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Abstract We start from the embedding of the Klein model of a hyperbolic
plane H over a Euclidean field K in its direct motion group G := PSL2(K)
and of both in PG(3,K). We present a geometric procedure to obtain loops
which are related to suitable regular subsets of direct motions as transversals
of the coset space G/D, where D is the subgroup of hyperbolic rotations fixing
a given point o ∈ H. We investigate some properties of such loops and we
determine their automorphism groups.
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1 Introduction

It is well known that the point-set of a hyperbolic plane over a Euclidean field
K can be equipped with the algebraic structure of a Bruck loop (or K-loop,
see [6]) which is obtained in a standard way (called loop derivation) by means
of the regular involution set of the point reflections. The recent papers [4] and
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[12] introduce another class of loops associated to a general hyperbolic plane,
generalizing a topological loop firstly constructed by Nagy and Strambach in
[10]: in [4] a construction of a loop arising from a suitable selected subset
of limit rotations is proposed. In the subsequent paper [12], exploiting a nice
geometric representation of the hyperbolic plane motion group PGL2(K) as the
point-set of PG(3,K) deprived of a ruled quadric Q, the authors characterize
the left multiplications of the limit rotation loop as one of the two sheets
Λ+ of the tangent cone Λ to Q having vertex the point 1 (the identity of
PGL2(K)). Moreover the half-cone Λ+ itself turns out to be a transversal
of a suitable coset space of the group PSL2(K), thus it is equipped with a
left loop operation, which is indeed a loop operation isomorphic to that of
the limit rotation loop via a well known algebraic technique (see e.g. [7])
which, in this particular case, produces a left conjugacy closed loop as an
invariant section of the group PSL2(K) in the sense of [9]. In the present paper
we carry on the research begun in [4] and [12] and, starting from the same
environment and employing the related geometric insight, we characterize the
planar transversals of the same group, which give rise to loops or groups.
Moreover this representation makes the determination of the automorphism
groups of these loops quite easy.

The paper is organized as follows. After reviewing in Section 2 the alge-
braic background involving loops, coset spaces, sections and transversals, loop
derivations, in Section 3 the geometric setting we are working with is pre-
sented. In Section 4 we prove some algebraic properties of the loops arising as
transversals by means of the geometric properties of PG(3,K) \ Q.

In Sections 5 and 6 we obtain our main results. Section 5 deals with the case
of planar transversals, namely transversals arising from planes of PG(3,K),
and we prove that such transversals are given only by those planes through the
point 1 which are tangent or external to the cone Λ. They are loops, indeed
groups for tangent planes. Finally in Section 6 we prove some general results
on the automorphism group of a loop transversal and we fully determine it in
the cases of planar transversals and of the limit rotation loop.

2 Algebraic background

A non-empty set L with a binary operation “ · ” is called left (right) loop if
there is a neutral element 1 ∈ L, such that ∀ a ∈ L : a ·1 = 1 ·a = a and there
is a unique solution x ∈ L of the equation a · x = b (x · a = b) for all a, b ∈ L.
If (L, ·) is a left loop, consider for all a ∈ L the left translation, namely the
permutation λa : L → L; x 7→ a · x, the set λ(L) = {λa ∈ SymL | a ∈ L}
and the left translation group of L, namely the group M` := 〈λ(L)〉. For all
a, b ∈ L denote by δa,b := λ−1a·b ◦ λa ◦ λb ∈ M` the precession map and let
∆ := 〈{δa,b | a, b ∈ L}〉 be the left inner mapping group. It is known (see e.g.
[7, (2.6)]) that ∆ = {α ∈M` | α(1) = 1}.

A loop (L, ·) is both a left and right loop. In a loop (L, ·) for all a ∈ L we
can consider the right (left) inverse a−1r ∈ L (a−1` ∈ L) such that a · a−1r = 1
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(a−1` · a = 1). When a−1r = a−1` =: a−1 we shall say that a−1 is the inverse of
a.

A loop (L, ·) is called:

– a loop with inverses if every element of L possesses an inverse;
– a loop with the left inverse property if ∀ x, y ∈ L : x−1` (xy) = y;
– a left conjugacy closed loop if ∀ x, y ∈ L : λ−1x λyλx ∈ λ(L);
– a Bol loop if ∀ x, y ∈ L : λxλyλx = λ(x(yx));
– a K-loop (or Bruck loop, see [8]) if L is a Bol loop (hence a loop with

inverses) and moreover the following automorphic inverse property holds
true: ∀ x, y ∈ L : (xy)−1 = x−1y−1.

