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Abstract

Voxel-based structures provide a modular, me-
chanically flexible periodic lattice which can be
used as a soft robot through internal deforma-
tions. To engage these structures for robotic tasks,
we use a finite element method to characterize
the motion caused by deforming single degrees of
freedom and develop a reduced kinematic model.
We find that node translations propagate period-
ically along geometric planes within the lattice,
and briefly show that translational modes domi-
nate the energy usage of the actuators. The result-
ing kinematic model frames the structural defor-
mations in terms of user-defined control and end
effector nodes, which further reduces the model
size. The derived Planes of Motion (POM) model
can be equivalently used for forward and inverse
kinematics, as demonstrated by the design of a tri-
pod stable gait for a locomotive voxel robot and
validation of the quasi-static model through phys-
ical experiments.

Keywords: Modular Robots, Flexible Locomo-
tion, Kinematic Modeling

1. Introduction

Soft robots leverage the deformation of their
body to create intelligent motion. The changes to
the state of their body are a function of the robot’s
material properties and geometry.

Previously, Jenett et al. proposed a new class

2

of soft continuum robots where cellular compos-
ite structures with low density and high specific
stiffness form modular soft robots>® Discrete
lattice-based building materials can combine large
numbers of identical discrete volumetric pixels,
or “voxels,” to form a metamaterial® with sev-
eral promising applications, allowing advances in
aircraft where wings can passively and actively
morph to increase aerodynamic efficiency and
control authority,” large-scale spacecraft can be
autonomously assembled and monitored in outer
space,6'7 and modular flexible robots can gener-
ate undulatory locomotion using linear actuation.®
Such modular robotic structures benefit from re-
configurability, element replacement, scalability,
and decreased production costs >

However, the design and modeling of voxel-
based continuum robots is limited by the com-
plexity of available modeling approaches. A re-
view of model-based and model-free static and
dynamic controllers for soft robotic manipulators
concludes that hybrid modeling is a promising
area of research.'!' Recently, machine learning has
been employed to develop differential models for
closed-loop soft robotic control? Model-based
methods to predict the movement of soft robots
often segment the body into constituent elements
which range in computational cost from finite el-
ement models, which can take hours to simulate,
to piecewise constant curvature models'**!> which
can be used for real-time control.

Similar methods have been used to character-
ize a beam-shaped robotic swimmer constructed
from voxels'® However, more general robots can-
not be modeled this way because of their three-
dimensional lattice structure. Voxel structures
have been characterized as materials,*!” but lim-
ited work has been done to show how these struc-
tures can be employed for robotic tasks. Previ-
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Figure 1. Voxel robots are designed by specifying the configuration and actuation of the voxel structure. The images on the
left show a single voxel element as a 3D model on top and its physical counterpart on bottom. The middle images show a
structure of 4 voxels. The images on the right show the resulting displacement of the voxel body when the actuation is
applied via a linear actuator between two control nodes. Beam bending is approximated using a cubic spline for
visualization purposes.

ously, Cramer et al. modeled quasi-static locomo-
tion of a voxel robot using a linear finite element
method, but finite element approaches are not suit-
able for real-time applications

In this paper, we attempt to address this defi-
ciency by introducing a simple geometric model
of deformation in voxel structures which enables a
computationally cheap approximation of the posi-
tion of nodes of interest as a function of actuator-
induced structural deformation. This model can
be used for the design of locomotive gaits, as well
as for embedded control with modest resource re-
quirements, highlighting how actuation of com-
pliant structures can produce constrained motion
which still benefits from the structure’s embedded
intelligence. First, the motion produced by actuat-
ing voxel structures is studied. Emergent patterns
in the voxel movement are used to define general
relations for the motion of nodes under linear ac-
tuation, allowing the development of a geometric
model which we call the Planes of Motion (POM)

model. Next, a voxel-based quadrupedal robot is
designed using the derived simulation.

Experimental results show that the simplified
model produces a kinematic template of voxel
node displacements.

2. Methodology

The voxels used in this work are regular cu-
bic octahedra structured as 12 beams joined at 6
nodes. This geometry can be understood as three
orthogonally intersecting squares. Voxels are as-
sembled into flexible structures which can be de-
formed by embedded linear actuators.

To illustrate the deformation behavior of our
voxel structures, we use the open-source Python
library PFEA® to simulate the displacements of in-
dividual nodes. PFEA is a finite-element solver
optimized for voxel structures, which calculates
node positions under the assumption that each
node has zero extent and all beams are linear. Ad-
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ditionally, both PFEA and our geometric model
to be introduced later make a quasi-static assump-
tion; the low inertia of the voxels and high viscous
friction of the actuators result in a slow-moving
system which remains close to equilibrium.

