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Abstract—Transformations between abc, stationary dq0 (αβ0)
and rotating dq0 reference-frames are used extensively in the
analysis and control of three-phase technologies such as machines
and inverters. Previous work on deriving the matrices describing
these transformations follows one of two approaches. The first
approach derives Clarke’s matrix by modifying symmetrical
components. Park’s matrix can be subsequently found from a
rotation matrix. The second approach derives Park’s matrix using
trigonometric projection by interpreting the transformation as a
rotation in the plane of the cross-section of a machine. Then,
Clarke’s matrix can be found trivially using a reference angle of
zero in Park’s matrix. This paper presents a third approach
to deriving the Clarke and Park transformation matrices: a
geometric interpretation. The approach exploits properties of
the linear transformation using the Cartesian representation. We
introduce the locus diagram of a three-phase quantity and show
how these diagrams have applications in power quality. We show
that, unlike a phasor diagram, a single locus diagram can fully
represent a three-phase system with harmonics.

Keywords—dq0, Park, Clarke, reference-frame theory, locus
diagram, power quality

I. INTRODUCTION

TRANSFORMATIONS between abc and dq0 reference-
frames were originally used to assist in electrical machine

analysis and modelling [1]. Currently, dq0 based models are
used in a wide variety of applications including: modelling and
control of electric machines and drives [1], [2], multimachine
modelling [3], multi-inverter modelling [4], microgrid simula-
tion [5]–[7], phase-locked loops (PLLs) [8] and active power
filters [9]. In many of these examples, the dq components no
longer refer to the direct and quadrature axes of a machine.
This motivates an alternative interpretation of reference-frames
that is detached from any specific technology or application.
This paper provides one such alternative perspective which we
refer to as the “geometric interpretation”.

Considering the wealth of literature available on the subject
of reference frames, it is essential that this paper positions its
contributions in the context of previous work. To this end, we
must first study the history of these transformations, taking
care to cite the most notable references. We review Krause’s
arbitrary reference-frame, and how this perspective relates to
each transformation. Following this, we present the geomet-
ric approach to deriving the Clarke and Park transformation
matrices. We distinguish the contributions of this paper from
previous work, and the advantages and disadvantages of the
geometric approach are discussed.

A. Review of the Clarke and Park Transformations

Fig. 1 provides an overview of the transformations. The
Clarke transformation converts three-phase abc quantities to
αβ0 (ie stationary dq0). The Park transformation converts
abc quantities to dq0 and can be thought of as applying
the Clarke transformation first, followed by the αβ0 to dq0
transformation. Here we refer to the latter as simply the “dq0
transformation” for simplicity of subscript notation. Later we
will discuss how this corresponds to the “frame-to-frame-
transformation” as described in [1].

vαβ0

vabc vdq0

Park

Tp

Clarke

Tc

dq0

Tdq0

Fig. 1. Relationships between the Park and Clarke transformations. Note that
the term “dq0 transform” as defined in this paper refers to a transformation
from αβ0 to dq0 and is therefore not equivalent to the Park transformation.
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Fig. 2. Clarke and Park transformations applied to three-phase 50Hz volt-
ages 1 under three conditions: (i) balanced fundamental frequency with a phase
shift (ii) unbalanced fundamental (iii) balanced with harmonics (1st, 5th, 7th).

Fig. 2 shows the affect of applying the standard Clarke
and Park transformations under three different conditions: (i)
Balanced voltages result in equal magnitudes for vα and vβ and
constant values of vd and vq . (ii) Unbalanced voltages result
in unequal magnitudes for vα and vβ and time-varying vd and
vq at the 2nd harmonic. v0 is a zero-sequence component at the
fundamental and is always identical in both transformations.

Condition (iii) in Fig. 2 illustrates the affect of harmonics.
Each phase voltage includes fundamental, 5th and 7th harmon-
ics, with balanced voltages at each harmonic. These particular
harmonics appear as a 6th harmonic in vd and vq . There is no
zero-sequence component for these particular harmonics. The
voltage vα is equivalent to va; and vβ has a different harmonic
profile to vb due to a 180◦ phase-shift on its positive sequence
components. In Section V, each of the conditions (i), (ii) and
(iii) in Fig. 2 are explained using the geometric interpretation.

1) History of the Clarke Transformation: In the 1930s,
Clarke made a series of modifications to symmetrical com-
ponents [10], [11]. These modifications simplified the calcu-
lations for certain classes of unbalanced three-phase problems
[11], [12]. The α, β and 0 components were one set of these
innovations [11], and were particularly useful as they did not
require the a operator (1 120◦) or complex numbers.
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Fig. 3. An illustration of the Clarke transformation as derived in [11].
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Fig. 4. An illustration of the Park transformation as derived in [13].
(a) Three-phase synchronous machine with magnetic axes labelled.
(b) Park’s derivation of the inverse transformation.

Fig. 3 provides an illustration of the derivation developed by
Clarke. The α component is defined as the sum of the positive
and negative sequence voltage phasors, whereas the β compo-
nent is the difference between positive and negative sequence
phasors, times −j. Clarke’s 0 component is equivalent to the
zero sequence as defined by symmetrical components. For a
comprehensive discussion of Clarke’s derivation, we refer the
reader to [11].

2) History of the Park Transformation: During the 1920s,
Park generalised Blondel’s Two-Reaction Theory of Syn-
chronous Machines [13]–[16]. This method resolves the ar-
mature fluxes in a salient machine along the two axes of
symmetry: the direct and quadrature axes. Fig. 4(a) shows
the physical definitions of the direct and quadrature axes.
Park’s derivation shown in Fig. 4(b) actually defines the inverse
transformation: dq0 to abc. The steps are as follows: Firstly,
assume that armature flux linkages can be resolved into two
components: directly in phase with the rotor (λd) and in
quadrature with the rotor (λq). Secondly, project the d and q-
axes flux linkages onto the three coplanar abc magnetic axes.
Finally, add a zero sequence component (λ0) to each phase.
We refer the reader to [13] for a more complete description of
Park’s derivation.

B. Review of the Arbitrary Reference-Frame

A “reference-frame” refers to a set of dq0 axes rotating at
a particular speed ω (which may be zero). In the 1920s Park
chose to rotate his dq0 axes as defined in [13] at the rotor speed
of a synchronous machine ωr (because that speed eliminates
time-varying inductance in synchronous machine analysis).
During the 1930s-1950s others [17]–[19] used alternative

reference speeds for their dq0 axes, to assist in the analysis
of induction machines. Eliminating time-varying inductance in
addition to achieving a diagonalised inductance matrix were
primary objectives [1].

In 1965, Krause described in [20] that all of the different
reference-frames used in [11], [13], [17]–[19] are specific
applications of the “arbitrary reference-frame”. They all refer
to dq0 axes that rotate at a specified ω. A list of commonly
used reference-frame speeds are given below [1]:

• ω. The dq0 axes rotate at an arbitrary speed. [20].