There are many techniques to obtain loops. We now describe two of them
we will use in the following sections.

Consider a regular permutation set (L, Γ ), where L is a non-empty set and
Γ is a set of permutations acting regularly on L, and fix an element o ∈ L (we
shall write (L, Γ, o)). For all a, b ∈ L the unique element of Γ mapping a to b

is denoted by ã b (when a = b we simply write ã).

Starting from (L, Γ, o) we can define the following binary operation on L
(see e.g. [2]): ∀ a, b ∈ L : a · b := õa ◦ õ−1(b). Then (L, ·) is a loop with neutral
element o called the loop derivation of (L, Γ, o) and denoted by L(L, Γ, o).

For the second construction let us consider a group G and a subgroup D
and let G/D be the coset space, namely the set of all left cosets of D in G,
and π : G → G/D the quotient map, thus π(g) = gD. A section of the coset
space G/D is a map σ : G/D → G such that π ◦ σ = id and σ(D) = 1. Then
L := σ(G/D) is a complete set of representatives of the left cosets of D in G
with 1 ∈ L, i.e.:

∀ g ∈ G : |gD ∩ L| = 1 and 1 ∈ L.

Such a set of representatives is called a transversal of D in G.

In a transversal L of a coset space G/D for all a, b ∈ L there are unique
a ∗ b ∈ L and da,b ∈ D such that ab = (a ∗ b)da,b, thus, following [7, § 2.B],
the set L can be equipped with a left loop operation a ∗ b := (ab)d−1a,b and the
binary operation “∗” can be characterized also in set-theoretic terms in the
following way:

∀ a, b ∈ L : a ∗ b = σ(abD) = abD ∩ L.

Moreover the left loop (L, ∗) is in fact a loop if and only if for every g ∈ G it
holds that L is a transversal of gDg−1 (see [7, (2.7)])

Conversely if (L, ·) is a left loop then it is known that λ(L) is a transversal
of M`/∆ and the left loop (λ(L), ∗) is isomorphic to (L, ·) by [7, (2.11)].
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3 The geometric setting

Let (K,+, ·) be a Euclidean1 field and identify the 3-dimensional projective
space PG(Mat2(K)) with PG(3,K) in the usual way, so that the singular
matrices correspond to the points of the ruled quadric Q of equation x1x4 −
x2x3 = 0 and, with abuse of notation, we can write PGL2(K) = PG(3,K)\Q.
Note in particular that PSL2(K), identified with the subgroup {K∗A | A ∈
Mat2(K), detA > 0} 6 PGL2(K), consists exactly of one of the two disjoint
parts in which PG(3,K) is divided by the quadric Q, namely the one that
contains the identity point 1 = K∗(1, 0, 0, 1). In the following we shall denote
by ω the polarity induced by Q in PG(3,K).

If we consider the Klein model of the hyperbolic plane2 over K it is well
known that the group of motions of such plane is isomorphic to the group
PGL2(K) of projectivities of the conic bordering the model. In particular the
elements of PSL2(K) can be identified with the direct motions. Moreover the
Klein model of the hyperbolic plane itself can be embedded in PG(3,K) \ Q
as:

H := {K∗A ∈ PSL2(K) | trA = 0}
namely as the internal points of the conic C obtained as intersection of Q with
the polar plane π∞ of the point 1, of equation x1 + x4 = 0. The points of C
are in fact of the form:

C := {K∗A | A ∈ Mat2(K), detA = 0 ∧ trA = 0} .

Note that in this representation each point a of the hyperbolic plane is iden-
tified with the element of H corresponding to the central symmetry fixing
a, hence the action of PGL2(K) on H is by conjugation, i.e. for all K∗A ∈
PGL2(K) we consider:

K̂∗A :

{
H −→ H
K∗X 7−→ K∗(A ·X ·A−1).

In the following we will consider also the action of an element K∗A ∈ PGL2(K)
on the points of the whole projective space PG(3,K), extending the action by

conjugation described above and denoting it again by K̂∗A.

