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ABSTRACT. We describe a geometric Littlewood-Richardson rule, interpreted as deform-
ing the intersection of two Schubert varieties into the union of Schubert varieties. There
are no restrictions on the base field, and all multiplicities arising are 1; this is important
for applications. This rule should be seen as a generalization of Pieri’s rule to arbitrary
Schubert classes, by way of explicit homotopies. It has straightforward bijections to other
Littlewood-Richardson rules, such as tableaux, and Knutson and Tao’s puzzles. This gives
the first geometric proof and interpretation of the Littlewood-Richardson rule. Geometric
consequences are described here and in [V2, KV1, KV2, V3]. For example, the rule also has
an interpretation in K-theory, suggested by Buch, which gives an extension of puzzles to
K-theory.
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1. INTRODUCTION

A Littlewood-Richardson rule is a combinatorial interpretation of the Littlewood-Richardson
numbers. These numbers have a variety of interpretations, most often in terms of sym-
metric functions, representation theory, and geometry. In each case they appear as struc-
ture coefficients of rings. For example, in the ring of symmetric functions they are the
structure coefficients with respect to the basis of Schur polynomials.

In geometry, Littlewood-Richardson numbers are structure coefficients of the cohomol-
ogy ring of the Grassmannian with respect to the basis of Schubert cycles (see Section 1.4;
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Schubert cycles generate the cohomology groups of the Grassmannian). Given the funda-
mental role of the Grassmannian in geometry, and the fact that many of the applications
and variations of Littlewood-Richardson numbers are geometric in origin, it is important
to have a good understanding of the geometry underlying these numbers. Our goal here
is to prove a geometric version of the Littlewood-Richardson rule, and to present appli-
cations, and connections to both past and future work.

The Geometric Littlewood-Richardson rule can be interpreted as deforming the inter-
section of two Schubert varieties (with respect to transverse flags M· and F·) so that it
breaks into Schubert varieties. It is important for applications that there are no restrictions
on the base field, and that all multiplicities arising are 1. The geometry of the degener-
ations are encoded in combinatorial objects called checkergames; solutions to “Schubert
problems” are enumerated by checkergame tournaments.

Checkergames have straightforward bijections to other Littlewood-Richardson rules,
such as tableaux (Theorem 3.2) and puzzles [KTW, KT] (Appendix A). Algebro-geometric
consequences are described in [V2]. The rule should extend to equivariant K-theory
[KV2], and suggests a conjectural geometric Littlewood-Richardson rule for the equivari-
ant K-theory of the flag variety [V3].

Degeneration methods are of course a classical technique. See [Kl2] for a historical dis-
cussion. Sottile suggests that [P] is an early example, proving Pieri’s formula using such
methods; see also Hodge’s proof [H]. More recent work by Sottile provided inspiration
for this work.

1.1. Remarks on positive characteristic. The rule we describe works over arbitrary base
fields. The only characteristic-dependent statements in the paper are invocations of the
Kleiman-Bertini theorem [Kl1, Section 1.2]. The application of the Kleiman-Bertini the-
orem that we use is the following. Over an algebraically closed field of characteristic 0,
if X and Y are two subvarieties of G(k, n), and σ is a general element of GL(n), then X
intersects σY transversely. Kleiman gives a counterexample to this in positive character-
istic [Kl1]. Kleiman-Bertini is not used for the proof of the main theorem (Theorem 2.13).
All invocations here may be replaced by a characteristic-free generic smoothness theorem
[V2, Theorem 2.6] proved using the Geometric Littlewood-Richardson rule.

1.2. Summary of notation and conventions. If X ⊂ Y , let ClY X denote the closure in Y
of X . Span is denoted by 〈·〉. Fix a base field K (of any characteristic, not necessarily
algebraically closed), and non-negative integers k ≤ n. We work in G(k, n), the Grass-
mannian of dimension k subspaces of Kn. Let F l(a1, . . . , as, n) be the partial flag variety
parameterizing {Va1 ⊂ · · · ⊂ Vas

⊂ Vn = Kn}. Our conventions follow those of [F], but
we have attempted to keep this article self-contained. Table 1 is a summary of important
notation introduced in the article.

