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We characterize in a geometrical way those Suzuki-Tits ovoids which are defined over a perfect field K (or
equivalently living inside a self polar symplectic quadrangle). We simplify our axioms in the particular cases
that (1) the associated Suzuki group has exactly two orbits in the set of lines of PG(3, K), and (2) the ovoid
is finite.

1 INTRODUCTION

The perfect symplectic generalized quadrangle W (K), where K is a (commutative) field of
characteristic 2 admitting an automorphism σ whose square is the Frobenius automorphism
of K, always has an ovoid, namely the Suzuki-Tits ovoid obtained by considering the absolute
points of a polarity, see Tits [7]. In case that K has a quadratic extension, there is also
a classical ovoid, which is in fact an elliptic quadric in projective 3-space over K. If K is
a finite field, then these are the only ovoids known to exist. They are also ovoids of the
projective 3-space over K in which W (K) is embedded.

In general, an ovoid of PG(3, K) can be structured as a Möbius circle plane or inversive plane
by considering the plane sections. This Möbius plane is in fact a one-point extension of the
affine plane over K. There are some charaterizations of the (finite) Möbius plane correspond-
ing with the classical ovoid (which is called the Miquelian inversive plane) in characteristic
2, see for instance Thas [5, 6] and Glynn [2]. In this paper we present a geometric charac-
terization of the perfect Suzuki-Tits ovoids as Möbius planes. This characterization — which
I already announced in [8] as a remark — arose naturally from an attempt to characterize
geometrically the Ree-Tits generalized octagons over a perfect field, where the pencils of
lines have the structure of the Möbius plane defined by a perfect Suzuki-Tits ovoid (this can
also be seen through the action of a Suzuki group on the pencils), see [9].
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2 MAIN RESULT

Let Γ = (P , C,∈) be a geometry consisting of a set P of at least 4 points; a set C of at least 2
circles and an incidence relation ∈⊆ P×C. Then Γ is a (Möbius) inversive plane if it satisfies
conditions (MP1) and (MP2) stated below. A Möbius inversive plane is a characteristic 2
inversive plane if it moreover satisfies (CH1) and (CH2). It is called perfect if it satisfies (P).
Finally, a perfect characteristic 2 inversive plane is a Suzuki-Tits inversive plane, or briefly
an STi-plane, if it satisfies condition (ST). As the terminology already shows, the only axiom
distinguishing the Suzuki-Tits ovoid from the classical ovoid (if it exists) in the perfect case
is Axiom (ST).

We now state all axioms mentioned above. We view circles as sets of points incident with
them. Two circles touch if they intersect in exactly one point.

(MP1) Three points of Γ are contained in exactly one circle.

(MP2) For every circle C ∈ C, and every two points x, y ∈ P such that x ∈ C and y /∈ C,
there exists a unique circle D ∈ C touching C in x and containing y.

(CH1) For every circle C and every pair of points x, y /∈ C, either there is a unique circle
containing both x and y and touching C, or all circles through x and y touch C.

(CH2) There do not exist three circles two by two touching each other in distinct points.

(P) For every two triplets {Ci, Di, Ei}, i = 1, 2, of pairwise disjoint circles, we have that E1

touches E2 whenever both Ci and Di touch Cj, Dj and Ej, {i, j} = {1, 2}.
(ST) The inversive plane Γ is furnished with a map ∂ : C → P : C %→ ∂C ∈ C such that:
(ST1) For every pair of points x, y ∈ P there is a unique circle C ∈ C containing x and y
and such that ∂C = x.
(ST2) For every circle C and every point x /∈ C, there is at most one circle D containing x
and ∂C and such that ∂D ∈ C.

