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A GEOMETRIC APPROACH TO SOME COEFFICIENT

INEQUALITIES FOR UNIVALENT FUNCTIONS

ENRICO BOMBIERI

I. Introduction. 

~ 

’

The relationships between extremal problems for univalent functions

and the theory of quadratic differentials are now known and well understood
and the reader will find a systematic application of the theory of quadratic.
differentials to univalent functions in the monograph [1] by J. A. Jenkins.

One of the main difficulties in the solution of extremal problems for

univalent functions can be explained as follows.

Let P denote an extremal problem for univalent functions; by a ge-
neral principle of Teichmiiller, there is associated a quadratic differential

on some Riemann surface l~, such that the critical trajectories of

this differential are tied up with the extremal functions for P. Unfortuna-

tely, the quadratic differential Q (z) dz2 depends also on the unknown extre-
mal functions for the problem P, thus making the determination of the cri-
tical trajectories of (~ (z) dz2 very difficult. Only a special class of problems
P can be treated directly in this way.

Another approch, which has proved to be fruitful, is giving first the

quadratic differential Q (z) dz2 (or at least « a part &#x3E;&#x3E; of it) and then finding
which problems P are associated to Q (z) dz2 Possibly the most general re-

sult in this direction of ideas is provided by the General Coefficient Theo-
rem [1], [2~, of J. A. Jenkins, which contains as very special cases most of
the known inequalities for univalent functions.

Recently Z. Charzynski and M. Schiffer (3], [4] proved the Bieberbach

conjecture I a, ~ 4 in an ingenious and indirect way, namely: they proved
first an auxiliary inequality, which combined with other known inequalities
implied the desired result.

- ------

Perveuuto alia Redazione il 19 Geunaio 
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Their second proof [4] of a4 ~  4 was based on a new inequality ob~

tained in the following steps:
(i) by a geometric analysis of the associated qua,dratic differential,

one proves that unless the differential itself is of a simple type, the part
of the trajectories one is interested in lie in some half plane ;

(ii) a weighted mean of these trajetories falls in the opposite half.

plane, a contradiction;
(iii) having thus proved that the quadratic differential Q(z)dz2 must

be of a simple type, one is able to find the trajectories and thus the extre-
mal functions for the ineqnality considered ;

(iv) having found the extremals it is a simple matter to find the

maximum.

Other instances of this method are in the paper [7] by P. R. Garabe~

dian and M. Schiffer.

The purpose of this paper is to prove a general result about critical

trajectories of a quadratic differential Q(z)dz2 on the z.sphere, arising
from the following problem. Let be given a quadratic differential Q (z) dz2
on the z-sphere, a « good » subset l’o of the set T of critical trajectories
of Q (z) dz2, a continuously differentiable Jordan arc J on Il.

Under which conditions on J can we assert that J f1 To is either empty
or a single point

Our answer is (see Theorem 1 later)

Condition (a) : To is good if a certain connectedness condition is satis-

fied ;

Condition (z) has at most three poles and only one pole of mul-

tiplicity ~ 2 ;

Condition (y) : 1m ( Q (z) dz2) ~ 0 along J.

We give two applications of our Theorem 1 (a third one may be con-

sidered the proof [4] by Charzynski and Schiffer of I (141 4).
In Theorem 3 we prove a new coefficient inequality which may he

. helpful for a proof of I a5  5; this inequality, as a special case, proves

that Re ~a5)  5 if °2 = real, a result obtained, and generalized to higher
coefficients, by A. Obrock [5]

Next we give a simplified proof of the inequality C  -+- e-6 which,
. 

( 2
while still along the lines of the first proof [7] by P. R. Garabedian and

M. Schiffer, avoids the numerical computations of that paper.
Finally, we remark that there is a close analogy between our Theorem

3 and a recent inequality by M: Ozawa (t7). The inequality has been
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generalized by Garabedian in [8] and perhaps there is a new inequality,
analogous to Garabedian’s, generalizing our Theorem 3.

The next section contains definitions and known results (here without

proofs) about quadratic differentials, which are collected here for reader’s

convenience. The reader will find these definitions and results (with proofs)
in the monograph [1] by J. A. Jenkins Chapter III.