• ω = ωr. The dq0 axes rotate at the rotor speed [13].

• ω = ωe. The dq0 axes rotate at the synchronous speed.

• ω = 0. The dq0 axes are stationary (Clarke transform).

All of the reference-frames listed can be described by Park’s
transformation matrix, except that each uses a different rotation
speed ω for the dq0 axes. We refer the reader to [1] for an
extensive discussion of the various reference-frames.

One of the goals of this work is to provide an alternative
derivation of Park’s transformation matrix, which describes
all of the listed reference-frames (when the appropriate ω is
inserted into this matrix). Therefore, we shall take a general
approach and consider an arbitrary reference speed ω whenever
we are referring to Park’s transformation matrix. We will still
refer to this matrix as “Park’s transformation”, even though we
are not limiting the reference speed to be that of the rotor ωr.
One is free to choose any reference speed they wish.

C. Contributions

The contributions of this paper are summarised below. The
remainder of this section elaborates on these points:

1) We group the previous approaches to deriving the matri-
ces describing the Park and Clarke transformations into
two approaches. This paper presents a third approach to
deriving the Clarke and Park transformation matrices: a
geometric approach.

2) We introduce the “locus diagram” of a three-phase quan-
tity and how this locus changes in the presence of
unbalance and harmonics.

The first contribution of this paper is to provide an alternative
approach to derive the Park and Clarke transformations. Pre-
vious work on deriving these transformation matrices follows
one of two approaches:

(i) The Clarke transformation matrix is derived from sym-
metrical components [11] as shown in Fig. 3. The Park
transformation matrix can be subsequently derived using
a rotation matrix such as Eq. (29).

(ii) The Park transformation matrix is derived trigonomet-
rically by interpreting the transformation as a rotation
in the plane of the cross-section of a machine. The abc
axes are coplanar stationary axes that lie 120◦ apart
and dq quantities can be projected onto the abc axes
in a manner shown in Fig. 4(b). A third transformation
variable is introduced to satisfy the change of variables.
This is chosen to be the zero component, which is
added separately. Many authors trigonometrically project
in the opposite manner: from abc to dq and are thus
required to specify scaling factors kd and kq , normally

equal to either 2/3 or
√

2/3: see [21]. These projections
describe the approach taken by the majority of authors
such as [1], [13], [17]–[24]. The Clarke transformation
matrix can then be derived trivially by setting ω = 0
in Park’s transformation matrix. One should note that
the coplanar abc axes are usually considered to have
a physical meaning relating to the magnetic axes in
the cross-section of a machine as in Fig. 4(a), but this
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physical interpretation of the abc axes is not necessary
to derive the matrix [1].

This paper presents a third approach to deriving the Clarke
and Park transformation matrices: a geometric interpretation.
This geometric approach uses the Cartesian representation:
three-phase quantities are represented by vectors in R

3, where
each orthogonal component of the vector corresponds to the
instantaneous value of one of the three phases. The first
appearance of the Cartesian representation applied to three-
phase quantities was given by Lipo in [25]. Other work that
uses this representation includes [26], [27]. More recently,
Montanari and Gole use a three-dimensional perspective to
introduce a new transformation termed the “mno-transform”
[28]. The mno-transformation assists in the calculation of
instantaneous real and reactive power for systems containing
four-wire inverters. This enables the mitigation of power oscil-
lations that normally occur when such systems are unbalanced
[28]. Although others have utilised the Cartesian representation
in [25]–[28], this paper is unique as the representation is
used to derive the matrices describing the Clarke and Park
transformations.

The geometric approach is explained step-by-step in Sec-
tion III and Section IV. A summary of the derivations provided
by the geometric view is given by Fig. 5. Each transformation
is interpreted as a combination of vector rotation and scaling
in R

3. The abc axes are orthogonal stationary axes that lie
90◦ apart and have basis vectors that span R

3. We exploit the
linearity property of matrix transformations, and derive each
transformation matrix by observing how each transformation
affects the orthonormal basis vectors of the vector space.

The geometric approach has many advantages when com-
pared to the two traditional approaches listed previously. These
include:

• When trigonometrically deriving the Park transformation
such as in Fig. 4(b), zero-sequence components are
treated separately in the derivation. The d and q com-
ponents are found from a projection operation whereas
the 0 components are added separately. The geometric
approach finds all dq0 components in a unified manner
via Eq. (4).

• The previous approaches interpret the Clarke transfor-
mation as either a manipulation of symmetrical com-
ponents as in Fig. 3, or as a specialised case of the
arbitrary reference-frame with stationary dq0 axes [1].
The geometric approach interprets the power-invariant
Clarke transformation as a single rotation in R

3, which
some readers may find to be a simpler explanation
(see Fig. 8). The standard (amplitude-invariant) Clarke
transformation is shown in Fig. 10 to be a combination
of rotation and scaling in R

3.

• Similarly, previous approaches interpret the Park trans-
formation as either a manipulation of symmetrical com-
ponents [11] combined with a rotation matrix, or as a
projection onto coplanar abc axes [13]. The geometric
approach interprets the power-invariant Park transforma-
tion as two consecutive rotations in R

3, which some
readers may find to be more intuitive (see Fig. 5).
The standard Park transformation is interpreted as first
applying the standard Clarke transform (rotation and
scaling) followed by a pure rotation in R

3 given by
Fig. 12.

• The orthogonality (A⊺ = A
−1) of the power-invariant

forms of both transformations can be easily seen from
all three approaches via matrix manipulation. The geo-
metric interpretation illustrates this orthogonal property:
orthogonal transformations preserve vector length and
can thus be visualised as pure rotations in R

3 [29].

The disadvantages of the geometric interpretation, compared
with the two traditional approaches include:

• The geometric derivation is more involved. This can
be seen by comparing Fig. 5 to the two traditional
approaches illustrated by Fig. 3 and Fig. 4(b).

• The diagrams required to explain the geometric view are
more complex to draw as they are three-dimensional.

The second contribution of this paper involves the “locus
diagram” of a three-phase quantity and how this locus changes
in the presence of unbalance and harmonics. This contribution
consists of the following:

• In Section II-C we show that for balanced systems, the
locus corresponds to a circle in R

3. We derive Eq. (12)

which shows that this circle has a radius of V
√

3/2
where V is the voltage magnitude on each phase.

• In Section V we extend the locus diagram to cases of
harmonics and unbalance. Systems with purely positive
and negative sequence will have a locus that lies within
the αβ-plane. The locus of a zero-sequence component
is a line segment perpendicular to the αβ-plane.

• We show that a single locus diagram can fully represent
a three-phase quantity containing harmonics in Fig. 18.
This is not possible using a single phasor diagram.

II. TRANSFORMATIONS, CARTESIAN REPRESENTATIONS

& THE LOCUS OF THREE-PHASE QUANTITIES

This section introduces the mathematical tools that are
used to develop geometric derivations of the Clarke and Park
transformation matrices. Firstly, we review the fundamentals
of linear transformations. Secondly, we describe the Cartesian
representation and compare it with phasor notation. Thirdly, we
introduce the concept of the locus of a three-phase quantity,
and show that the locus of a balanced set of signals is a circle
in R

3.

