC andC* for the core{v,...,v4}, gateway
_ _ {vs, ...,v14} and nine other nodegs, ..., va3} in topol-
Proof: From [19] we have, AH"""™/ = ogy (FIG.1(b)). Notice thats,vs are the highest degree
d(i)=! Vol(G) U?*. The rest of this proof follows by nodes(d(vs) = d(vs) = 10) in the network whilev;,
proving U* = Uik + UM — U, has the highest SC. In contraét; rank the core nodes
From thesuperposition principlef electrical current, higher than the gateway nodes with at the top. The
we haveV,”* = V,7* 4+ V,**. Therefore, relative peripherality ofv;,vs andv;4 as compared to

the core nodes requires no elaboration. As farGas
Vit 4 Vikﬂ' -V = (Vjik + iji) + Vikj _ (sz’j + iji) is concerned it ranks all the nodeg; — v»3 as equally
well connected whereas in fagts, v23 have redundant
Rearranging the terms in the RHS, connectivity to the network through each other and are,
ever so slightly, better connected than the others in the
Vik 4 VN v = ViR 4 (VR 4 VM — v — 1) subnet abstracted by.
We see similar characterization of nodes in the social
From thereciprocity principle V¥ = VY. Therefore, network of co-authorships [16], as shown through a
Vik 4 vk _yid — yvI* Multiplying by d(i) on both color scheme based of* values in FIG. 3. Core-
sides we obtain the proof. nodes connecting different subcommunities of authors
| are recognized effectively by structural centrality as
The term(U#* + UM) — U can be interpreted as thebeing more central than several higher degree peripheral
expected extra number of times a random walk returR@des.
to the sources in the random detoufi — k — j)
as compared to the simple random wélk— j). Each
instance of the random process that returns to the source,
must effectively start all over again. Therefore, more
often the walk returns to the source greater the expected
number of steps required to complete the process and
less central the transk is, with respect to the source-
destination pair(z, j).

IV. EMPIRICAL EVALUATIONS

. . Fig. 3. A network of co-authorships in network sciences [16]
We now empirically study the properties of structurake; — 7urqoise reducing order ot?*.

centrality (C*) and Kirchoff index (we uséC* = K~!

to maintainhigher is bettey. We first show in§IV-A,

how structural centrality can capture the structural roléd Sensitivity to Local Perturbations

played by nodes in the network and then jiv-B An important property of centrality measures is their
demonstrate how it, along with Kirchoff index, is approsensitivity to perturbations in network structure. Tra-
priately sensitivity to rewiring and local perturbatioms i ditionally, structural properties in real world networks
the network. have been equated to average statistical properties like
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Fig. 2. Max-normalized centralities for simulated topglog

power-law/scale-free degree distributions and rich clul 5 respectively (PERT-I FIG. 1(c)). PERT-1 is a degree
connectivity [2], [7], [8]. However, the same degregreserving rewiring which only alters local connectivi-

sequenceD = {d(1) > d(2) > ... > d(n)}, can result ties. FIG. 4(a) shows the altered values of centralities
in graphs of significantly varying topologies. Lé{D) after PERT-I. Notep;5 is now directly connected to;

be the set of all connected graphs with scaling sequenghich make< *(v15) comparable to other gateway nodes

D. The generalized Randic ind& (G) [3], [17]: while SC(v15) seems to be entirely unaffected. PERT-
| also results invg losing its direct link to the core,
Ri(G) = Z d(i)d(7) (7) reflected in the decrease it (vs) and a corresponding
ei; €E(G) increase inC*(vs). C*, however, still ranks the core

) . nodes higher than; because PERT-I is local and should
where G € G(D), is con5|dere_d to be a measure OF]OI affect nodes outside the sub-networkus—continues
°_V€ra” connecte<_jn_ess a as higherR, (G) suggests to abstract the same sub-networks from the rest of the
rich club connectivit(RCC) in & [15]. We now exam- q5610qy. We, therefore, observe tiit is appropriately
ine the sensitivity of each index with respect to localgitive to the changes in connectedness of nodes in the

perturbations in the subnetwork abstracted by the COggent of |ocal perturbations. But what about the network
nodew; and its two gateway neighbotg andvg. on a whole?

First, we rewire edges;s5 andes; to e;5; and
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Let G andG, be the topologies before and after PERT-
I. G4 is less well connected overall thanhas the failure 1
of e5 1 in G disconnectd9 nodes from the rest of the [2]
network as compared tb0 nodes inG. However,

R1(G1) — R1(G)
R1(G)

as the two highest degree nodes &ndwg) are directly
connected ir¢;. In contrast AK* (G — G1) = —0.045,
which rightly reflects the depreciation in overall connect{?
edness after PERT-I. A subsequent perturbation PERT-f
of G1, rewiring €22 23 and €24,25 to €22 25 and €23 24,
to obtainG, significantly improves local connectivities
in the sub-network safeguarding against the failure of
edge e5 6. However, AR1(G1 — G2) = 0 while [8]
AK*(G; — G2) = 0.036 which once again shows
the efficacy of Kirchoff index as a measure of globalig
connectedness of networks.

(3]
(4]

(7]

V. CONCLUSION AND FUTURE WORK (10]

In this work we presented a geometric perspective Tﬂ\]
robustness in complex networks. We proposed structura
centrality and Kirchoff index respectively as measures ¢if2]
robustness of individual nodes and the overall netwo 'fs]
against random edge failures in the network. Both in-
dices reflect the number of redundant/ alternative pathd]
in the network thereby capturing global connectedneﬁs
We also demonstrated that these indices are suita y]
sensitive to perturbations/rewirings in the network. In
future, we aim at investigating similar metrics for thé'6l
case of strongly connected weighted directed graphs to
further generalize our work. [17]
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