II. Quadratic differential.

Let R be a finite oriented Riemann a (meroniorphic)
quadratic differential on it. The quadratic is called

positive if

where C is a boundary uniformising parameter of R, except possibly for

at most a finite number of zeros.

The set of zeros and simple poles of Q (z) dz2 will be denoted by C and
called the set of critical points of the quadratic differential ; by His meant
the set of all poles of Q (z) dz2 of order at least 2.

A trajectory of Q (z) dz2 is a maximal regular analytic curve r along
which

this trajectory is an integral curve of the differential equation

where 1: is a suitable real parameter. It follows that through an interior

point of R - C - H there is one and only one trajectory.
A trajectory having a, limiting end point at a point of C will be cal-

led critical ; there is only a finite number of critical trajectories, and T will
denote their union. ’

If U is a set on R, then U will denote its closure, while the ’-clostire
"I 

-

U of U will mean the set of interior points of U.
We shall state the for convenience of the reader the main results and

definitions related to quadratic differentials. The Global Structure Theorem
and the Three Pole Theorem which will follow are due to J. A. Jenkins [1]
as well as some of the following definitions.
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A set K on a finite oriented Riemann surface R is an F - set with

respect to the quadratic differeintial Q (z) dz2 if every trajectory of’ Q (z) dz2
which meets K lies entirely in K.

Let T denote the union of all critical trajectories of Q (z) dx2 , and

consider R - T. One of the main results of the theory is the fact that

R - T consists of a finite number of domains which are either simply-con-
nected or doubly-connected, called end, strip, circle and ring domains.

precise definition of these domains is as follows.

DEFINITION 1. An end domain L’ on R is a maximal connected open
set E with the following properties :

i) .E is an F - set :

ii) E contains no critical point of Q (z) 
iii) through any point of E there is one and only orte trajectory, /which

starts and terminates at a pole oJ’ Q (z) dz’ , of order at least 2;
iv) the metric dw2 = Q (z) dz2 maps E’ conformally onto upper or

lower half-plane in the 1V - pla,ne.

REMARK. It is possible to show that the order of the pole considered
in condition (iii) is at least 3.

DEFINITION 2. A strip domain S on R is a maximal connected open
set rS with the following 

i) S is an F - set ;
ii) S contains no critical point of dz2 ;

iii) through any point of S’ there is one and only one trajectory, which

starts and terminates at two poles of Q(z)dz2, possibly coincident, of order
at least 2 ; ,

iv) the metric dz*2 b’ onto a strip a 
in the w - plane. 

DEFINITION 3. A circle domain C on R is it maximal connected open
. set 0 with the following properties

i) C is an F - set ;
ii) C contains a single double pole A af Q (z) dz2 ;

iii) thi-ough any point of C - A there is one and only trajectory, ’which
is a closed Jordan curve separating A from the boundary of C;

. iv) there is a purely immaginary constant c such that the metric

dw2/w2 = (z) dz2 maps B conformally onto a circle [ r, tlze point A

going into iv = 0, in the 11’ - plane.
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DEFINITION 4. A ring domain R is a maximal connected open set R

with the following properties :
i) R is an F - 

ii) R contains no critical point of Q (z) dz2 ;
iii) through any point of R there is one and only one trajectory, which

is a closed Jordan curve ;

iv) there is a pure t y constant c such that the metric 

c2 Q (z) d-z2 maps R conformally onto a circular ring )’1   r. in the
w - plane.

Now we are ready to state the
Global Structure Theorem (J. A. Jenkins [1]).
Let R be a finite oriented Rientann Q (z) dz a positive quadratic

differential on it.

Let T denote the union of’ all trajectories Q (z) dz2 which have one end point
at a zero or a simple pole of Q (z) dz2, let T be the closzcre of T and let T be