A. Review of Linear Transformations

Transformations are functions that operate on vectors. This
section derives a basic method to finding a unique matrix A

that fully describes a linear transformation T : Rn → R
m.

Any vector ~v ∈ R
n can be written as a linear combination

of the standard basis unit vectors {ê1, ê2, . . . , ên}.

~v = v1ê1 + v2ê2 + . . .+ vnên (1)

To find T (~v) ∈ R
m we apply the linear transformation T to

~v and impose the additivity and homogeneity constraints of
linearity:

T (~v) = v1T (ê1) + v2T (ê2) + . . .+ vnT (ên) (2)

T (~v) in Eq. (2) is now expressed in terms of transformed
standard basis vectors scaled by the components of ~v. Such a
linear combination of column vectors can always be written
as a matrix-vector product:

T (~v) =







T (ê1) T (ê2) . . . T (ên)















v1
v2
...
vn









T (~v) = A~v (3)

Eq. (3) says that any linear transformation T : Rn → R
m

can be expressed as a matrix-vector product A~v.
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êα

Tdq0(êα)
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Fig. 5. Geometric interpretation of the Clarke and Park transformations.

A =







T (ê1) T (ê2) . . . T (ên)






(4)

Eq. (4) describes a technique to determine the m × n matrix
A, that corresponds to the linear transformation T : Rn → R

m.
We can construct A by applying the linear transformation
to each of the basis vectors of R

n. We shall use Eq. (4)
to geometrically derive the Park and Clarke transformation
matrices AP and AC .

B. Cartesian Representation of Three-Phase Voltages

Three-phase quantities such as voltages, currents and flux
linkages are often expressed using phasor notation. This sec-
tion introduces the Cartesian representation and compares it
with phasor notation.

1) Phasor Representation: Eq. (5) is an example of a set
of three-phase voltages with no harmonics. For now these
voltages may or may not be balanced, where “balanced” would
require φa = φb = φc = 0 and Va = Vb = Vc.







va(t) = Va cos (ωt+ φa)

vb(t) = Vb cos (ωt− 2π
3 + φb)

vc(t) = Vc cos (ωt+
2π
3 + φc)

(5)

Each of the three sinusoidal voltages in Eq. (5) can be
represented by a unique phasor. Phasor notation is the use
of a single complex known as a phasor to store the two
parameters of magnitude V and phase φ. The magnitude of
the phasor Vi represents the RMS value of vi(t) and the phase
φi corresponds to the angle of the voltage vi(t).

Note that the expression for each sinusoidal voltage in
Eq. (5) is actually defined by three parameters: voltage mag-
nitude Vi, phase φi and frequency ω. A known frequency
must be assumed, which is one limitation of the phasor
representation. In addition, the phasor representation cannot be
used to represent signals containing more than one frequency
component, such as signals with harmonics.

Eq. (6) expresses the voltages in Eq. (5) as three phasors
Va, Vb and Vc. These three phasors can be drawn on a single
complex plane in a phasor diagram. Fig. 6(a) draws a balanced
case.















Va = 1√
2
Vae

jφa

Vb =
1√
2
Vbe

j(− 2π
3
+φb)

Vc =
1√
2
Vce

j( 2π
3
+φc)

(6)

Each voltage phasor in Eq. (6) can be converted back to a
function of time using Euler’s relation as shown in Eq. (7).

vi(t) =
√
2Re

{

Vie
jωt

}

(7)

2) Cartesian Representation: We use the notation −−→vabc to
signify the Cartesian representation of a set of three-phase
voltages. Previous work that uses the Cartesian representation
applied to three phase quantities includes: [25]–[28]. −−→vabc is a
single vector in R

3 and has three components corresponding
to three orthogonal abc axes:

−−→vabc = vaêa + vbêb + vcêc (8)

The components of Eq. (8) vary with time. Thus −−→vabc is a
vector that moves in R

3 over time as seen in Eq. (9):

−−→vabc(t) =





va(t)

vb(t)

vc(t)



 =







Va cos (ωt+ φa)

Vb cos (ωt− 2π
3 + φb)

Vc cos (ωt+
2π
3 + φc)






(9)
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Fig. 6(b) plots −−→vabc(t) at a particular instance in time t1. We
will see later that the locus traced out by −−→vabc(t) over one
period is of particular interest.

Fig. 6 compares the phasor and Cartesian representations
for a three-phase system.

• Phasor Representation:

◦ C vector space with two axes Re and Im.
◦ Three complex numbers (phasors) Va, Vb and Vc

that do not vary with time.

• Cartesian Representation:

◦ R
3 vector space with three orthoganal axes a, b, c.

◦ Single vector −−→vabc that moves with time.

C. The Locus of Balanced Three-Phase Voltages

The locus diagram is a complete graphical representation of
a three-phase quantity. Whereas the phasor diagram of Fig. 6(a)
cannot represent signals with more than one frequency com-
ponent; the locus diagram can represent both harmonics and
unbalance at each harmonic (See Section V for locus diagrams
with harmonics and unbalance).

Fig. 7 is an example of a locus diagram. The voltages are
defined by Eq. (9) for the balanced case, with peak magnitudes
Va = Vb = Vc = V and φa = φb = φc. The vector −−→vabc
moves in R

3 with time. This can be seen by examining how
the orthogonal components of −−→vabc in Eq. (9) vary with time.

We define the locus as the path in R
3 that −−→vabc traverses over

one cycle of the lowest frequency component. Fig. 7 shows that
the locus of −−→vabc traces out a circle in R

3 for a balanced set
of three-phase voltages that contain no harmonics. −−→vabc rotates
at a frequency of ω about this circle.

The circular nature of the locus of balanced voltages may
not be obvious at first, so we shall show this algebraically. If
the length of the vector −−→vabc is constant for all of time, then
the locus must trace out a circle. The euclidean distance in R

3

is given by:

‖−−→vabc(t)‖ =

√

va(t)
2
+ vb(t)

2
+ vc(t)

2
(10)

Assuming balanced voltages with each phase having a peak
magnitude of V , and each with a phase angle φ = 0, we can
rewrite Eq. (10) using Eq. (9) to give:

‖−−→vabc(t)‖ = V

[

cos2 (ωt) + cos2
(

ωt− 2π

3

)

+ cos2
(

ωt+
2π

3

)]1/2 (11)

Eq. (11) can be rewritten using trigonometric identities to give:

‖−−→vabc(t)‖ = V

√

3

2
sin2 (ωt) +

3

2
cos2 (ωt)

‖−−→vabc(t)‖ = V

√

3

2
∀ t (12)

Eq. (12) shows that the locus of −−→vabc is a circle in R
3 for a

balanced set of three-phase voltages, as the vector length is
constant. This circle is shown in Fig. 7 and has a radius of

V
√

3/2 where V is the voltage magnitude on each phase.
This exercise of finding the length of −−→vabc also illustrates

another important concept: the length of −−→vabc is not equivalent
to the peak phase voltage, even when the voltages are balanced.