In fact an STi-plane should be denoted by its geometry Γ and the map ∂. Since we will
always use the same notation ∂, we will by abuse of language call Γ an STi-plane when in
fact the pair (Γ, ∂) is. The map ∂ is by the way not necessarily unique. For the inversive
plane arising from the elliptic quadric over the field of two elements (which is isomorphic
to the inversive plane arising from the Suzuki-Tits ovoid related to Sz(2), see Tits [7]),
there are essentially three choices since Sz(2) has index 3 in L2(4) and since the latter acts
transitively on the incident point-circle pairs. For a general given (perfect) Suzuki-Tits ovoid
O defined over some field K, a map δ is constructed as follows. Let W (K) be a symplectic
quadrangle such that O is the set of absolute points of a polarity in W (K); let PG(3, K)
be the ambient projective space. Every circle C of the inversive plane corresponding with
O is the intersection of O with a plane π of PG(3, K). This plane π is the image under
the symplectic polarity defining W (K) of a unique point x. All points of C are collinear in
W (K) with x, and conversely, every line in W (K) through x contains a unique point of C.
The set of lines obtained from O by applying the polarity of W (K) defining O is a spread
of W (K) and so there is a unique line L of this set through x. The point of O on L is by
definition δC. We remark that δC is called “le nœud” by Tits [7]. We will call it the corner
of C.



In the next section we will prove some lemmas which will allow us to construct a symplectic
quadrangle in which a given STi-plane lives. More exactly we will show:

MAIN RESULT. The point set P of any STi-plane Γ can be embedded in a projective 3-
space PG(3, K), where K is a field of characteristic 2 in which there exists an automorphism
σ whose square is the Frobenius map x %→ x2, in such a way that the circles of Γ correspond
to plane sections of P (now viewed as a set of points of PG(3, K)) and such that P is
projectively equivalent with a Suzuki-Tits ovoid. Conversely, every inversive plane obtained
from a Suzuki-Tits ovoid over a perfect field by considering plane sections is an STi-plane.

In the finite case, the main result can be stated in a more elegant way as follows.

MAIN RESULT — FINITE CASE. An inversive plane of even order arises naturally
from a finite Suzuki-Tits ovoid if and only if it satisfies Axiom (ST) stated above.

Another particular case is the case where the Suzuki group has only two orbits on the
set of lines of PG(3, K) not belonging to the symplectic quadrangle in its natural action
on PG(3, K). In this case, we call the Suzuki group and the associated Suzuki-Tits ovoid
special. In particular, this is true if K is finite. In the special case the situation described in
Axiom (P) does not occur. So we might state an alternative axiom:

(P′) If for two pairs {Ci, Di}, i = 1, 2, of disjoint circles we have that Ci touches both Cj

and Dj, {i, j} = {1, 2}, then D1 does not touch D2.

A characteristic 2 inversive plane which satisfies (P′) and (ST) will be called a special STi-
plane. Note that if (P′) holds, then the conditions of (P) can never be satisfied, and so (P) is
always valid. Indeed, the circles C1, C2, D1, D2 of Axiom (P) can never satisfy Axiom (P′).
Hence every special STi-plane is an STi-plane, but the converse is not true, as we will see
below.

We now have:

MAIN RESULT — SPECIAL CASE. The point set P of any special STi-plane Γ can
be embedded in a projective 3-space PG(3, K), where K is a field of characteristic 2 in which
there exists an automorphism σ whose square is the Frobenius map x %→ x2, in such a way that
the circles of Γ correspond to plane sections of P (now viewed as a set of points of PG(3, K))
and such that P is projectively equivalent with a special Suzuki-Tits ovoid. Conversely, every
inversive plane obtained from a special Suzuki-Tits ovoid over a perfect field by considering
plane sections is a special STi-plane.

For the rest of the paper, we denote by Γ a given STi-plane.

3 PRELIMINARY RESULTS.

LEMMA 1 Let C, D,E ∈ C all contain the point x. If C touches D in x and D touches E
in x, then C touches E in x or C = E.

PROOF. If C would meet E in a second point y &= x, then there exist two circles C and E
containing y and touching D in x. This would contradict Axiom (MP2).



LEMMA 2 For every circle C and every point x /∈ C, there is a unique circle D containing
x and ∂C and such that ∂D ∈ C.

PROOF. Let y ∈ C be arbitrary but such that y &= ∂C. Let E be the unique circle
containing ∂C such that ∂E = y (Axiom (ST1)). If x ∈ E, then the result follows from
Axiom (ST2). So suppose that x /∈ E. Let D be the unique circle containing x and touching
E in ∂C. Note that y ∈ E ∩C and E touches D in ∂C, hence by Axiom (MP2) C does not
touch D in ∂C. That means that C and D share another point z. Let F be the circle with
corner z containing ∂C. Since z ∈ C, it follows from Axiom (ST2) that E and F touch in
∂C (because y /∈ F otherwise F = C by Axiom (MP1)). But z ∈ F ∩ D and both D and
F touch E in ∂C. This implies by Axiom (MP2) that F = D and hence z = ∂D ∈ C. The
lemma is proved. !