’ 

the interior of 1. Suppose also that no one of the following situations hap-
pens, up to conJor1nal equivalence .-

c) Q (z) dz2 holomorphic, R a torus.
Then we have ,

i) R - T consists of a finite number of end, strip, circle, and ring
domains ; ,

ii) each such domain is bounded by a finite number of trajectories
together 1cich the points at which the latter meet ; every boundary component
of such a domain contains a zero or a simple pole of Q (z) dz2, except that a
bounda,ry component of a circle or a rivg domain may coincide with a boun-

dary component of R ; a strip domaiit tlae two bounda1’y elements, arising
points of the set of poles Q (z) dz2 of’ order at least 2, divide the

into two parts each of ’which contains a zero or a simple pole of
Q (z) dz2 ;

iii) every pole of’ Q (z) dz2 of order m greater than 2 has a neighborhood
covered by the o f in - 2 end domains and finite number of’ strip
domains ;

iv) every pole of Q (z) dz2 of order 2 has a neighborhood covered by
the of the union a ,finite number oj’ strip domains or has a

neighborhood contained in a circle domain.
For later developments we shall need a condition under which a qua-

dratic differential Q (z) dz2 on the z - sphere is such that the +-closure
"I

T of T is empty. The answer is provided by, Jenkins’ (see [1]):
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Three Pole Theorem. Let R be the z - sphere, Q (z) dz2 a quadratic
differential with at most three distint poles.

Then T is empty.

Ill. Quadratic difterentials with only three poles.

The aim of this section is to establish the "following results.

THEOREM 1. Let R be the z - sphere, Q (z) dz2 a quadratic differential
on it with at most three distint poles, only one of which, say B is of order

at least 2.

Let To be a connected c01nponent of T -- B, and let J be a continuosly
differentiable Jordan arc on R not containing poles of Q (z) dz2, and such
that B ~ J and

Then J can meet To at 1nost in one point.

PROOF. If A, A’ are two points we shall denote by ·IAA- , the
open subarc of J having A, A’ as its end points.

Suppose To contains at least tvo points. The hypothesis

shows that J is nowhere tangent td a trajectory of Q (z) dz2. Hence there

is an open subarc Jpp,, of .I not meeting To and whose and tpoints, P, P’

belong to To, this because T and hence To is empty by the Three Pole

Theorem.

We note that the quadratic is certainly holomor-

phic and non-zero on Jpp , because no critical point of Q(z)dz2 belongs
to J. 

The set T, = To + B is connected, vhence R - To consists of a finite

number of simply-connected domains one of which, say Do , 7 will contain

Jpp,. Now from the fact that To = To - B is connected we see that

a (Do - B) is connected too. We shall denote by Ao the simply connected
domain whose boundary consists of Jpp~ and of the connected part of

a (Da - B) joining the points P, P’, and such that l~ ~ 1. This last con-

dition can be fulfilled because B 9 Jpp, by hypothesis.
’ 

Let us suppose is not conformally equivalent to dz2 .

Using the fact that T is empty and the Global Structure Theorem we
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see that there is a sufficiently small neighborhood N of’ P such that N n L10
is contained in a domain K which is an end, strip, circle or a ring do-
main.

Let Q be a point of The quadratic diflerential Q (z} dz2 is

holomorphic and non-zero at Q whence there is an unique trajectory r of

Q (z) dz2 through Q. We note that I’ is trasversal to Jpp, because

on 

We assert that I" intersects Jpp, at least twice, and that there is a

subarc 1~~ of h’ lying in do and having its end points on Jpp~. Otherwise,
let P be that part of T lying in 110. r cannot end at Q, otherwise Q
would be a critical point of Q (z) which is not the case. Also, 7~ cannot
end on Jpp, or inside Ao because if this were the case then either

7’ would be a critical trajectory or il would contain a pole of Q (z) dz2 of

order at least two. This is impossible, the former alternative because I’

would belong to To, the latter because Q (z) dz2 would have at least two

poles of order at least 2, by the fact that B 1 do .
It is clear that Jpp~ is part of the boundary ag of K. It follows

from the previous discussion that there is a point Q, on Jpp, t1 N and a

simple subarc of a trajectory, having Qi, Qi , where as its

end points, such that if Al denotes the simply-connected subdomain of Ao
whose boundary is rr -~- ~TQ1,~~ , we have

Now let CJ2 be a point of and let I’2 be the simple subarc of the
trajectory through Q2’ contained in .10 and ending at a point Q2 of Jp~., .
Obviously 7~? cannot cross ddo - nor and it follows that 

Letting d2 be the simply-connected subdomain of do whose boundary is

I’~ &#x3E; we deduce that At C d2 and

Clearly LI is a simply-connected subdomain of K, whose boundary is

a simple, closed Jordan curve consisting of JQ 2 Q 1 + + J~1~~ -~- ~~ ~ and
the quadratic differential Q (z) is holomorphic and non-zero inside and

on J. It follows from the Oauchy Residue Theorem that
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whence

when the integrals on the left hand side of this equation are taken along J,
while the integrals in the right hand side are taken moving along hi
from QI to Ql and moving along r2 from Q2 to Q2 .