From now on we shall denote by G := PSL2(K) and by

D :=

{
K∗
(
a b
−b a

)
∈ PSL2(K) | (a, b) ∈ K2 \ {(0, 0)}

}
the subgroup of rotations fixing the point o := K∗

(
0 1
−1 0

)
∈ H. Note that the

subgroup D is abelian and it is a line in PG(3,K) with no intersection with
Q.

1 We recall that a Euclidean field (K,+, ·) is an ordered field where the positive elements
are exactly the non-zero squares.

2 For all the properties of the hyperbolic plane over a Euclidean field K we refer to [1]
and [5].
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Remark 3.1 If we equip H with a loop operation “·” such that λ(H) ⊆ G, then
by [7, (2.11)] λ(H) is a transversal of G/D and the two loops (λ(H), ∗) and
(H, ·) are isomorphic. The stated isomorphism can be provided explicitly by
the map

ϕ :

λ(H) → H

K∗A 7→ K̂∗A(o) = K∗A

(
0 1
−1 0

)
A−1.

Let us recall two relevant loops that can be defined on H obtained by
loop derivation L(H, Γ, o) from suitable regular subsets Γ of the direct motion
group G.

1. The so called K-loop of the hyperbolic plane (H,⊕, o) where Γ is given by
the central symmetries (cf [6]).

2. The limit rotation loop, where Γ is a selected regular subset of the set of
limit rotations of the hyperbolic plane (cf [4]).

A geometric interpretation of the latter loop in the setting here presented is
performed in [12], in particular recall that the set Λ of limit rotations of the
hyperbolic plane H corresponds to the tangent lines through 1 to the quadric
Q and has equation (x1 − x4)2 + 4x2x3 = 0, or equivalently

Λ = {K∗L ∈ PSL2(K) | trL = ±2 and detL = 1}.

Each limit rotation in Λ fixes precisely a point a ∈ C, thus in the following we
shall denote, for all a ∈ C, by Λa := {λ ∈ Λ | λ̂(a) = a} hence Λ =

⋃
a∈C Λa.

For the K-loop (H,⊕, o) we shall provide a geometric interpretation in
section 5.

We conclude the section with the following geometric proposition that will
be useful in the proof of theorem 5.1.2.

Proposition 3.2 Let K∗X ∈ PSL2(K) \ {1}, a ∈ C and α = ω(a). Then

K̂∗X fixes a if and only if K∗X ∈ α.

Proof First note that each K̂∗X is a projectivity of PG(3,K) that fixes the
quadric Q with its reguli R1 and R2 (see [15, Props 3.5 and 3.6]), preserves the
polarity induced by Q and fixes the point 1 and its polar plane π∞. Moreover
each point of the line l := 1,K∗X through the points 1 and K∗X is fixed and,
denoting by l′ = ω(l) the conjugate line, each point u ∈ l′ ∩ C is fixed as well.
In fact let r1 and r2 be the two lines of R1 and R2 respectively through the
point u. Since u ∈ l′ the line l is contained in the polar plane of u (which is
the tangent plane to Q in u), so it has non-empty intersection with both r1
and r2 hence K̂∗X(r1) = r1 and K̂∗X(r2) = r2, thus {u} = r1 ∩ r2 is fixed as
well.

Let us now assume K∗X ∈ α. Hence a ∈ l′ ∩ C and the result follows.
Conversely assume K̂∗X(a) = a. If a is the only fixed point of K̂∗X on C,

then K∗X is a limit rotation of Λa ⊆ α, thus the result is proven, hence we
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can assume that K̂∗X has a further fixed point b ∈ C. If, by contradiction,
we assume K∗X /∈ α then a /∈ l′ and, by the previous part of this proof, the

projectivity K̂∗X fixes each point of l′ ∩ C. Thus K̂∗X |C has at least three

distinct fixed points so K̂∗X |C = id. This entails that K̂∗X |π∞ = id, therefore

K̂∗X = id since each point of the line l 6⊆ π∞ is fixed as well, and we are
done. ut

4 Algebraic properties of the section loops of G/D

Now we relate some algebraic properties of the loops arising from sections of
the coset space G/D to geometric properties of PG(3,K) \ Q.

Proposition 4.1 Let D′ be a conjugate of D and let L be a transversal both
of G/D and G/D′. Then the left loops (L, ∗) and (L, ∗′) induced by D and D′
respectively are isotopic.