LEMMA 3 If a circle C touches D in ∂D, then ∂C = ∂D.

PROOF. Choose x ∈ C, x &= ∂D, and let C ′ be the circle with corner ∂D and containing
x. Axiom (ST1) implies that C ′ touches D in ∂D and so by Axiom (MP2) we must have
C ′ = C (because they both contain x). !

LEMMA 4 If three circles containing a point x touch another circle which does not contain
x, then these three circles have two points in common.

PROOF. Let C, D,E touch F with x ∈ C ∩D ∩ E and x /∈ F . By Axiom (CH2), C and
D meet in a second point y, and C and E also meet in a second point z. We have to show
y = z. Suppose by way of contradiction y &= z. Then z /∈ D. By Axiom (MP2), there exists
a circle G touching D in x and containing z. By Axiom (CH1) G touches F . Since x /∈ F ,
this contradicts Axiom (CH2). Hence the result. !

LEMMA 5 If three circles touch two disjoint circles, then they either all have two points
in common, or they are pairwise disjoint.

PROOF. Suppose C, D and E all touch the disjoint circles F and G. Suppose that C, D,E
are not pairwise disjoint. By Axiom (CH2), we may assume that C and D meet in two
distinct points x and y. Note that x ∈ F would imply by Axiom (MP2) that C = D.
Suppose E touches F in z. By Axiom (CH1) the circle H containing x, y and z touches both
F and G. From Axiom (MP2) follows readily that either H coincides with E, or H touches
E. But the latter violates Axiom (CH2). Whence the result. !

LEMMA 6 There do not exist four circles Ci, i = 1, 2, 3, 4, such that Ci touches Ci+1 and
Ci meets Ci+2 in two distinct points, for all subscripts modulo 4.

PROOF. Let C1 ∩ C3 = {x1, x3} and C2 ∩ C4 = {x2, x4}. Axiom (MP2) implies that
x1, x3 &= x2, x4. Hence there is a unique circle D containing x1, x2 and x3. By Axiom (CH1),
D touches both C2 and C4. But this contradicts Axiom (MP2) since both C2 and C4 contain
x4 and touch D. !



LEMMA 7 If C and D are two circles, then every point x not in C ∪ D is contained in
at least one circle Dx touching both C and D. If C and D meet in two points, then Dx is
unique and the claim holds for every x /∈ C ∩D.

PROOF. If C and D touch, then the result follows readily from Axiom (MP2) and Lemma 1.
So we may assume that C and D do not touch.

Let x ∈ P \ (C ∪ D). Let C1 and C2 be two circles touching C and containing x. By
Axiom (CH2), C1 and C2 meet in another point xC &= x. By Axiom (CH1), all circles
through X and xC touch C. Similarly, there is a point xD such that all circles through x
and xD touch D. Hence a circle through x, xC and xD touches both C and D. If C and D
meet, then xC &= xD by Lemma 6. Moreover every circle through x touching C must contain
xC by Lemma 4 and similarly for D. This proves the uniqueness in the case that C and
D are non-disjoint. If x ∈ C \ D, then by considering a third circle C ′ containing C ∩ D,
C &= C ′ &= D, the result follows from Axiom (CH1). !

LEMMA 8 For every point x outside any circle C, there exists a unique circle D with
corner x touching C.

PROOF. There is at most one such circle by combining Axioms (CH2) and (ST1). Let D1

and D2 be two circles containing x and touching C (these exist since C contains at least
three elements and for each element of C we can construct such a circle by Axiom (MP2)).
By Axiom (CH2) the circles D1 and D2 meet in a second point y &= x. Let D be the circle
with corner x containing y, then the result follows from Axiom (CH1). !

4 THE SYMPLECTIC QUADRANGLE W (K)

We introduce the following geometry Γ! = (P!,L!, I). Both the point set P! and the line
set L! of Γ! are the union of P and C. Hence if x ∈ P , then x can be viewed as a point or as
a line of Γ!. To make that difference, we write xp respectively x! if we view x as an element
of P! respectively L!. Similarly for circles. We now define incidence in Γ!. A point xp,
x ∈ P, is incident with a line y!, y ∈ P, if and only if x = y. A point xp (respectively line
x!), x ∈ P , is incident with a line C! (respectively point Cp), C ∈ C, if and only if ∂C = x.
A point Cp, C ∈ C, is incident with a line D!, D ∈ C, if and only if ∂C ∈ D, ∂D ∈ C and
∂C &= ∂D

PROPOSITION 9 The geometry Γ! as defined above is a symplectic generalized quadran-
gle.