It is scaled by
√

3/2. This geometric analysis explains why
the power-invariant Clarke and Park transformations have such
scaling terms, as will be discussed in sections III and IV.

III. GEOMETRIC DERIVATION OF THE CLARKE

TRANSFORMATION

There are two versions of the Clarke transformation: the
standard (amplitude-invariant) transformation and the power-
invariant transformation. The derivation introduced by Clarke
as shown in Fig. 3 is the amplitude-invariant form, which is
the most commonly used version. It is convenient because the
magnitude of vα is the same as the magnitude of va when
the voltages are balanced. Previous approaches to deriving
the Clarke transformation either rely on a manipulation of
symmetrical components [11], or use the arbitrary reference-
frame with stationary axes [1]. In this section, we use the
geometric approach to derive both the standard and power-
invariant Clarke transformations. The power-invariant version
is derived first, as it is geometrically simpler.

A. Power-Invariant Clarke Transformation Derivation

The power-invariant Clarke transformation is a pure rotation,
such that the locus of a balanced three-phase quantity lies in the
ab-plane. Fig. 8 illustrates the locus diagrams for the geometric
power-invariant Clarke transformation.

All transformations can be visualised as either a coordinate
(axes) transformation or as a vector transformation. Fig. 8(a)
is the axes transformation where the vector is fixed and the
abc axes are rotated such that the locus of a balanced system
lies in the rotated ab-plane (ie the αβ-plane). Fig. 8(b) is the
vector transformation, where the axes are fixed and the vector
rotates such that its locus lies in the ab-plane.

Note that there are infinite transformations that can achieve
a locus that lies in the ab-plane, but only one of these anchor
the α-axis so that it is in line with the balanced Cartesian
voltage when the phase angle is zero (θ = ωt + φ = 0), as
seen in Fig. 8 . We will see later that this family of infinite
transformations is given by Park’s matrix where substituting a
value of theta anchors the α-axis at a different location in the
plane.

Using the constraints of bringing the locus into the ab-plane
and anchoring the α-axis appropriately we can determine the
matrix associated with the power-invariant Clarke transforma-
tion. In Section II-A we derived Eq. (4) which describes steps
to find a matrix (e.g. Ac) that represents a linear transformation
(Tc). These steps require one to know how each orthonormal
basis vector of a given space is affected by a transformation.

The inverse Clarke transformation T−1
c is more convenient

to derive geometrically than Tc. One can visualise how T−1
c

transforms vectors by reading Fig. 8 from right to left. The
inverse transformation rotates the unit vectors êα and êβ such
that they lie in the plane of −−→vabc. Thus, these transformed unit
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αβ-plane

V
√

3/2

a
b

c

α

β

0

ω ω

−−→vabc
∣

∣

∣

∣

θ=0

−−→vαβ0

∣

∣

∣

∣

θ=0

rotate axes

(a)

αβ
-p
lan

e
ab

c

α
β

0−−→vabc
∣

∣

∣

∣

θ=0
−−→vαβ0

∣

∣

∣

∣

θ=0ω

ω

rotate vector

(b)

Fig. 8. The power invariant Clarke transformation:
(a) Axes transformation perspective: rotate the abc-axes such that the a-axis
lines up with the vector vabc at θ = 0, and the b-axis also lies in the rotated
ab-plane (αβ-plane). The rotated ab-axes become our αβ-axes respectively.
The rotated c-axis becomes our 0-axis.
(b) Vector transformation perspective: rotate the voltage vector vabc such that
its locus lies in the ab-plane.

αβ
0

−−→vabc
∣

∣

∣

∣

θ=0

êα

T−1
c (êα)

(a)

α

β
0−−→vabc

∣

∣

∣

∣

θ=π
2

êβ

T−1
c (êβ)

(b)

α

β
T−1
c (ê0)

0
ê0

(c)

Fig. 9. Geometric power-invariant inverse Clarke derivation:
(a) rotate êα to align with the vector vabc at θ = 0
(b) rotate êβ to align with the vector vabc at θ = π/2
(c) rotate ê0 perpendicular to the plane.
Note: This figure uses the vector transformation perspective shown in Fig. 8(b).
This perspective highlights how the unit vectors rotate, which allows us to
evaluate Eq. (14)

vectors T−1
c (êα), T

−1
c (êβ) have a direction given by −−→vabc at

angles of θ = 0 and θ = π/2 respectively. Whereas Tc rotates
the abc unit vectors êa, êb, êc to a location that is inconvenient
to determine.

−−→vabc = T−1
c (−−→vαβ0) = A

−1

c
−−→vαβ0 (13)

The matrix A
−1

c in Eq. (13) can be rewritten using Eq. (4):

A
−1

c =











T−1
c (êα) T−1

c (êβ) T−1
c (ê0)











(14)

These three steps of Eq. (14) are shown graphically in Fig. 9.
Each step involves a rotation of a unit vector. We apply the
inverse power-invariant Clarke transformation T−1

c to each
of the three αβ0 unit vectors {êα, êβ , ê0}. Fig. 9(a) shows
how êα is transformed under the inverse power-invariant
Clarke transformation. Its transformed direction is given by

the Cartesian voltage when the angle is zero:

T−1
c (êα) =

−−→vabc
∣

∣

∣

θ=0

‖−−→vabc‖
(15)

We showed in Section II-C that balanced three-phase systems
have circular loci with a radius given by Eq. (12). Substituting
Eq. (12) into Eq. (15) gives:

T−1
c (êα) =

1

V

√

2

3
−−→vabc

∣

∣

∣

∣

θ=0

=

√

2

3







cos θ

cos
(

θ − 2π
3

)

cos
(

θ + 2π
3

)







∣

∣

∣

∣

θ=0

(16)
We then evaluate −−→vabc when the angle is zero:

T−1
c (êα) =

√

2

3

[

1 − 1
2 − 1

2

]⊺

(17)

Fig. 9(b) illustrates how the the unit vector êβ is rotated to
align with the Cartesian voltage when the angle is π/2.

T−1
c (êβ) =

−−→vabc
∣

∣

∣

θ=π
2

‖−−→vabc‖

T−1
c (êβ) =

1

V

√

2

3
−−→vabc

∣

∣

∣

∣

θ=π
2

=

√

2

3

[

0
√
3
2 −

√
3
2

]⊺

(18)

In Fig. 9(c) we see how ê0 is rotated such that it is perpendic-
ular to the plane of a balanced locus. Mathematically, this can
be thought of as pointing in the direction of the cross product
of êα and êβ , as given by the right-hand rule:

T−1
c (ê0) =

−−→vabc
∣

∣

∣

θ=0
×−−→vabc

∣

∣

∣

θ=π
2

∥

∥

∥

∥

−−→vabc
∣

∣

∣

θ=0
×−−→vabc

∣

∣

∣

θ=π
2

∥

∥

∥

∥

T−1
c (ê0) =

√

2

3

[

1√
2

1√
2

1√
2

]⊺

(19)

The three steps given by Eq. (17), Eq. (18) and Eq. (19) are
combined with Eq. (14) to find A

−1

c .