Proof If we denote by o = D ∩ π∞ and o′ = D′ ∩ π∞, then by remark 3.1
the loops (L, ∗) and (L, ∗′) are isomorphic to L(H, L, o) and L(H, L, o′) re-
spectively, and these loops are well known to be isotopic (see e.g. [14, prop
3.4]). ut

Remark 4.2 Note that if (P, Γ ) is a regular permutation set which is also
invariant (namely γΓγ−1 = Γ for each γ ∈ Γ ), then for any o, o′ ∈ P the loop
derivations L(P, Γ, o) and L(P, Γ, o′) are in fact isomorphic. For, consider the

map α = õ o′ ∈ Γ , then Γ = αΓα−1 and α(o) = o′, thus by [13, Thm 3.2] α is
the required isomorphism.

This happens, for instance, in the case of a K-loop, which can always be
derived from an invariant regular set of involutions (see [2], [6]), or in the case
of the limit rotation loop of the hyperbolic plane, which is left conjugacy closed
(see [4, (4.1.1)]).

In the following for a matrix X =

(
x1 x2
x3 x4

)
∈ Mat2(K) let us consider the

adjoint matrix adjX :=

(
x4 −x2
−x3 x1

)
and let ν : PG(3,K)→ PG(3,K); K∗X 7→

K∗ adjX. Note that this map is a projectivity that fixes the quadric Q and
whenever K∗X ∈ PGL2(K) we have ν(K∗X) = K∗X−1.

Proposition 4.3 Let (H, ·) be a loop such that L := λ(H) ⊆ G. Then the
following are equivalent:

1. (H, ·) fulfils the left inverse property;
2. (H, ·) is a loop with inverses;
3. L is fixed by the projectivity ν.
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Proof “1 ⇒ 2” is trivial and “3 ⇒ 1” is [7, (3.1.1)], thus it remains to prove
that “2 ⇒ 3”. Consider the loop (L, ∗) isomorphic to (H, ·) and let K∗A ∈ L
and K∗X be its (unique) inverse in L. Then

AXD ∩ L = (K∗A) ∗ (K∗X) = 1 = (K∗X) ∗ (K∗A) = XAD ∩ L

hence, since each left coset of D intersects L precisely in one point, AXD =
XAD = D or equivalently K∗AX ∈ D and K∗XA ∈ D, thus

K∗X = A−1D ∩ L = DA−1 ∩ L.

The cosets A−1D and DA−1 coincide if and only if D = ADA−1, that is if
and only if K∗A ∈ D, thus if and only if K∗A = 1; hence we can assume
A−1D 6= DA−1. Under this assumption, since both A−1D and DA−1 are lines
in PG(3,K), we have |A−1D ∩DA−1| 6 1, whence

K∗X = A−1D ∩DA−1 = K∗A−1,

proving that K∗A−1 ∈ L. ut

Remark 4.4 Note that if L is a transversal of G/D which contains a point
K∗A internal to Λ, then the line 1,K∗A is conjugate to D and has at least
two distinct intersections with L, hence by [7, (2.7)] (L, ∗) is not a loop (it can
possibly be a left loop).

5 Planar transversals of G/D

In this Section we aim at describing the behaviour of the planes π through
the point 1 with respect to the possibility of obtaining loops. By Section 2,
Lπ := π ∩ G is a left loop if and only if it is a transversal of G/D and this
happens exactly when Lπ does not contain any left coset of D. We distinguish
the following three cases:

1. π does not contain any generatrix of the cone Λ. This is equivalent to
requiring that the pole p of π in the polarity ω is an internal point of the
conic C. In this case π is called an external plane (w.r.t. Λ).

2. π contains two distinct generatrices of Λ, equivalently its pole p is an
external point of C. In this case π is called a secant plane.

3. π contains exactly one generatrix of the cone Λ, i.e. π is tangent to Λ and
to Q and π is the polar plane of a point p ∈ C, hence π is a tangent plane.

The following holds true.

Theorem 5.1 Let Lπ = π ∩ G, then (Lπ, ∗) is a left loop if and only if π is
an external or a tangent plane. In particular:

1. if π is an external plane then Lπ is a loop;
2. if π is the tangent plane in the point a ∈ C then Lπ is a group, namely

Lπ = NG(Λa) (i.e. the normalizer of Λa in G).
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Proof First note that D and all its left cosets are lines of PG(3,K) with no
intersection with Q. Moreover it is known that the set of all the left cosets
of the line D in PGL2(K) together with one regulus of Q is an elliptic linear
congruence of PG(3,K), hence each plane π contains precisely a line of that
congruence, which either lies completely in G or has no points at all in G.