PROOF. First we claim that, if C, D ∈ C, then Cp and Dp are collinear in Γ! if and only if
C touches D. If Cp I x! I Dp with x ∈ P , then the claim follows from Axiom (ST1). Suppose
now Cp I E! I Dp with E ∈ C. Then ∂E ∈ C∩D and since D &= C, we have ∂D &= ∂C. Clearly
also ∂D &= ∂E &= ∂C. Since ∂C, ∂D ∈ E, the result follows from Axiom (ST2). Conversely,



suppose that C and D are touching circles. If they touch in ∂C, then by Lemma 3 ∂C = ∂D
and Cp I (∂C)! I Dp. So we may assume that {x} = C∩D with ∂C &= x &= ∂D. By Lemma 2,
there exists a unique circle E containing ∂C and ∂D and such that ∂E = x. We now have
Dp I E! I Dp.

Next, we show that Γ! is a thick generalized quadrangle. So we must show that, whenever X
is a point of Γ! and L is a line of Γ! not incident with X, then there exists a unique point-line
pair (Y,M) such that X I M I Y I L. There are essentially three cases to distinguish.

Case 1. X = xp and L = y! with x, y ∈ P. Clearly x &= y and neither Y nor M can be
elements of P . So M must be equal to C! with C ∈ C and ∂C = x. Similarly Y = Dp with
D ∈ C and ∂D = y. Since C! and Dp are incident in Γ! we must have that x ∈ D and
y ∈ C. But that defines C and D uniquely by Axiom (ST1).

Case 2. X = xp and L = C! with x ∈ P and C ∈ C. By assumption ∂C &= x. Suppose
first that x ∈ C. Let D ∈ C be such that ∂D = x and ∂C ∈ D (D is uniquely defined by
Axiom (ST1)). Then xp I x! I Dp I C!. If E is any circle such that E! I xp, then ∂E = x. If
E! is concurrent with C!, then similarly as for collinear points in Γ!, C and E touch. But
Lemma 8 implies that ∂C = ∂E = x, contradictory to our assumptions. We have shown the
uniqueness of Y and M if x ∈ C.

Suppose now x /∈ C. If F is a circle such that Fp I C! and Fp is collinear with xp in Γ!,
then as above, ∂F ∈ C and x, ∂C ∈ F . By Lemma 2, F exists and is unique. If E is the
unique circle with corner x and containing ∂F , then we have xp I E! I Fp I C! and this chain
is unique.

The case where X is a circle and L is a point of Γ is completely similar.

Case 3. X = Cp and L = D! with C, D ∈ C. First suppose that ∂C = ∂D. Clearly
X I (∂C)! I (∂D)p I L. Suppose E and F are circles such that X I E! I Fp I D!. Then E
contains ∂C, ∂F and ∂E. Since ∂E &= ∂F (by definition of incidence in Γ!), we also have
E &= F . But also F contains ∂C = ∂D, ∂E and ∂F , contradicting the fact that, by definition
of incidence in Γ!, there holds ∂C &= ∂F and ∂E &= ∂C. Clearly (∂C)p cannot be collinear
with Cp in Γ!.

Suppose that ∂C ∈ D. Since X and L are not incident we have ∂D /∈ C. Clearly
X I (∂C)! I Ep I L, where E ∈ C with ∂E = ∂C and ∂D ∈ E. Clearly this chain is unique
with the property that it contains a point of Γ. Suppose now Cp I F! I Gp I D! with F, G ∈ C.
Then G contains ∂D, D contains ∂G and G touches C in, say, x. By Axiom (MP1), x /∈ D
(because otherwise either G = D or G = E and x = ∂C = ∂G). The circle E containing
∂D with corner ∂C touches C by Axiom (ST2), and it touches G by Axiom (ST2). Hence
by Axiom (CH2) either C ∩ E ∩G is non-empty, or the set {C, E, G} has two elements. In
either case, one obtains E = G. This concludes the case ∂C ∈ D. Similarly the case ∂D ∈ C
is proved.