A
−1

c =

√

2

3









1 0 1√
2

− 1
2

√
3
2

1√
2

− 1
2 −

√
3
2

1√
2









(20)

The matrix A
−1

c is an orthogonal matrix because it is
associated with a pure rotation. This means its transpose is
equal to its inverse, Ac =

(

A
−1

c

)⊺

.

B. Standard Clarke Transformation Derivation

The standard (amplitude-invariant) Clarke transformation
was originally derived by Clarke in a manner shown in Fig. 3.
This section geometrically derives the amplitude-invariant
Clarke transformation which has become the standard version.

The standard Clarke transformation is a rotation and scaling,
such that the locus of a balanced three-phase quantity lies in
the ab-plane with a radius equal to the phase magnitude. It
can be thought of as first applying the pure rotation described
by the power-invariant Clarke transformation followed by a
scaling operation. Eq. (12) shows that the locus of a balanced

three-phase voltage is a circle of radius V
√

3/2. The standard
Clarke transformation scales this locus, such that the circle has
a radius of V .
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∣
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∣

θ=0
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∣

∣

∣

∣
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-p
lan

e

V
√

3/2 V

ab

c

α
β

0
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∣

∣

∣

∣

θ=0 −−→vαβ0

∣

∣

∣

∣

θ=0

ω

ω

rotate and scale vector

(b)

Fig. 10. The standard (amplitude-invariant) Clarke transformation:
(a) Axes transformation perspective: rotate the abc-axes such that the a-axis
lines up with the vector vabc at θ = 0, and the b-axis also lies in the plane.

Stretch the rotated ab-axes by
√

3/2 such that the circle traced by vαβ0 has
a radius of V , when referenced to the αβ-axes. The rotated and stretched ab-
axes become our αβ-axes respectively. The rotated c-axis becomes our 0-axis,

and is stretched by
√
3 in order to agree with the definition of zero-sequence.

(b) Vector transformation perspective: rotate the vector vabc such that it lies

in the ab-plane. Scale the rotated vabc by
√

2/3 such that it has a length of
V when referenced to the αβ-plane. The 0-component of the vector vαβ0 is

scaled by 1/
√
3 in order to agree with the definition of zero-sequence.

Fig. 10 illustrates the locus diagrams for the geometric
amplitude-invariant Clarke transformation. Fig. 10(a) is the
axes transformation where the vector is fixed and the abc axes
are rotated such that the locus of a balanced system lies in

the αβ-plane. The α and β axes are stretched by
√

3/2 such
that the locus traced by a balanced voltage has a radius equal
to V , the peak magnitude of the phase voltage. The 0-axis is
stretched by

√
3 making this equivalent to the symmetrical

components definition of zero-sequence. Whatever voltage
exists on the 0-axis will appear with the same magnitude on
the a, b and c axes.

Fig. 10(b) is the vector transformation, where the axes are
fixed and the vector rotates such that its locus lies in the ab-
plane. The vector’s α and β components are scaled by

√

2/3,
meaning the locus of a balanced Cartesian vector will appear
as a circle with a radius of V when referenced to the αβ0
axes. The 0-axis is scaled by 1/

√
3 to match the symmetrical

components definition of zero-sequence.

Just as with the power-invariant transformation, there are
infinite transformations that can achieve a locus that lies in
the ab-plane with the scaling described as above. However,
only one of these ensure that the α-axis is in line with the
balanced Cartesian voltage when the phase angle is zero (θ =
ωt+ φ = 0).

We follow the same procedure as the power-invariant deriva-
tion. Once again, we find the matrix A

−1

c associated with
the inverse transformation T−1

c using Eq. (14). Please refer to
Section III-A for a discussion on why we choose to derive the
inverse Clarke transformation.

The three steps described by Eq. (14) are shown graphically
in Fig. 11. They involve transforming each of the three unit
vectors under T−1

c . Fig. 11(a) shows how êα is transformed
under the inverse standard Clarke transformation. êα is rotated
and stretched by

√

3/2, making it equivalent to the per-unit
Cartesian voltage when the angle is zero.

T−1
c (êα) =

−−→vabc
∣

∣

∣V=1
θ=0

=







V cos θ

V cos
(

θ − 2π
3

)

V cos
(

θ + 2π
3

)







∣

∣

∣V=1
θ=0

αβ
0

−−→vabc
∣

∣

∣

∣V=1
θ=0

êα

= T−1
c (êα)

√

3/2

(a)
αβ

0−−→vabc
∣

∣

∣

∣V=1
θ=π

2

êβT−1
c (êβ) =

√

3/2

(b)

α

β

T−1
c (ê0) =





1
1
1





0
ê0

(c)

Fig. 11. Geometric standard (amplitude-invariant) inverse Clarke derivation:

(a) rotate êα to align with the vector vabc at θ = 0 and stretch by
√

3/2
(b) rotate êβ to align with the vector vabc at θ = π

2
and stretch by

√

3/2

(c) rotate ê0 perpendicular to the plane and stretch by
√
3.

Note: This figure uses the vector transformation perspective shown in
Fig. 10(b). This perspective highlights how the unit vectors stretch and rotate,
which allows us to evaluate Eq. (14)

T−1
c (êα) =

[

1 − 1
2 − 1

2

]⊺

(21)

Similarly, Fig. 11(b) shows that êβ is rotated and stretched by
√

3/2, making it equivalent to the per-unit Cartesian voltage
when the angle is π/2.

T−1
c (êβ) =

−−→vabc
∣

∣

∣V=1
θ=π

2

=
[

0
√
3
2 −

√
3
2

]⊺

(22)

Fig. 11(c) explains how ê0 is transformed. It points perpendic-
ular to the plane in which the locus of −−→vabc lies, and is scaled
by

√
3. The scaling is necessary so that the 0-component agrees

with the 0-sequence as defined by symmetrical components.

T−1
c (ê0) =

√
3

−−→vabc
∣

∣

∣

θ=0
×−−→vabc

∣

∣

∣

θ=π
2

∥

∥

∥

∥

−−→vabc
∣

∣

∣

θ=0
×−−→vabc

∣

∣

∣

θ=π
2

∥

∥

∥

∥

=







1

1

1






(23)

The three transformed unit vectors given by Eq. (21), Eq. (22)
and Eq. (23) are combined with Eq. (14) to find A

−1

c .

A
−1

c =









1 0 1

− 1
2

√
3
2 1

− 1
2 −

√
3
2 1









(24)

We find Ac by taking the inverse of the matrix A
−1

c .