On every trajectory r of Q (z) dz2 we have Q (z) dz2 &#x3E; 0, thus:

i ~ real on

Hence

Finally, by hypothesis Im ( Q (z) dz2) ~ 0 on J, and was holo-

morphic and non-zero on J. Hence has a constant sign on J.

Now, as and Q2 E JQi y we see that Im has al Bvays the

same sign on both subarcs J Q2Ql and of J.

Hence

contradicting the previous equation and the hypothesis that J contained

at least two points.
It remain for consideration the case in which Q (z) dz~ is conform ally

equivalent to dz2. However in this case the set T is empty and Theorem 1
becomes trivial.

This completes the proof of Theorem 1.

COROLLARY. Theorem 1 remains true if’ J contains one pole A
(z) dz2, provided the connected T - 11 A,
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and we have

PROOF. In fact J - A consists of two disjoint components J1, to

each of them we may apply the result of Theorem 1.

REMARK. Theorem 1 and T’heorem 1, Corollary remain true if’ the condition

is weakened to

at every point where Im (Q (z) dz2) = 0 on J.

PROOF. In fact it follows again that J is nowhere tangent to a trajec-

tory of the quadratic differential Q (z) dz2 ; now let

We have

and if v .--- 0 then

Hence 1m (Q (Z)1/2 dz) has a constant sign on J and the proof of Theo-
nem 1 still applies.

IV. Applications to the theory of univalent functions.

Let 8 denote the family of functions

which are regular and univalent in the unit disk ( u~ ~ C 1 ~ also let Z

denote the family of functions

which are regular and univalent in the punctured disk 0 ~ ~ I u’ C 1, with

a simple pole at the origin.
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It is clear tliat if E ~S, then

shall Identify the closed z-plane to the z-sphere, and call it R.

The relationship between extremal prohlems for functions of’ classes AS

and Z and the theory of quadratic differentials comes from tlie Teichmiiller

principle which asserts that any such extremal function  1 onto

the z - spere R slit along a subset l’ of the set T of critical trajectories of

an appropriate quadratic differential on R. For functions in b’. the exact

formulation is the following.
For any f (2v) = If" + a2u.2 -f- E 8 we put (tn = xn + iy,, , and consider

the region V,, of’ poiuts (x2, y2,..., xn, in ( 2&#x3E;1 - 2) - ditnensional real space,
for varying J* in S. It is easily proved that V n is closed and bounded.

PRopositioN 1. Let F = F (,}’2 , ..., y2 , ... , be reccl and continuous

ivith its first (lerivatives in au open set IT containing Vn, ccl,yo 

( gracl &#x3E; 0 ’in U.

Let = ic + it-2 + ... E S be the oJ’ maximizing
F ivithin S. Let

and let

’1’Iaen the function

I ic C 1 univalently onto R - I’ I’ is a subcontinuum containing
the origin and of’ 1, of the ’1’ tlre set 71 oj. critica 1

trajectories oJ’ the differential 1 on R

PROOF. It is an immediate consequence of’ [JJ, Lemma VII and 
rem III (this last result is needed to prove that r is a subcontinuum of’ 1’ ).

We shall prove

THEOREM 2. Let 1&#x3E;id have it i-e(tl seco)td
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coefficient a2. Then

with equality only when

This result is a consequence of the following more general inequality

THEOREM 3. Let Then. we have

eqzcctlity only 1l,hen

LEMMA 1. Let F be the functional considered in Theorem 2. Then any

function ~t’ (1f) ,t’o~- I’ has Y2 = 0.

PROOF. By Proposition 1 we find ming straight-forward algebra that
the associated quadratic differential is

where

We apply Theorem 1 taking for J any segment of real axis containing
the urigili. Suppose Y2 + 0, so that 0 and Q (z) dz2 has a simple pole
at, the origin ; let be the connected component of Z’ - B where B is the

point at oo, containing the origin.
We have on J that dzl is real whence

because a&#x3E; 0 is real. By Theorem 1, Corollary, we deduce that

3. Annalt della Scuola Norm. Sup. - Pisa.
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n J is the origin, and in particular that To lies entirely either in the

upper half - plane or in the lower half - plane. Now a simple calculation

shows that the tangent vector to at the origin has argument - arg (-At)
whence To and r lie in the same half-plane as a2 does.