So we may assume that ∂C /∈ D and ∂D /∈ C. Let C1 and C2 be two circles containing ∂D
and touching C (these exist by Axiom (MP2) since a circle contains at least three points).
By Axiom (CH2) C1 and C2 meet in a further point x &= ∂D. By Axiom (CH1) all circles
through ∂D and x touch C, hence so does the unique circle E with ∂D, x ∈ E and ∂E ∈ D
(which exists by Lemma 2). Note that E is unique with respect to the properties that



∂E ∈ D, ∂D ∈ E and E touches C. Indeed, if E ′ is any circle meeting these conditions,
then E and E ′ touch by Axiom (ST2) and so E = E ′ by Axiom (MP2). Hence Ep I D! and
Ep is collinear with Cp. By the uniqueness of E, the proof of the fact that Γ! is a generalized
quadrangle is complete.

The quadrangle Γ! is clearly thick since every circle contains at least three elements (and
the number of points of Γ! on a line Cp equals the number of points of Γ on C; similarly
dually).

Now we show that every pair of non-collinear points {X, Y } of Γ! is regular, i.e. whenever
U, V,W are collinear with X and Y , and Z is collinear with U and V , then Z is collinear
with W . Again, there are three cases.

Case 1. Suppose first that X = xp and Y = yp with x, y ∈ P . It is easily seen that U, V and
W must be circles of Γ containing x and y (but not as their corners). So we put U = C!,
V = D! and W = E! with C, D,E ∈ C. Note that C ∩D ∩ E = {x, y}, which implies that,
if Z is collinear with U and V , then Z = Fp with F ∈ C. Also we know (see above) that F
touches both C and D. Axiom (CH1) implies that F touches also E, hence Z and W are
collinear.

Case 2. Suppose now that X = xp and Y = Gp with x ∈ P and G ∈ C. Again U, V and
W must be circles and we again put U = C!, V = D! and W = E!, with C, D,E ∈ C and
x ∈ C ∩D∩E. We know that G touches C, D and E, hence by Lemma 4, C, D and E meet
in a further point y. We are back at the situation of the preceding paragraph and so the
result follows.

Case 3. By switching the roles of X, Y, Z and U, V,W in the preceding paragraphs, we may
now assume that they are all circles of Γ. So we put X = Hp, Y = Gp, Z = Fp, U = C!,
V = D! and W = E!, with C, D,E, F,G,H ∈ C. Now C touches H; H touches D; D
touches G and G touches C, while C and D respectively G and H do not touch each other.
Hence by Lemma 6, we may assume that G and H are disjoint. By Lemma 5, either C, D
and E share two points x and y and hence E touches F as before, or C, D,E are pairwise
disjoint and the result follows directly from Axiom (P).

Hence we have shown that all points (and dually lines) of Γ! are regular. We now show that
each triad of points has at least one center, i.e. if X, Y, Z are three pairwise non-collinear
points, then there exists at least one point W collinear with all of them.

case 1. If X, Y and Z are all points of Γ, say X = xp, Y = yp and Z = zp, then the point
Cp, with C the unique circle containing x, y and z, is collinear with X, Y and Z in Γ!.

case 2. If X and Y are points of Γ, say X = xp and Y = yp, and if Z is a circle, say Z = Cp,
then by Axiom (CH1), there is at least one circle F containing both x and y and touching
C (note that indeed x, y /∈ C otherwise X respectively Y is collinear with Z). The point Fp

of Γ! is collinear with X, with Y and with Z.

Case 3. Let X = xp, x ∈ P, let Y = Dp and Z = Cp, C, D ∈ C. We have by assumption
x /∈ C ∪D and C and D do not touch each other. By Lemma 7, there is at least one circle
F containing x and touching both C and D. The point Fp of Γ! is again collinear with all
three X, Y, Z.