1.3. Acknowledgments. The author is grateful to A. Buch and A. Knutson for patiently
explaining the combinatorial, geometric, and representation-theoretic ideas behind this
problem, and for comments on earlier versions. The author also thanks S. Billey, L. Chen,
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Section Notation
introduced
1.2; 1.4; 1.5 Cl, K, k < n, F l(a1, . . . , as, n), 〈·〉; Reck,n−k; Moving flag M·, Fixed flag F·

2.1 ; 2.2 checker configuration, dominate, ≺; •, X•

2.3 specialization order, •init, •final, •next, descending checker (r, c),
rising checker, critical row r, critical diagonal

2.5–2.8 happy, ◦•, ◦, universal two-flag Schubert varieties X◦• and X◦•,
two-flag Schubert varieties Y◦• and Y ◦•, ◦A,B, mid-sort ◦

2.9; 2.10 D ⊂ ClG(k,n)×(X•∪X•next)
X◦•; phase 1, swap, stay, blocker, phase 2, ◦stay, ◦swap

2.16; 2.18 checkergame; Schubert problem, checkergame tournament
4 quilt Q, dim, quadrilateral, southwest and northeast borders,

Bott-Samelson variety BS(Q) = {Vm : m ∈ Q}, stratum BS(Q)S , Q◦, 0
5.1 π, DQ ⊂ ClBS(Q◦)×(X•∪X•next)

X◦•

5.4; 5.6 label, content; a, a′, a′′, d
5.7–5.9 Wa, W••next , W•next ⊂ P(Fc/Vinf(a,a′′))

∗ → T
5.9 b, b′, western and eastern good quadrilaterals, DS

TABLE 1. Important notation and terminology

W. Fulton, and F. Sottile, and especially H. Kley, D. Davis, and I. Coskun for comments
on the manuscript.

1.4. The geometric description of Littlewood-Richardson coefficients. (For more details
and background, see [F].) Given a flag F· = {F0 ⊂ F1 ⊂ · · · ⊂ Fn} in Kn, and a k-plane V ,
define the rank table to be the data dim V ∩ Fj (0 ≤ j ≤ n). An example for n = 5, k = 2 is:

j 0 1 2 3 4 5
dim V ∩ Fj 0 0 1 1 1 2

If α is a rank table, then the locally closed subvariety of G(k, n) consisting of those k-
planes with that rank table is denoted Ωα(F·), and is called the Schubert cell corresponding
to α (with respect to the flag F·). The bottom row of the rank table is a sequence of
integers starting with 0 and ending with k, and increasing by 0 or 1 at each step; each
such rank table is achieved by some V . This data may be summarized conveniently in
two other ways. First, it is equivalent to the data of a size k subset of {1, . . . , n}, consisting
of those integers where the rank jumps by 1 (those j for which dim V ∩Fj > dim V ∩Fj−1,
sometimes called “jumping numbers”). The set corresponding to the example above is
{2, 5}. Second, it is usually represented by a partition that is a subset of a k × (n − k)
rectangle, as follows. (Denote such partitions by Reck,n−k for convenience.) Consider a
path from the northeast corner to the southwest corner of such a rectangle consisting of
n segments (each the side of a unit square in the rectangle). On the jth step we move
south if j is a jumping number, and west if not. The partition is the collection of squares
northwest of the path, usually read as m = λ1 + λ2 + · · · + λk, where λj is the number of
boxes in row j; m is usually written as |λ|. The (algebraic) codimension of Ωα(F·) is |λ|.
The example above corresponds to the partition 2 = 2 + 0, as can be seen in Figure 1.
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k = 2

n − k = 3

⇐⇒ {2, 5}⇐⇒
5

4 3 2

1

FIGURE 1. The bijection between Reck,n−k and size k subsets of {1, . . . , n}

The Schubert classes [Ωα] (as α runs over Reck,n−k) are a Z-basis of A∗(G(k, n), Z), or (via
Poincaré duality) A∗(G(k, n), Z); we will sloppily consider these as classes in homology
or cohomology depending on the context. (We use Chow groups and rings A∗ and A∗,
but the complex-minded reader is welcome to use H2∗ and H2∗ instead.) Of course there
is no dependence on F·. Hence

[Ωα] ∪ [Ωβ] =
∑

γ∈Reck,n−k

cγ
αβ[Ωγ]

for some integers cγ
αβ ; these are the Littlewood-Richardson numbers. The Chow (or coho-

mology) ring structure may thus be recovered from the Littlewood-Richardson numbers.