On the other hand, from

putting we deduce that

We may think of as a non-negative measure on F of unit

total measure and we get

Thus a mean of I’ with respect to a non-negative measure lies in the

opposite half plane where T lies, a contradiction whence Y2 = ().

COROLLARY 1. max 1vhere max’ is taken i fa th e

subclass 0.( S consisting of junctions with real second coefficient a2.

COROLLARY 2. The closure l’ of’ tjce set I’ o f critical oJ’ the

quadratic diflere?itia,I Q (z) dz2 is symmerical about the real axis.

PROOF. As Y2 = 0, we, obtain

and Q (z) dz2 is real on the real ’axis; Corollary 2 follows at once from this.
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LEMMA. 2. If maximizes F’, the origiit cannot be a zero of Q(Z)dZ2.

PROOF. If’ z = 0 is a zero of Q (z) dZ2 we would bave

whence

By the Area Theorem for we have

is real whence from the previous inequality we get a fortiori

Hence and

, which is impossible because max .F ~ 5 as we can see

trivially from the Koebe function.

PROOF OF THEOREM 3. By Lemma 2, To is unforked at the origin and
there is exactly one trajectory !1 of’ To whose closure contains the origin.
By Lemma 1, Corollary 2 this trajectory must lie either om the real axis

or oii the iinmagiiiary axis. In the latter case from Q (z) dz2 &#x3E; U we deduce

A3 = 0, i. e. u2 = 0 and this by the Area Theorem would give

and again ~-h’r’~~5) contradicting the fact that ~’(~n.) maximizes F.

Hence this trajectory must lie on the real axis.
Now suppose I’ contains a zero of the quadratic differential Q (z) dz2.

Then I’ must contain at least one end point of the trajectory A other than
the origin and thus T contains a real zero Zo of’ Q (z) dz2.

Consider the variation in the large of f (IW) given by

BBB E /’ whence I’* (If) E I~.
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Putting
tion gives

, and a simple computa-

It follows that a* is real, also

and

Hence

so that by Lemma 1, Corollary 1 f * (w) maximizes F. Hence the function

f * 1 (w) [ 1 onto the z.-sphere slit along a subcontinuum T*‘ of the

closure T* of the union T* of critical trajectories of a quadratic differential

where

Obviously ¡. (w) has the same general properties of f and we obtain

in particular that the set I"* is unforked at the origin and coincides with

a segment of the real axis in a neighborhood of the origin.
On the other hand,

thus on I’ we have
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It follows that 1~ satisfies both differential equations

and

and belongs to the associated T sets of both quadratic differentials. By our
previous discussion, the T set of Q (z) dz2 is a segment of the real axis in
a neighborhood of the origin, while the T set of Q* (z - z,)) dz2 is a segment
of the real axis in a neighborhood of zo .

It follows that if T can be continued past the point zo, it must still

lie on the real axis. Hence h is a segment of the real axis.
If 1~ does not contain any zero of Q (z) dz2, we have 7~ c A and again

h is a segment of the real axis.

Thus we have proved that T is a real segment. As r has mapping
radius 1, this segment must be of length 4 and a function

()ur functional in this case is

which is maximum and equal to 5 when c2 = 1. This completes the proof
of Theorems 2 and 3.

()ur next result will be a simplified proof of the inequality I

for functions of ~, first proved by Garabedian and Schiffer [7]. Our basic
contribution will be to show that the properties of the extremal functions
can be deduced from a geometric study of the trajectories of the associated

quadratic differential. In particular we shall avoid the complicated arguments
of section 4 as well as the numerical computations of section 5 of [7].

THEOREM 4. 

Then

and this inequality is sharp.

In particular, and this inequality is again 
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We first determine the quadratic differential with the problem of nn

ding the minimum of the functional in Theorem 4. This is a routine matter
in variational methods for univalent functions, but for the convenience of

the reader we shall give an indication on how to find it.