case 4. Finally let X = Ep, Y = Dp, Z = Cp with C, D,E ∈ C. If C ∩D∩E contains a point
x ∈ P , then xp is collinear with all three X, Y, Z. So suppose that C ∩D∩E is empty. First
suppose that C, D,E are pairwise disjoint. Let F be a circle containing ∂E and touching
both C and D. If F touches E, then we’re done for then Fp is collinear with X, Y and Z. So
we may assume that f does not touch E, hence equivalently, we may assume that ∂F /∈ E
(by Lemma 3). Let F ′, F ′ &= F , be any circle touching both C and D. We have already
shown above that there exists a unique circle C ′ containing ∂E, touching F ′ and having its
corner in F . By Axiom (ST2), F touches C ′. If F and F ′ are disjoint, then by Axiom (P),
C ′ touches every circle which touches both C and D, which means that the set of circles
touching C, D and E coincides with the set of circles touching C ′, D and E. If F and F ′ are
non-disjoint, then the same conclusion is derived from Lemma 5 and Axiom (CH1). Hence
we may assume that C and D are not disjoint. Let {x, y} = C ∩ D and let E ′ be a circle
containing both x and y and touching E (E ′ exists by Axiom (CH1)) in, say, z. By Lemma 7
there exists a unique circle F touching both C and D and containing z. By Axiom (CH1), F
also touches E ′ (in z). Since E ′ touches E in z, we conclude with Lemma 1 that F touches
E (since clearly F &= E). Hence Fp is collinear with X, Y and Z.

So we have shown that for every three pairwise non-collinear points of Γ! there exists a
point collinear with all three of them. In fact this means that, by the regularity of all
points of Γ!, for every point X of Γ! the geometry with point set {Y ∈ P! : Y =
X or Y is collinear with X}, line set the set of all sets of points collinear with X and some
other point Y of Γ! and natural incidence relation, is a projective plane. It then follows
from Schroth [3] that Γ! is a symplectic quadrangle over some commutative field K. !
As an immediate corollary, we see that in an STi-plane, for every three pairwise non-touching
circles, either there exists a unique circle touching all three given circles, or every circle
touching two of the three given circles also touches the third. This follows from the regularity
of points in Γ!, but it is not so obvious to prove it directly, especially when the three given
circles are pairwise disjoint.

5 PROOF OF THE MAIN RESULTS

We can now finish the proof of our Main Results. First note that the map xp %→ x! and
Cp %→ C!, x ∈ P and C ∈ C, induces a polarity in the symplectic quadrangle Γ!. By the
definition of incidence in Γ!, the set of absolute points of this polarity is exactly the set of
points of Γ. An arbitrary plane section is a set of points collinear with some non-absolute
point X of the quadrangle (use the symplectic polarity). Hence X = Cp for some C ∈ C.
But the set of absolute points collinear with Cp is exactly C viewed as the set of elements
of P . By Tits [7],Théorème 3.6, Γ is the inversive plane arising from a Suzuki-Tits ovoid.

Suppose now that Γ is a special STi-plane. Let L be any line of PG(3, K) not belonging to
Γ!. Then L is a set of points collinear with two non-collinear points X and Y of Γ!. If L
contains a point of Γ, then it contains exactly two points of Γ (since in that case X and Y
must be circles which intersect in two points). All such lines lie in the same orbit under the
action of the associated Suzuki group by the doubly-transitivity of these groups (see Tits
[7],Théoreème 6.1) on the points of the ovoid. If L does not contain a point of Γ, then, if X



and Y are circles, they are disjoint. By Axiom (P′), all points of L are circles of Γ meeting
in two points x and y (by Lemma 5). Clearly x and y belong to the line Lθ, where θ is the
symplectic polarity of PG(3, K) associated with Γ!. Hence all such lines are also in the same
orbit (since L and Lθ are determined by each other). So the corresponding Suzuki group is
special.

If Γ is finite and of even order q, i.e. every circle contains q + 1 points and there are in total
q2 + 1 points, then every circle C not containing a certain point x is an oval in the internal
affine plane Γx of order q in x (which may be defined as follows: the points of the plane are
the points of Γ distinct from x; the lines are the circles through x; incidence is the natural
one). Hence this oval has a unique nucleus ( see for instance Barlotti [1]) which lies in
the affine plane (and not at infinity because otherwise the line at infinity would be a tangent
line and the oval would only contain q affine points). This observation already shows that
Axioms (CH1) and (CH2) are satisfied. We now show Axiom (P′). Suppose C1 and C2 are
disjoint circles both touching the disjoint circles D1 and D2. For every point x of D1, there
exists a unique circle Cx containing x and touching both D1 and D2 (indeed, the circle Cx is
the unique line of Γx parallel to D1 and containing the nucleus of D2 in Γx). The circle Cx