1.5. A key example of the rule. It is straightforward to verify (and we will do so) that
if M· and F· are transverse flags, then Ωα(M·) intersects Ωβ(F·) transversely, so [Ωα] ∪
[Ωβ] = [Ωα(M·)∩Ωβ(F·)]. We will deform M· (the “Moving flag”) through a series of one-
parameter degenerations. In each degeneration, M· will become less and less transverse
to the “Fixed flag” F·, until at the end of the last degeneration they will be identical. We
start with the cycle [Ωα(M·) ∩ Ωβ(F·)], and as M· moves, we follow what happens to the
cycle. At each stage the cycle will either stay irreducible, or will break into two pieces,
each appearing with multiplicity 1. If it breaks into two components, we continue the
degenerations with one of the components, saving the other for later. At the end of the
process, the final cycle will be visibly a Schubert variety (with respect to the flag M· = F·).
We then go back and continue the process with the pieces left behind. Thus the process
produces a binary tree, where the bifurcations correspond to when a component breaks
into two; the root is the initial cycle at the start of the process, and the leaves are the
resulting Schubert varieties. The Littlewood-Richardson coefficient cγ

αβ is the number of
leaves of type γ, which will be interpreted combinatorially as checkergames (Section 2.16).
The deformation of M· will be independent of the choice of α and β.

Before stating the rule, we give an example. Let n = 4 and k = 2, i.e. we consider
the Grassmannian G(2, 4) = G(1, 3) of projective lines in P3. (We use the projective de-
scription in order to better draw pictures.) Let α = β = 2 = {2, 4}, so Ωα and Ωβ both
correspond to the set of lines in P3 meeting a fixed line. Thus we seek to deform the locus
of lines meeting two (skew) fixed lines into a union of Schubert varieties.

The degenerations of M· are depicted in Figure 2. (The checker pictures will be de-
scribed in Section 2. They provide a convenient description of the geometry in higher
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dimensions, when we can’t easily draw pictures.) In the first degeneration, only the mov-
ing plane PM3 moves, and all other PMi (and all PFj) stay fixed. In that pencil of planes,
there is one special position, corresponding to when the moving plane contains the fixed
flag’s point PF1. Next, the moving line PM2 moves (and all other spaces are fixed), to the
unique “special” position, when it contains the fixed flag’s point PF1. Then the moving
plane PM3 moves again, to the position where it contains the fixed flag’s line PF2. Then
the moving point PM1 moves (until it is the same as the fixed point), and then the moving
line PM2 moves (until it is the same as the fixed line), and finally the moving plane PM3

moves (until it is the same as the fixed plane, and both flags are the same).

point line plane

4123 1423 1243

12 23 34

M·

4321

F·

plane

34

line plane

4312 4132

23 34

1234

FIGURE 2. The specialization order for n = 4, visualized in terms of flags in
P3. The checker configurations will be defined in Section 2.2.
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In Figure 3 we will see how this sequence of deformations “resolves” (or deforms) the
intersection Ωα(M·) ∩ Ωβ(F·) into the union of Schubert varieties. (We reiterate that this
sequence of deformations will “resolve” any intersection in G(k, 3) in this way, and the
analogous sequence in Pn will resolve any intersection in G(k, n).)

To begin with, Ωα(M·)∩Ωβ(F·) ⊂ G(1, 3) is the locus of lines meeting the two lines PM2

and PF2, as depicted in the first panel of Figure 3. After the first degeneration, in which
the moving plane moves, the cycle in question has not changed (the second panel). After
the second degeneration, the moving line and the fixed line meet, and there are now two
irreducible two-dimensional loci in G(1, 3) of lines meeting both the moving and fixed
line. The first case consists of those lines meeting the intersection point PM2 ∩ PF2 =
PF1 (the third panel in the top row). The second case consists of those lines contained
in the plane spanned by PM2 and PF2 (the first panel in the second row). After the
next degeneration in this second case, this condition can be restated as the locus of lines
contained in the moving plane PM3 (the second panel of the second row), and it is this
description that we follow thereafter. The remaining pictures should hopefully be clear.
At the end of both cases, we see Schubert varieties. In the first case we have the locus of
lines through a fixed point (corresponding to partition 2 = 2 + 0, or {1, 4}, see the panel
in the lower right). In the second case we have the locus of lines contained in the fixed
plane (corresponding to partition 2 = 1 + 1, or the subset {2, 3}, see the second-last panel
in the final row). Thus we see that

c
(2)
(1),(1) = c

(1,1)
(1),(1) = 1.