We note that without loss of generality we may suppose bo = 0 by
making a translation 

By Teichmuller’s principle, an extremal g (w)  1 univalen-

tly r where r is a closed subcontinuum of mapping radius 1 of

the set T associated to some quadratic differential Q (z) dz2. In particular,
r consists of a finite number of analytic arcs. Let zo E r be not an end

point of these arcs ; then for sufficiently small e and for each complex
number B1 with there is a varied function g. (w) with

and where

for this result, see [7], pag. 120 eq. 27.

We get

and writing bn = 13" + we get from the extremal property of g (ic) :

Letting e -+ + 0 we see that this inequality is possible for each

I Bi ~ 1 only if

Thus we have proved that g (w) C 1 onto R - 7~ when F is
a closed 8subcontinuum of the closure T of the set T of critical trajectories
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of the quadratic differential

where

By making a rotation of an we may suppose that
2

3. r contains all critical points 0.( the quadratic differential

PROOF. It is clear 0 that T then contains the line segment

1 - I joining the two critical points + fl(’2 of Q (z) dz2, so that
TO = T - B, where B is the pole of Q (z) dz2 at z ~ oo , is connected. Cle-

arly To is still connected in case fl, -- 0.
From the fact that g (z,a) has constant coefficient zero we obtain

where du = 1 d0 is the measure induced on h by z = g (ei9). It follows
2n

that I’ has points both in the right a,nd left half=planes.
Now To meets the immaginary axis only in the origin, y as we can see 

I

on applying Theorem 1, Remark which is possible because

on the immaginary axis except at the origin.
Hence f contains the origin.
If fl, = 0, Lemma 3 is proved.
Now suppose fJ1 &#x3E; 0 and that r contains no zeros of Q (z) dz2. By our

previous discussion, ,~’ is a line segment contained in - ~ii~2 e z c ~81~2 , hence
of length at most 2 , hence of length at most 2 by the well-known ele-

mentary inequality This however is impossible because r has

mapping radius 1 and so it would have length 4.

Next, suppose I’ contains exactly one critical point, say fll/2. Then r
consists of a line segment L given by - It Z  where a  plus
possibly two arcs issuing from the point and lying in the right half-

plane. Note that a &#x3E; 0 because otherwiqe z dp would have a positive real
r

prt.
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exclude this case, and thus prove Lemma 3, we use a simple ar-
gument of Charzynski and Schiffer [41, Lemma 1.

Let La be the line segment - a --- z c a and let M be a line segment
on the immaginary axis. Let

be the development near Q = o0 of the univalent function mapping confor-
mally B - M onto R - La ; also let

Let further

C 1 conformally onto (M + IT).
The set M -+- H has no points in the left half-plane by the symmetry

of the mapping h (C) about the immaginary axis and because F - La lies in
the righ half-plane. It follows that

because the set H is non-empty and has a positive real part.
Now

and maps I w I  1 onto R - Il As bo = 0 we obtain

By the symmetry of h (~) about the immaginary axis we obtain

which is a contrad ction to the equation + °0 = 0, because c &#x3E; 0 and

Re (do) &#x3E; 0.
This completes the proof of Lemma 3.
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PROOF OF THEOREM 4. Let be extremal for our problem.
On the circle = 1, g (tc) = z satisfies

whence

is real and non-negative one zv , = 1. By the Schwarz reflection principle,
it can be continued across ~ lic ( = 1 aiid we get the differential equation

where the right hand side of this equation is real and non-negative on 1"£1 = 1.
By Lemma 3, r contains the critical points of - (z2 - Pi) dz2. It follows

that the right hand side of the differential equation for g (ir) has four double
roots on I = 1. Hence it is a perfect square, and

because the left hand side of this equation is real and non-negative on Ilv = 1.
It follows that

where we have written b,, = + iyn .
Our differential equation becomes on taking square roots
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and integrating we find

where K is a costant of integration.
Iu order to find K, one expands both members of this equation near

ir = t) and gets

On the other hand, ~i~~ E I’ thus there is rro ,vith == 1 such that
g2 = This gives

which proves that I~ is purely imaginary. Hence

1 t follows that

and that either

But then is a minimum when and

the minimum is

Equality is attained when g satisfies

. 

where now and has expansion near

and Y1 is such that g remains holomorphic and uni valent i n (~ C j i If C 1.
This completes the proof of Theorem 4.

,[8tituto Matemnlico

Leonida 

Pisa, Italia.
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