is disjoint form C1. For otherwise they meet in two points u and v and all circles through
u and v touch both D1 and D2. Hence also the circle C ′ containing u and v and D1 ∩ C2.
Since C2 and C ′ touch D1 in the same points, they touch each other. But since they both
touch D2, they should be equal by Axiom (CH2), which we already proved, a contradiction.
Similarly, one shows that for distinct x, y ∈ D1 the circles Cx and Cy are disjoint. Hence we
obtain a set of q + 1 (the number of points of D1) disjoint circles. This is a contradiction
since there are only q2 + 1 < (q + 1)2 points in total.

There remains to show that the inversive plane arising from the Suzuki-Tits ovoid satisfies the
given axioms. Axioms (CH1), (CH2) and (ST) follow immediately from Van Maldeghem
[8], Lemmas 4.1, 4.2 and 4.3. There remains to show Axiom (P) (in the general case) and
Axiom (P′) (in the special case).

Axiom (P) is a direct consequence of the following observations. Let the Suzuki-Tits ovoid
be defined as the set of absolute points of a polarity in the symplectic quadrangle W (K)
naturally embedded in PG(3, K). Each circle of a perfect Suzuki-Tits ovoid defines a plane
of PG(3, K); two circles touch if and only if these planes meet in a line of the generalized
quadrangle, hence they are conjugated with respect to the symplectic polarity θ defining
W (K). So disjoint circles have planes meeting in a non-singular line L and every circle
meeting both circles has a plane which contains Lθ. Axiom (P) now follows from the fact
that every plane through L is conjugated with every plane through Lθ.

In the special case, either L or Lθ contains two points of the Suzuki-Tits ovoid and hence
all circles arising from intersections with planes through one of these lines meet (in exactly
two points). This shows Axiom (P′) in the special case.

The Main Results are now completely proved.

REMARK 1. By choosing coordinates in PG(3, K), it is not difficult to show that the
Suzuki group defined over K is special if and only if the equation

(xσ+2 + x + a)(xσ+2 + x + a + 1) = 0 (1)



has at least one solution, for every a ∈ K (where σ is the corresponding automorphism
whose square is the Frobenius automorphism). In this case, one factor has no solution and
the other one exactly two.

Raising the first factor of Equation 1 to the power σ respectively 2, we obtain

x2σ+2 + xσ = aσ (2)

x2σ+4 + x2 = a2 (3)

Multiplying Equation 2 by x2 and adding the result to the sum of Equation 3 and the first
factor of Equation 1, one obtains

(aσ + 1)x2 + x = a2 + a,

which is equivalent to (by putting y = (aσ + 1)x)

y2 + y = (a2 + a)(aσ + 1). (4)

Putting z = y + a in Equation 4, we obtain

z2 + z = (a2 + a)(aσ), (5)

which is the same equation as Equation 4 with a substituted by a + 1. Hence if Equation 1
has a solution, then so does Equation 5. Now consider the quotient field K of the ring of
(finite) “polynomials” over Z/2Z in the indeterminate t with powers in Z[

√
2

2 ]. Put a = t
√

2−1

in Equation 5, then it is easily seen that

z =
+∞∑

i=0

t2
i
+

+∞∑

j=0

(t
√

2)2j

is a solution in the completion of K with respect to the natural valuation. But this solution
does not lie in K since it is non-repeting. Hence we have established a field K of characteristic
2 in which there exists a map σ (raising to the power

√
2) whose square is raising to the

power 2 over which the corresponding Suzuki group is not special, as we promised in the
introduction.

Suzuki-Tits ovoids which are not special have some properties which seem unusual compared
to the finite case. For example, there are two kinds of linear flocks (cp. Thas [5]). One kind
partitions the ovoid minus two points into ovals using planes through one fixed line; the other
kind partitions the whole ovoid into ovals using planes through a fixed line. As pointed out
to me by the referee, also some elliptic quadrics have these two kinds of linear flocks, namely,
those defined over a field K which admits two non-isomorphic quadratic extensions.

REMARK 2. If |K| = 8, then the circles of a Suzuki-Tits ovoid over K are pointed conics
in the sense of Segre [4] (cp. Barlotti [1]), and their nuclei are exactly the corners in our
sense.
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