We now abstract from this example the essential features that will allow us to gener-
alize this method, and make it rigorous. We will see that the analogous sequence of

(

n
2

)

degenerations in Kn will similarly resolve any intersection Ωα(M·)∩Ωβ(F·) in any G(k, n).
The explicit description of how it does so is the geometric Littlewood-Richardson rule.

1. Defining the relevant varieties. Given two flags M· and F· in given relative position (i.e.
part way through the degeneration), we define varieties (called closed two-flag Schubert
varieties, Section 2.5) in the Grassmannian G(k, n) = {V ⊂ Kn} that are the closure of
the locus with fixed numerical data dim V ∩ Mi ∩ Fj . In the case where M· and F· are
transverse, we verify that Ωα(M·) ∩ Ωβ(F·) is such a variety.

2. The degeneration, inductively. We degenerate M· in the specified manner. Each com-
ponent of the degeneration is parameterized by P1; over A1 = P1 − {∞}, M· meets F· in
the same way (i.e. the rank table dimMi∩Fj is constant), and over one point their relative
position “jumps”. Hence any closed two-flag Schubert variety induces a family over A1

(in G(k, n) × A1). We take the closure in G(k, n) × P1. We show that the fiber over ∞ consists
of one or two components, each appearing with multiplicity 1, and each a closed two-flag Schubert
variety (so we may continue inductively).

3. Concluding. After the last degeneration, the two flags M· and F· are equal. Then the
two-flag Schubert varieties are by definition Schubert varieties with respect to this flag.

The key step is the italicized sentence in Step 2, and this is where the main difficulty
lies. In fact, we have not proved this step for all two-flag Schubert varieties; but we can
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input: ×

output: {2, 3} = output: {1, 4} =

**

*

†

(α = β = {2, 4})

†

FIGURE 3. A motivating example of the rule (compare to Figure 2). Checker
configurations * and ** are discussed in Caution 2.20, and the degenerations
labeled † are discussed in Sections 2.11 and 3.1.

do it with all two-flag Schubert varieties inductively produced by this process. (These are
the two-flag Schubert varieties that are mid-sort, see Definition 2.8.) A proof avoiding this
technical step, but assuming the usual Littlewood-Richardson rule and requiring some
tedious combinatorial work, is outlined in Section 2.19.

2. THE STATEMENT OF THE RULE

2.1. Preliminary definitions. Geometric data will be conveniently summarized by the data
of checkers on an n × n board. The rows and columns of the board will be numbered in
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“matrix” style: (r, c) will denote the square in row r (counting from the top) and column
c (counting from the left), e.g. see Figure 4. A set of checkers on the board will be called
a configuration of checkers. We say a square (i1, j1) dominates another square (i2, j2) if it is
weakly southeast of (i2, j2), i.e. if i1 ≥ i2 and j1 ≥ j2. Domination induces a partial order
≺ on the plane.

2.2. Double Schubert cells, and black checkers. Suppose {vij} is an achievable rank
table dim Mi ∩ Fj where M· and F· are two flags in Kn. This data will be conveniently
summarized by the data of n black checkers on the n × n board, no two in the same row
or column, as follows. There is a unique way of placing black checkers so that the entry
dimMi ∩ Fj is given by the number of black checkers dominated by square (i, j). (To
obtain the inverse map we proceed through the columns from left to right and place a
checker in the first box in each column where the number of checkers that box dominates
is less than the number written in the box. The checker positions are analogs of the “jump-
ing numbers” of 1.4.) An example of the bijection is given in Figure 4. Each square on the
board corresponds to a vector space, whose dimension is the number of black checkers
dominated by that square. This vector space is the span of the vector spaces correspond-
ing to the black checkers it dominates. The vector spaces of the right column (resp. bottom
row) correspond to the Moving flag (resp. Fixed flag).