IV. GEOMETRIC DERIVATION OF THE PARK

TRANSFORMATION

There are two versions of the Park transformation: the
standard (amplitude-invariant) transformation and the power-
invariant transformation. The derivation introduced by Park
in Fig. 4(b) is the amplitude-invariant form, which is the
most commonly used version. It is convenient because the
magnitude of vd is the same as the magnitude of va if two
conditions are met: the voltages are balanced and the reference
signal is in phase with phase a.

Previous approaches to deriving the Park transformation
either use: trigonometric projection with coplanar abc axes
[13] or modifying symmetrical components to obtain Clarke’s
matrix [11] and applying a rotation matrix. This section derives
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θ0
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ω ωωref

rotate axes CCW by θref

(a)

α

β

0 d

q

0

−−→vdq0

θ0 (θ0 − θref )

−−→vαβ0

ω

(ω − ωref )

rotate vector CW by θref

(b)

Fig. 12. The αβ0 to dq0 transformation:
(a) Axes transformation perspective: rotate axes CCW about 0-axis by θref .
(b) Vector transformation perspective: rotate vector CW about 0-axis by θref .

the Park transformation matrix using the geometric approach.
We utilise the relationship between the Park and Clarke trans-
formations as shown in Fig. 1. The Park transformation can be
decomposed into two consecutive transformations: the Clarke
transformation followed by the αβ0 to dq0 transformation.
Section III details the geometric derivation of the Clarke
transformation. This section completes the Park transformation
matrix derivation by first deriving the αβ0 to dq0 transforma-
tion. Then the Park transformation matrix is obtained by simple
matrix multiplication. The overall geometric interpretation of
the Park transformation is summarised in Fig. 5.

A. Transformation between Reference-Frames: αβ0 to dq0
Transformation Derivation

The “transformation between reference-frames” or simply
“frame-to-frame transformation” in [1] is used in multimachine
[3] and multi-inverter modelling [4]. Each device is modelled
in its own dq0 reference-frame, and each dq0 frame may have
a different angle θ with respect to a common reference-frame.
All devices can be translated to the common reference-frame
using the transformation between two rotating dq0 frames [4].
The matrix describing this transformation has the same form
as one that transforms from a stationary to a rotating dq0
reference-frame. The transformation between two rotating dq0
frames is equivalent to this paper’s αβ0 to dq0 transformation.
We use Eq. (4) to derive this transformation, whereas the
“transformation between reference-frames” is derived in an
alternative manner, using matrix multiplication: see section
3.10 of [1].

The αβ0 to dq0 transformation can be geometrically inter-
preted in R

3 as a pure rotation about the 0-axis by a specified
angle θref . Fig. 12 illustrates the axes and vector transforma-
tion locus diagrams for the αβ0 to dq0 transformation.

Fig. 12(a) is the axes transformation where the αβ0 axes
are rotated counterclockwise (CCW) about the 0-axis by an
angle θref . It is helpful to visualise the motion of the axes and
vectors to understand the αβ0 to dq0 transformation. Balanced
systems have a Cartesian vector −−→vαβ0 that lies in the αβ-plane
and rotates CCW about the 0-axis at speed ω. Note that −−→vαβ0
has an arbitrary angle θ0 with respect to the α-axis (θ0 =
ωt + φ0). The αβ0 axes are stationary and θ0 increases with
time.

The dq0 axes of Fig. 12(a) are not stationary, unlike the αβ0
axes. These dq0 axes rotate CCW about the 0-axis at an angle
θref = ωref t+ φref . −−→vdq0 is the Cartesian vector referenced
to dq0 coordinates. If ωref = ω then −−→vdq0 will have vd and vq

αβ-plane

α

β 0

θ

θ

êα

Tdq0(êα)

êβ
ê0= Tdq0(ê0)

Fig. 13. Geometric αβ0 to dq0 derivation :
(i) rotate êα CW about 0-axis by θref
(ii) rotate êβ CW about 0-axis by θref (iii) preserve ê0 under Tdq0.
Note: This figure uses the vector transformation perspective shown in
Fig. 12(b). This perspective highlights that the unit vectors rotate CW. While
the axis transformation perspective in Fig. 12(a) has a CCW rotation of axes.

components which appear constant as the dq0 axes are rotating
at the same speed as the Cartesian vector −−→vdq0. This case is
illustrated by condition (i) of Fig. 2.

Fig. 12(b) is the vector transformation, where the axes are
fixed and the Cartesian vector −−→vαβ0 is rotated clockwise (CW)
about the 0-axis by an angle θref . Thus, the vector has a net
CCW angle of θ0−θref relative to the d-axis. −−→vαβ0 is rotating
CCW at an angular velocity ω when referenced to the αβ0
axes. When referenced to the dq0 axes, the vector −−→vdq0 has a
CCW angular velocity of ω−ωref . If ωref = ω then −−→vdq0 will
appear stationary on the dq0 axes.

−−→vdq0 = Tdq0 (
−−→vαβ0) = Adq0

−−→vαβ0 (25)

The matrix Adq0 in Eq. (25) is found using Eq. (4). We apply
Tdq0 to each basis vector {êα, êβ , ê0} as shown in Fig. 13.
Tdq0 rotates the vectors êα and êβ CW about the 0-axis by
θref . The components of Tdq0(êα) and Tdq0(êβ) can be found
using trigonometric relations.

Tdq0(êα) = [cos θ − sin θ 0]
⊺

(26)

Tdq0(êβ) = [sin θ cos θ 0]
⊺

(27)

Fig. 13 shows how ê0 is preserved under Tdq0.

Tdq0(ê0) =
[

0 0 1
]⊺

(28)

The three transformed unit vectors given by Eq. (26),
Eq. (27) and Eq. (28) are combined with Eq. (4) to find Adq0.
The inverse transformation is found readily as the matrix is

orthogonal (Adq0
⊺ = A

−1

dq0).

Adq0 =

[

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

]

(29)

B. Power-Invariant Park Transformation Derivation

We derive Park’s transformation utilising the relationships
between the transformations in Fig. 1. The Park transformation
is decomposed into the Clarke and αβ0 to dq0 transformations
in Eq. (30).

−−→vdq0 = Tdq0 (Tc (
−−→vabc)) = Adq0Ac

−−→vabc = Ap
−−→vabc (30)

The power-invariant Park transformation is constructed using
the power-invariant Clarke transformation of Eq. (20) and
the αβ0 to dq0 transformation in Eq. (29). Please refer to
Section III-A for a comprehensive derivation of the power-
invariant Clarke transformation.

Ap = Adq0Ac = Adq0

√

2

3









1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2









Ap =

√

2

3









cos θ cos
(

θ − 2π
3

)

cos
(

θ + 2π
3

)

− sin θ − sin
(

θ − 2π
3

)

− sin
(

θ + 2π
3

)

1√
2

1√
2

1√
2









(31)
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(ω − ωref )
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Fig. 14. The standard (amplitude-invariant) Park transformation:
(a) Axes transformation perspective: rotate the abc-axes such that the a-axis
lines up with the vector vabc at θ, and the b-axis also lies in the plane.