PFEA results are compared to physical voxels
in figure [l Four voxels are arranged in a two-
by-two square formation, and a linear actuator is
placed between them. As the actuator expands, it
forces the positions of opposite nodes apart, de-
forming the full structure. In the figure, nodes are
colored according to their displacement in the ver-
tical direction as calculated by PFEA.

2.1. Geometric Relations

Studying the configuration and actuation shown
in figure it is notable that constraints and
loading conditions in simulation and the actuator
mounts on the physical structure inhibit the rota-
tional degrees of freedom of the nodes that they
connect; the actuation strictly displaces a single,
linear degree of freedom of the selected pair of
control nodes.

For example, the actuator in figure [I] connects
neighboring nodes which share an = and z coor-
dinate. Voxels are made of narrow plastic beams
which can bend easily but retain their shape and
length, so lattice deformations effectively rotate
voxels in place. This displaces other nodes which
fall on the z = 1 plane, in a direction that ac-
commodates the inciting node motion. Thus,
a displacement pattern emerges and propagates
throughout the actuated plane. This pattern is
shown in figure[2] where the loads and constraints
from figure [I] are applied on a larger voxel struc-
ture. Although the same force is applied, the dis-
placements are smaller in figure [2 because more
voxels must be deformed. This pattern does not
decay with distance, as demonstrated by the Dis-
placement Dissipation plot in figure 2] This im-
plies that node translation dominates energy us-
age, as only up to 4.9% of displacement is lost to
other modes, such as node rotation or beam bend-
ing.

Figure 3] further demonstrates that significant
displacement within the structure is constrained to
specific nodes as a function of the voxel geome-
try. Nodes outside of the actuated plane do not
displace translationally. The rotation of the voxel

within a plane does rotate its out-of-plane nodes,
but this rotation seems to dissipate in the beams
without rotating the next layer of voxels. For in-
stance, for this actuator in the z = 1 plane, other
nodes on the z = 0 and z = 2 planes will rotate to
remain in line with their voxels, but without lead-
ing to any movement of the adjacent nodes on the
z = —1 and z = 3 planes, which would corre-
spond to the rotation of other voxel layers.

With this in mind, the observation underlying
our model is that in a voxel lattice, deformations
amounting to a rotation of one of the squares mak-
ing up each voxel require the least energy to per-
form, and propagate through the lattice within a
single plane by rotating the corresponding square
in the opposite direction in each adjacent voxel.
The result is that nodes which lie on the same
plane experience displacements of the same mag-
nitude, with direction alternating along each axis.

Figure [ illustrates this alternation as well as
our numerical conventions for numbering of voxel
nodes and actuation dimensions. Each actuation
dimension rotates a corresponding square of the
voxel, highlighted in blue on the voxel image on
the left. This leads to displacements of the nodes
located on that square, shown with arrows ema-
nating from those nodes on the right. To approx-
imate how voxel nodes will move based on the
plane of motion that is activated by the actuated
nodes, we consolidate this information into three
matrices Ay corresponding to the three actuation
directions d, and indexed by actuation dimension
and voxel node index, as follows:

0 0 00O0 O
Ao=10 0 1 0 0 -1
0 -1 001 0
0 01 00 -1
A= 0 0000 O
-1 0010 O
0O -1 0 0 10
A,=11 0 0 -1 0 O
0 0 0 0 00

The columns of A, specify how a control node
displacing along direction d will affect the posi-
tion of each node of any voxels in the correspond-
ing plane of motion, with direction and node in-
dices according to the convention of figure @] In
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Figure 2. A 4x4x]1 structure is actuated to demonstrate the emergent displacement pattern arising from the constrained
degrees of freedom. The node coloring of the left bottom image shows the displacement magnitudes in the X dimension, the
middle shows the displacement magnitudes in the Y, and the right in the Z. Finally, the Displacement Dissipation plot in the
top right shows how energy absorbed by other modes, like node rotation and beam bending, diminishes node displacements.
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Figure 3. A 2x2x1 voxel configuration is actuated to demonstrate the minimal displacement of neighboring planes. Beams
are plotted here as straight lines to make the three-dimensional structure clearer.
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Figure 4. The numerical convention for voxel node and
actuation dimension indexing. Actuation along a given
plane, highlighted in blue (left), will translate voxel nodes
in that plane about the corresponding voxel center, as
indicated with the black arrows (right).

the model, it is useful to refer to these columns as
vectors in space, for which we introduce the nota-
tion a4, to refer to the nth column of the matrix
Ay, 1.e. the displacement produced on node n of
each voxel in the implicated plane by a unit con-
trol node displacement in direction d.