If π is a secant plane, let us denote by l1 and l2 the two generatrices of the
cone Λ in π and by gD the unique line of the elliptic congruence contained in
π. Since gD intersects the two lines l1 and l2 in G then gD ⊆ π ∩ G, thus Lπ
cannot be a transversal of G/D. Since the same considerations hold also for
any other line D′ = GDG−1 for any K∗G ∈ G, we conclude that Lπ cannot
be endowed with the left-loop operation “∗”.

If π is an external plane, any of its lines must contain points not in G,
hence the unique line of the congruence contained in π has no points in G, so
Lπ is a transversal of the coset space G/D, i.e. (Lπ, ∗) is a left loop. Moreover,
since the same holds for all the conjugates GDG−1 of D, where K∗G ∈ G, the
transversal (Lπ, ∗) is a loop.

Finally if π is a tangent plane in the point a ∈ C, the unique line of the
elliptic congruence is in Q, so again it has no point at all in G and Lπ is a
transversal of G/D. Moreover by proposition 3.2 we have that K∗X ∈ Lπ if

and only if K̂∗X fixes the point a, and since the point 1 and its polar plane
π∞ are fixed as well, this is equivalent to the fact that the line Λa = 1, a is
fixed, i.e. K∗X ∈ NG(Λa). ut

Among all possible external planes, a particular situation is the one described
by the following

Proposition 5.2 Let (H,⊕, o) be the K-loop of the hyperbolic plane. Then

λ(H) = {K∗A ∈ G | A = At} = πs ∩ G =: Ls

where πs is the polar plane of the point o ∈ H (whence πs is an external plane),
thus the section loop (Ls, ∗) is isomorphic to the K-loop of the hyperbolic plane.

Proof First note that the polar plane of the point o = K∗
(

0 1
−1 0

)
with respect

to Q is the plane πs of equation x2 − x3 = 0, corresponding precisely to the
symmetric matrices. Recall now that for the K-loop (H,⊕, o) for all a ∈ H
it holds λa = õ a õ where õ a and õ are central symmetries, thus they belong
to H and in particular õ = o hence λ(H) = H o. An easy computation shows
that H o = Ls, thus, by 3.1, the result follows. ut

Theorem 5.3 Let π be any external plane and Lπ equipped with the operation
“∗” induced by the coset space G/D. Then (Lπ, ∗) is isomorphic to the K-loop
(H,⊕, o) of the hyperbolic plane.

Proof Consider the point oπ ∈ H pole of the plane π and the map λoπ ∈ λ(H)

mapping o to oπ. Since λ̂oπ fixes Q and 1, it preserves the polarity induced
by Q and hence maps the plane πs to π. Moreover since D is the line through
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1 and o, we have λ̂oπ (D) = D′ where D′ is the line through 1 and oπ. Thus

the map λ̂oπ fulfils the hypotheses of [7, (2.7.6)], the loops (Ls, ∗) and (Lπ, ∗′)
where ∗′ is obtained as section of the coset space G/D′, are isomorphic and,
by 5.2, they are isomorphic to the K-loop of the hyperbolic plane. Moreover
the loop (Lπ, ∗′) and the loop (Lπ, ∗) are isotopic by proposition 4.1, but since
the first one is a K-loop, this isotopism is in fact an isomorphism (see Remark
4.2). ut

6 Automorphisms of the section loops

The following proposition, which generalizes [12, Prop 4.4], characterizes a
convenient subgroup of the group of automorphisms of any loop (H, ·) defined
on the hyperbolic plane such that its left multiplications are direct motions.

Proposition 6.1 Let (H, ·) be a loop with λ(H) ⊆ G and consider in AutG
the subgroup

T := {β ∈ AutG | β(λ(H)) = λ(H) and β(D) = D}.

Then T is isomorphic to a subgroup of Aut(H, ·). If moreover G is generated
by λ(H), then T is isomorphic to the whole group Aut(H, ·).

Proof By [7, (2.7.6)] the map χ : T → Aut(H, ·); β 7→ ϕβϕ−1 is the required
monomorphism.