Stretch the rotated ab-axes by
√

3/2 such that vdq0 has a length of V , when
referenced to the dq-axes. The rotated and stretched ab-axes become our dq-
axes respectively. The rotated c-axis becomes our 0-axis, and is stretched by√
3 in order to agree with the definition of zero-sequence.

(b) Vector transformation perspective: rotate the vector vabc such that it lies in
the ab-plane, and it rotates CCW about the 0-axis at a speed ω−ωref . Scale

the rotated vabc by
√

2/3 such that it has a length of V when referenced

to the dq-plane. The 0-component of the vector vdq0 is scaled by 1/
√
3 in

order to agree with the definition of zero-sequence.
Note: In both figures (a) and (b) the voltages are balanced, meaning the locus

of vabc is a circle of radius V
√

3/2.

C. Standard Park Transformation Derivation

The standard Park transformation can be determined in the
same way as the power-invariant transformation using the
relationships between the transformations (see Fig. 1) and
Eq. (30). The difference is that we substitute the standard
Clarke transformation of Eq. (24) for Ac. Adq0 is given by
Eq. (29). Please refer to Section III-B for a comprehensive
derivation of the standard Clarke transformation.

Ap = Adq0Ac = Adq0

2

3









1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1
2

1
2

1
2









Ap =
2

3









cos θ cos
(

θ − 2π
3

)

cos
(

θ + 2π
3

)

− sin θ − sin
(

θ − 2π
3

)

− sin
(

θ + 2π
3

)

1
2

1
2

1
2









(32)

D. Standard Park Transformation Derivation: A Direct Geo-
metric Approach

In this paper we decoupled the Park transformation into
two operations, as shown in Fig. 5. Understanding the Park
transformation as two consecutive operations highlights the
geometric relationship between the Clarke, Park and frame-
to-frame transformations.

Alternatively, one can use the geometric approach to directly
derive the transformation from abc to dq0, without considering
an intermediate αβ0 reference frame. In this section, we show
this direct derivation for the standard Park transformation using
the approach outlined in Section II-A and given by Eq. (4). The
power-invariant Park transformation can also be found directly
using a similar approach.

Fig. 14 illustrates the standard abc to dq0 transformation.
This is plotted for the case where the d-axis lines up with
the vector −−→vdq0. Refer to Fig. 12 for the case where the d-
axis may not be in line with −−→vdq0. Fig. 14(a) shows the axis
transformation, where we see the axes rotating and stretching
so that −−→vdq0 traces out a circle of radius V in the dq-plane.

Fig. 14(b) shows the same standard Park transformation
from a different perspective. Instead of rotating and stretching
the axes, we do the opposite. The axes are fixed and we rotate
and scale the vector so that −−→vdq0 has a length of V and moves
CCW about the 0-axis at a net speed of ω − ωref relative to
the dq-axes. −−→vdq0 will appear stationary relative to the dq-axes,
if we apply Park’s matrix using a reference signal at the same
frequency as the phase voltages (ωref = ω).

The inverse Park transformation T−1
p is more convenient to

derive geometrically than Tp (analogous to why we derived
T−1
c in Section III). One can visualise how T−1

p transforms
vectors by reading Fig. 14 from right to left. The inverse
transformation rotates the unit vectors êd and êq such that
they lie in the plane of −−→vabc. Thus, these transformed unit
vectors T−1

p (êd), T
−1
p (êq) have a direction given by −−→vabc at

angles of θ and θ + π/2 respectively. Whereas Tp rotates the
abc unit vectors êa, êb, êc to a location that is inconvenient to
determine.

We derive Park’s matrix by applying Eq. (4), which requires
finding all three transformed unit vectors. These three steps are
shown graphically by Fig. 15, where each of the unit vectors
êd, êq, ê0 are transformed under T−1

p . Fig. 15(a) shows how
êd is transformed under the inverse Park transformation. êd is
rotated such that it lines up with −−→vabc at angle θ and stretched

by
√

3/2.

T−1
p (êd) =

−−→vabc
∣

∣

∣V=1
θ

=







V cos θ

V cos
(

θ − 2π
3

)

V cos
(

θ + 2π
3

)







∣

∣

∣V=1
θ

T−1
p (êd) =

[

cos θ cos
(

θ − 2π
3

)

cos
(

θ + 2π
3

)]⊺

(33)

Similarly, Fig. 15(b) shows that êq is rotated and stretched

by
√

3/2 such that it lines up with −−→vabc at angle θ + π/2 .

T−1
p (êq) =

−−→vabc
∣

∣

∣V=1
θ+π

2

=
[

cos
(

θ + π
2

)

cos
(

θ + π
2 − 2π

3

)

cos
(

θ + π
2 + 2π

3

)

]⊺

=
[

− sin (θ) − sin
(

θ − 2π
3

)

− sin
(

θ + 2π
3

)

]⊺

(34)

Fig. 15(c) explains how ê0 is transformed. It points perpen-
dicular to the plane of the locus and is scaled by

√
3, in order to

correspond to the definition of zero-sequence. Mathematically,
T−1
p (ê0) = [1 1 1]⊺ is found by taking the cross-product

of the other two transformed unit vectors, and scaled by
√
3,

just as we saw in Eq. (23).
All three transformed unit vectors are combined using

Eq. (4) (A−1

p = [T−1
p (êd) T−1

p (êq) T−1
p (ê0)]) to give the

standard inverse Park transformation matrix. We can take the
inverse of Eq. (35) to obtain the transformation from abc to
dq0, which will result in Eq. (32).

A
−1

p =











cos θ − sin θ 1

cos
(

θ − 2π
3

)

− sin
(

θ − 2π
3

)

1

cos
(

θ + 2π
3

)

− sin
(

θ + 2π
3

)

1











(35)
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dq
0

−−→vabc
∣

∣

∣

∣θ
V=1

êd

= T−1
p (êd)

√

3/2 θ

(a)
dq

0−−→vabc
∣

∣

∣

∣V=1
θ+π

2

êqT−1
p (êq) =

√

3/2
θ

(b)

d

q

T−1
p (ê0) =





1
1
1





0
ê0

(c)

Fig. 15. Geometric standard (amplitude-invariant) inverse Park derivation:

(a) rotate êd to align with the vector vabc at θ and stretch by
√

3/2
(b) rotate êq to align with the vector vabc at θ + π

2
and stretch by

√

3/2

(c) rotate ê0 perpendicular to the plane and stretch by
√
3.

Note: This figure has stationary dq0-axes, as it uses the vector transformation
perspective shown in Fig. 14(b). This perspective highlights how the unit
vectors stretch and rotate, which allows us to evaluate Eq. (4).