2.2. Planes of Motion (POM) Model

The arrays A, are then used to define a reduced-
dimension kinematic model of actuated voxel
structures by considering a subset of the voxel
nodes. At time ¢, the 3D displacement of the end
effector nodes is defined by the current displace-
ment of the control nodes. The vector g() in con-
figuration space describes the displacement of the
control nodes, and x;(t) is the 3D displacement
of the jth end effector. The connectivity of the
voxel structure is defined by the array c;;, which
specifies the effect of control node ¢ on end ef-
fector j. These entries are zero if the two nodes
do not share a plane of motion; otherwise, be-

cause of the alternating nodal displacement pat-
tern, they are set to -1 or +1 depending on the par-
ity of the position difference. Together with the
actuation dimension d; of the ¢th control node and
the node index n; defining which node of its corre-
sponding voxel the end effector occupies, this map
fully specifies how displacements of a given con-
trol node deform the voxel structure. These geo-
metric constants, specified numerically according
to the conventions of figure {] are calculated in
software based on more physically intuitive quan-
tities: the grid position of the voxel and corre-
sponding within-voxel node ID of each control or
end effector node, and the actuation direction of
any control nodes.

Finally, the kinematic motion is simulated by
calculating the contributions of each control node
to each end effector node’s position. So long
as no two control nodes share a plane of mo-
tion, they will specify orthogonal displacements
for any affected end effectors, which can simply
be summed. For each control node 7, a column
a4, n,; corresponding to node index n; is selected
from the actuation matrix A,, for the actuation di-
mension d;. The result is multiplied by the masked
control node displacement, then summed for all
control nodes.

M-1
Z adl,nJ Cszi(t)) (1)
=0

In summary, we reduce the space of nodes
to focus on the nodes of interest: the actuated
nodes, and those intended to interact with the en-
vironment. It is important to note that the POM
model defines the relationship between two sets
of node displacements, regardless of their robotic
function. So far, we have designated a control
node which is connected directly to the actua-
tor and analyzed the movement of chosen “end
effectors”. Instead, we could just as well have
defined a desired displacement for an end effec-
tor node and computed the corresponding actua-
tor displacement. Essentially, the forward and in-
verse kinematic models of the robot are derived
in the same way and take the same form. In fact,
the same simulation is used to compute both the
forward and inverse kinematics for the robotic lo-
comotor presented in the next section.



3. Results

Previous work showed that rectilinear locomo-
tion can be achieved by periodically deforming a
voxel structure using bi-directional friction to pro-
mote forward motion.® The feet of these robots
slid along the ground, but real walking gaits are
generated by lifting and lowering feet. As a step
towards this type of gait, we designed an interme-
diate locomotive robot where the front feet raise
and lower while the rear feet play a supporting
role, remaining planted on the ground while shift-
ing back and forth to adjust the robot’s balance.
The core of this robot consists of the 2x2x2 voxel
structure shown in figure [3] to which two addi-
tional voxels with liftable front feet are attached;
this configuration is detailed in figure[5]

This robotic configuration was previously used
to demonstrate how spiking neural state machines
can construct central pattern generators and ac-
count for the voxel’s elastic properties through
proprioceptive feedback and frequency entrain-
ment'®2 Here, we provide the geometric intu-
ition and modeling required to develop the desired
gait and foot fall pattern, which highlight the ben-
efits of reduced state kinematic models of flexible
robots.

3.1. Gait Design

The robot is controlled by four linear actuators
placed vertically between the bottom and top layer
of its core. Each actuator is connected between
two nodes in the voxel structure, shown as col-
ored circles in figure [5} the associated POM are
indicated with colored lines. In a forward kine-
matic view, where actuators are defined as control
nodes, voxel nodes which fall on these planes can
be controlled along a single dimension according
to the general matrix relations given in Section [2]
For instance, the red actuator controls nodes that
fall along the red line in either the x or z dimen-
sion, depending on the node ID.

Nodes which fall on the intersection of two ac-
tuators” POM can be actuated independently in
two directions. Four such nodes are designated
as end effectors and indicated by purple markers
in the figure. The four feet of the robot are in-
dicated by the black dotted circles. The two back
feet move identically to markers 1 and 4 due to the
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symmetry of the robot. For example, to move the
back left foot “forward”, the red actuator needs to
displace the end effector in positive x, and the yel-
low actuator needs to displace the end effector in
positive y. The motion of the front feet is com-
plicated by the irregularity of the voxel structure;
the POM model requires at least two antagonistic
voxels. Instead, the front voxels are modeled as
independent geometric extensions of the nodes to
which they are attached.

The desired node displacements of the feet pre-
sented in figure [5] describe a gait wherein the
robot takes a forward step with the right front foot
and then the left front foot. At alternating points
throughout the actuation sequence, the front feet
take turns lifting while the back feet shift between
the heel and toe of the foot and displace in the for-
ward direction. Backward steps can be achieved
by running the foot positions in reverse.'®

A highlight of the POM approach is that in a
single pass it can both compute the inverse kine-
matics to designate the actuation sequence as well
as a sort of “lateral kinematics”, equivalent to a
composition of inverse and forward kinematics.
This process predicts the motion of nodes which
can be experimentally validated.