Assume now that λ(H) generates G. Then the map ·̂ : Aut(H, ·) →
AutG; α 7→ α̂, where

α̂ :

{
G → G
f 7→ α ◦ f ◦ α−1,

is a monomorphism by [7, (2.5)]. For all α ∈ Aut(H, ·) and a, x ∈ H we have

(α̂(λa)) (x) = α ◦ λa ◦ α−1(x) = α(a · α−1(x)) = α(a) · x = λα(a)(x),

thus α̂(λ(H)) = λ(H). Moreover, for all K∗A ∈ G, a point x ∈ H is fixed by

K̂∗A if and only if the point α(x) is fixed by α̂(K∗A), thus

α̂(D) = α̂
(
{K∗A ∈ G | K̂∗A(x) = x⇐⇒ x = o}

)
=

= {K∗A ∈ G | K̂∗A(x) = x⇐⇒ x = α(o)}.

Since α(o) = o we have α̂(D) = D, thus ̂Aut(H, ·) ⊆ T .
Finally for all α ∈ Aut(H, ·) and x ∈ H we have

(χ(α̂)) (x) = ϕ ◦ α̂ ◦ ϕ−1(x) = ϕ ◦ α̂(λx) = ϕ
(
λα(x)

)
= α(x),

thus χ ◦ ·̂ = id, proving that T = ̂Aut(H, ·). ut
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In the particular cases of the limit rotation loop and of the K-loop of the
hyperbolic plane we can provide also a geometric description of the group
Aut(H, ·). In the following, according to our notation, we shall consider the

groups ̂PGL2(K), Ĝ and D̂ consisting of inner automorphisms with respect to

elements of the corresponding groups and, if we denote by K∗J := K∗
(

1 0
0 −1

)
∈

PGL2(K), then we get PGL2(K) = Go〈K∗J〉. Moreover let K be the group of
pure semilinear collineations of PG(3,K), namely made up of elements α ∈ K
such that

α :

{
PG(3,K) → PG(3,K)
K∗(x1, x2, x3, x4) 7→ K∗(xα1 , x

α
2 , x

α
3 , x

α
4 )

where α ∈ Aut(K,+, ·).
The automorphism group of the limit rotation loop is determined in [12,

Thm. 4.5] (for the proof see also [11]) as follows:

Theorem 6.2 Let (H, ·) be the limit rotation loop of the hyperbolic plane H
over a Euclidean field K. Then

Aut(H, ·) ∼= D̂ o K.

To deal with the case of the K-loop of the hyperbolic plane we need to
employ the setting introduced in [1] and [3], in particular to prove the following
result.

Lemma 6.3 Let (H,⊕) be the K-loop of the hyperbolic plane and Ls = λ(H) =
πs ∩ G. Then Ls generates the whole group G.

Proof We start by proving that the left inner mapping group ∆ = D. Clearly
∆ ⊆ D, thus consider K∗D ∈ D \ 1, which is a non-trivial rotation of H of
angle γ (see e.g. [1, p. 155]). It is known (see e.g. [1, § 42]) that there exists
a triangle (x1, x2, x3) in H such that its angular defect is precisely γ. By [3,
(2.3), (3.5) and (4.4.1)] there exist a, b ∈ H such that either K∗D = δa,b ∈ ∆
or K∗D−1 = δa,b ∈ ∆, thus D ⊆ ∆. Since by definition ∆ ⊆ 〈Ls〉 and G = LsD
we are done. ut

Theorem 6.4 Let (H,⊕) be the K-loop of the hyperbolic plane and Ls =
λ(H) = πs ∩ G. Then

Aut(H,⊕) ∼= (D̂ o 〈K̂∗J〉) o K.

Proof According to proposition 6.1 to describe Aut(H,⊕) it is enough to char-
acterize geometrically the subgroup T of AutG. The result follows by noticing

that for all K∗G ∈ G it holds K̂∗G(D) = D if and only if K∗G ∈ D. Moreover

K̂∗J(o) = o, hence K̂∗J(D) = D. Since each element of D̂ o 〈K̂∗J〉 fixes the

quadric Q and the point o, it fixes also πs = ω(o) and hence D̂ o 〈K̂∗J〉 =

{K̂∗A ∈ ̂PGL2(K) | K̂∗A(Ls) = Ls and K̂∗A(D) = D}.
Finally note that each α ∈ K preserves both the plane πs and the subgroup

D as a straightforward computation shows. ut
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buch 1, Uni-Taschenbücher, No. 184
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