V. A GEOMETRIC PERSPECTIVE ON POWER QUALITY

Power quality refers to harmonics and unbalance - both of
which exist in all practical systems to some degree. Symmet-
rical components and the phasor representation are some of
the tools used to analyse unbalanced systems. This section
proposes an alternative view on power quality: a geometric
interpretation. The locus diagram introduced in Section II-C is
applied to three-phase quantities with harmonics or unbalanced
phases.

A. Unbalance: A Geometric Perspective

Phasor diagrams are commonly used to represent unbal-
anced three-phase quantities. Fig. 16(a) shows an example
system that contains positive, negative and zero-sequence
components, similar to condition (ii) of Fig. 2.

The locus diagrams for the unbalanced system of Fig. 16(a)
are presented in abc coordinates in Fig. 16(b). −−→vabc traces
out an ellipse that lies outside the αβ-plane. This vector−−→vabc can be decomposed into three vectors corresponding to
positive, negative and zero-sequence as shown in Fig. 16(b).
The positive and negative sequence loci lie in the αβ-plane,
although their vectors rotate in opposite directions. The zero-
sequence locus is a line-segment perpendicular to the αβ-plane
and is traced out by a pulsating zero vector.

Fig. 16(b) provides insights on how symmetrical compo-
nents appear on locus diagrams. The locus of systems with
purely positive and negative sequence will always lie in the
αβ-plane. This can be shown by taking the span of the two
vectors −−−→vdq0+ and −−−→vdq0− which is always equal to the αβ-
plane (assuming an instant in time where the vectors are not
overlapping, in which case the span is a line). The locus of
systems that contain zero-sequence will not lie in the αβ-plane.

Fig. 16(c) shows the locus diagrams of the unbalanced
system in dq0 coordinates. In this example, we assume that
the dq0 axes are rotating at the same speed ω as the signal.
The positive sequence vector in dq0 coordinates rotates in the
same direction as the dq0 axes. Therefore, positive sequence d
and q-components will appear as constant values. The negative
sequence vector rotates in the opposite direction as the dq axes,
and its d and q-components will thus appear as a 2nd harmonic.
Naturally, the zero-sequence component lies on the 0-axis.

B. Harmonics: A Geometric Perspective

Harmonics generate positive, negative and zero sequence
components in an interesting pattern [30]. The positive se-
quence harmonics are 1st, 4th, 7th and so on. The harmonics 2nd,
5th and 8th etc appear as negative sequence. Triplen harmonics
(3rd, 6th, 9th etc.) appear as zero-sequence in the abc domain.
The first three harmonics are illustrated in Fig. 17(a).

The locus diagrams of Fig. 17(b) provide an intuitive means
to understand how harmonics appear in dq0. The relative
velocity of a vector and the dq0-axes determines what fre-
quency a harmonic appears at. Positive sequence components
rotate in the same direction as the dq0 axes. Thus, −−−→vdq04 and−−−→vdq07 have d and q-components containing the 3rd and 6th

harmonics respectively. Negative sequence components appear
faster relative to the dq0 axes, such that −−−→vdq02 and −−−→vdq05 have d
and q-components with the 3rd and 6th harmonics respectively.

Finally, a single locus diagram can fully represent a signal
containing harmonics. This is not possible with a phasor
diagram. Fig. 18 shows an example similar to case (iii) of
Fig. 2. The vector −−→vabc contains fundamental, 5th and 7th

harmonics. Both harmonics appear as a 6th harmonic in dq0 as
given by the shape of the locus of Fig. 18, which has 6 lobes.

ab

c

ω

−−→vabc

−−→vabc locus

−−→vabc1 locus

−−→vabc5 locus
−−→vabc7 locus

Fig. 18. Locus diagram of a 3-phase system with 1st, 5th and 7th harmonics.

VI. CONCLUSION

This paper develops a geometric approach to deriving the
matrices describing the Clarke and Park transformations. The
approach interprets each transformation as a combination of
rotations and scalings in R

3, and allows one to derive both the
power-invariant and standard forms. The geometric perspective
has applications in power quality. We show that, unlike the
phasor diagram, a single locus diagram can fully represent a
three-phase quantity with harmonics.

APPENDIX

A. Summary of Transformations and Instantaneous Power
Calculations

Table I summarises the standard and power-invariant forms
of the Clarke and Park transformations. Note that there are
many conventions for the direction of the d and q axes, with
some even having a q-axis lagging the d-axis. This paper
follows the dq0 convention of Kundur and others in [21],
[24] (see Table I). The angle θ is referenced with respect to
the d-axis as shown in Fig. 4(a). There exists an alternative
convention where the angle is referenced with respect to the
q-axis. This convention (qd0) is used by Krause and others
[1], [3].

Table II shows the instantaneous real and reactive power
calculations in each of the αβ0 and dq0 domains. We use the
definition of instantaneous reactive power given by [31].
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Fig. 16. Symmetrical components applied to an unbalanced 3-phase system with no harmonics. (a) phasor diagrams (b) locus diagrams in abc coordinates
(c) locus diagrams in rotating dq0 coordinates.

TABLE I
SUMMARY OF TRANSFORMATIONS

Standard (Amplitude-Invariant) Power-Invariant

Clarke
abc to αβ0

2

3











1 −
1

2
−

1

2

0
√

3

2
−

√

3

2

1

2

1

2

1

2











√

2

3











1 −
1

2
−

1

2

0
√

3

2
−

√

3

2

1
√

2

1
√

2

1
√

2











Park
abc to dq0

2

3









cos (θ) cos
(

θ − 2π
3

)

cos
(

θ + 2π
3

)

− sin (θ) − sin
(

θ − 2π
3

)

− sin
(

θ + 2π
3

)

1

2

1

2

1

2









√

2

3











cos (θ) cos
(

θ − 2π
3

)

cos
(

θ + 2π
3

)

− sin (θ) − sin
(

θ − 2π
3

)

− sin
(

θ + 2π
3

)

1
√

2

1
√

2

1
√

2











Inverse Clarke
αβ0 to abc











1 0 1

−
1

2

√

3

2
1

−
1

2
−

√

3

2
1











√

2

3











1 0 1
√

2

−
1

2

√

3

2

1
√

2

−
1

2
−

√

3

2

1
√

2











Inverse Park
dq0 to abc









cos (θ) − sin (θ) 1

cos
(

θ − 2π
3

)

− sin
(

θ − 2π
3

)

1

cos
(

θ + 2π
3

)

− sin
(

θ + 2π
3

)

1









√

2

3











cos (θ) − sin (θ) 1
√

2

cos
(

θ − 2π
3

)

− sin
(

θ − 2π
3

)

1
√

2

cos
(

θ + 2π
3

)

− sin
(

θ + 2π
3

)

1
√

2











ab

c
ab

c
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c

ω 2ω
3ω

−−→
vabc1

−−→
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−−→
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(a)

d
q
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−−→
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−−→
vdq03
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Fig. 17. Locus diagrams of first three harmonics in: (a) abc coordinates
(b) dq0 coordinates.
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