3.2. Robotic Experiment

A physical realization of the designed voxel
robot with 3D printed back feet and “sticky” front
feet performs the specified gait on a smooth sur-
face as shown in figure [5] Actuation is performed
by four linear actuators which vary the total dis-
tance between attached nodes by £10 mm, dis-
placing each by +5 mm. Details about the design
and fabrication of the feet, voxel material proper-
ties, and linear actuators are provided in the sup-
plementary information (SI).

To track the position of the robot through time
as it carries out its gait sequence, a 2D motion
capture (mocap) system was set up. Four purple
markers were placed on the nodes specified as end
effectors to track. In addition to mocap data, ac-
tuator positions were also recorded via on-robot
datalogging for comparison with model results.

To compare the observed mocap data to the pre-
dictions of the POM model, a preprocessing algo-
rithm is employed which transforms the recorded
coordinates m*(t) of the mocap markers in the
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Figure 5. Top: The voxel configuration of the proposed locomotive robot. The two left schematics show a top view and a
lateral view of the configuration, where 4 actuators are depicted with colored dots, 4 feet nodes are indicated by black
dotted circles, and 4 markers are indicated by crossing arrows. The right image shows the physical prototype with the 4
physical actuators, 4 feet, and 4 (purple) markers. Bottom: The voxel configuration and actuator placement is detailed using
the previously defined global coordinate system and a legend is given for the 4 markers shown in the schematics. On the
right, the desired node displacements of the 4 feet to achieve the proposed locomotive gait are shown. The back feet nodes
travel along the ground in the = and y direction while the front feet nodes travel along the vertical z dimension. These node
displacements and robot configuration are fed into the POM model to produce the actuator positions required to achieve the
feet displacements shown.

stationary lab frame to the corresponding coor-
dinates mf(t) in a robot-centered frame consis-
tent with the model output. This transformation
is necessary because the POM model does not
address the contact dynamics that would be re-
quired to simulate the gait directly in the global
frame. First, the mean position of the four mark-
ers mE(t) = 137 ml(¢t) is subtracted, as this
represents motion of the center of mass; then, the
marker positions are transformed to polar coordi-
nates (7;(t), 0;(t)), and their common rotation 6 (t)
is likewise subtracted to account for twisting and
turning of the body. Then, the positions are con-
verted back to Cartesian coordinates m!i(t), and

the amplitude is rescaled according to the variance

in marker position before and after the transforma-
tion. Each step of this correction is illustrated in
the SI.

Figure[7|shows the data from the actuation log-
ging and from the mocap system tracking the po-
sition of the markers in time. Here, the POM
model is used for forward kinematics. The actu-
ator data is plugged in as the actuation sequence
to the POM model, along with the control and end
effector node parameters, and produces the same
node displacements as predicted in figure [6] but
with slight noise. The mocap data of the pur-
ple markers show that the robot turns while loco-
moting, which could be due to systematic asym-
metries like voxel fatigue, actuator extension and
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Figure 6. The POM Model Output plots show the required node displacements of the bottom actuator connection sites to
achieve the desired gait, and the expected displacement of the purple markers obtained from plugging in the voxel
configuration and desired feet motions to the POM model. This output defines the actuation sequence as a function of the
foot fall pattern. The bottom row shows the physical robot in key stages throughout the sequence.

contact dynamics. After transformation into the
body frame, the markers follow the same shape as
the predicted kinematic template.

4. Conclusion

We have introduced a modeling method for
flexible voxel robots which directly relates the
positions of “control” (input) and “end-effector”
(output) nodes, significantly reducing model
space. The resulting kinematic templates can be
used to design the robot and its movement. A
locomotive voxel robot was designed using this
framework and the approach was validated with
physical experiments. End effector trajectories are
predicted with surprising accuracy considering the
simplicity of the model. The validity of the POM
model on voxel-based structures has exciting im-
plications for modeling flexible robots. This POM
model can be used to quickly design end effector
trajectories for locomotive gaits over specific ter-
rain or to achieve other robotic tasks, like grasping
or object manipulation. To improve the robot’s de-

sign and motion, an optimization algorithm could
minimize the number of voxels and actuators in
a structure, similar to work that has been done
to computationally design mechanical characters
whose end effectors follow user-defined trajecto-
ries.?’ To correct for systematic asymmetries, like
turning or voxel fatigue, a calibration step could
be included, where data collected from the move-
ment of a voxel robot is fed into a trajectory opti-
mization based on locomotive modeling, as pro-
posed by Bittner et al. for planar serpent-like
swimmers.*!
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