3

42

2

1

11

⇐⇒

1 3

0 21

0

000M1

M2

M3

M4

F1 F2 F3 F4

dimM2 ∩ F4

FIGURE 4. The relative position of two flags, given by a rank table, and by
a configuration of black checkers

A configuration of black checkers will often be denoted •. If • is such a checker con-
figuration, define X• to be the corresponding locally closed subvariety of F l(n) × F l(n)
(where the first factor parameterizes M· and the second factor parameterizes F·). The va-
riety X• is smooth, and its codimension in F l(n)×F l(n) is the number of pairs of distinct
black checkers a and b such that a ≺ b. (This is a straightforward exercise; it also follows
quickly from Section 4.) This sort of construction is common in the literature.

The X• are sometimes called “double Schubert cells”. They are the GL(n)-orbits of
F l(n) × F l(n), and the fibers over either factor are Schubert cells of the flag variety. They
stratify F l(n)×F l(n). The fiber of the projection X• → F l(n) given by ([M·], [F·]) 7→ [F·] is
the Schubert cell Ωσ(•), where the permutation σ(•) sends r to c if there is a black checker
at (r, c). (Schubert cells are usually indexed by permutations [F, Section 10.2]. Caution:
some authors use other bijections to permutations than that of [F].) For example, the
permutation corresponding to Figure 4 is 4231; for more examples, see Figure 2.
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2.3. The specialization order (in the weak Bruhat order), and movement of black check-
ers. We now define a specialization order of such data, a particular sequence, starting with
the transverse case •init (corresponding to the longest word w0 in Sn) and ending with
•final (the identity permutation in Sn), corresponding to when the two flags are identical.
If • is one of the configurations in the specialization order, then •next will denote the next
configuration in the specialization order.

The intermediate checker configurations correspond to partial factorizations from the
left of w0:

w0 = en−1 · · · e2e1 · · · en−1en−2en−3 en−1en−2 en−1.

(Note that this word neither begins nor ends with the corresponding word for n − 1,
making a naive inductive proof of the rule impossible.) For example, Figure 2 shows the
six moves of the black checkers for n = 4, along with the corresponding permutations:

w0 = e3e2e1e3e2e3, e3e2e1e3e2, e3e2e1e3, e3e2e1, e3e2, e3, e.

In the language of computer science, the specialization order may be interpreted as a
bubble-sort of the black checkers.

Figure 5 shows a typical checker configuration in the specialization order. Each move
involves moving one checker one row down (call this the descending checker), and another
checker one row up (call this the rising checker), as shown in the figure. The notions of
critical row and critical diagonal will be useful later; see Figure 5 for a definition. Hereafter
let r be the row of the descending checker, and c the column.

rising checker
critical diagonal

descending checker (r, c)

critical row r

FIGURE 5. The critical row and the critical diagonal

2.4. An important description of X• and X•next for • in the specialization order. Here is
a convenient description of X• and X•next . Define

P = {M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = Kn, Fc ⊂ Fc+1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Kn,

M· is transverse to the partial flag Fc ⊂ · · · ⊂ Fn}

⊂ F l(n) × F l(c, . . . , n).

Over P consider the projective bundle PF∗
c = {(p ∈ P,Fc−1 ⊂ Fc)} of hyperplanes in Fc.

Then X• is isomorphic to the locus

{Fc−1 : Fc−1 ⊃ Mr−1 ∩ Fc, Fc−1 + Mr ∩ Fc} :

to recover F1, . . . , Fc−2, for r + c − n ≤ j ≤ c − 2, take Fj = Mn−c+j+1 ∩ Fc−1, and for
j ≤ r + c − n − 1 take Fj = Mn−c+j ∩ Fc−1. (Figure 6 may be helpful for understanding
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the geometry.) More concise (but less enlightening) is the description of F0, . . . , Fc−1 by
the equality of sets

{F0, . . . ,Fc−1} = {M0 ∩ Fc−1,M1 ∩ Fc−1, . . .Mn ∩ Fc−1} ⊂ PF∗
c .

Mr ∩ Fc

Fr+c−n = Mr+1 ∩ Fc−1

F1 = Mn−c+1 ∩ Fc−1

Fr+c−n−1 = Mr−1 ∩ Fc−1

.

.

.

M1.
.
.

Mn−c

Mn−c+1.
.
.

Mr

Mr−1

Mr+1

Fc−1 Mn = Fn

Fc

Fc+1

FIGURE 6. A convenient description of a double Schubert cell in the special-
ization order in terms of transverse {Fc, . . . ,Fn} and M·, and Fc−1 in given
position with respect to M·. Some squares of the checkerboard are labeled
with their corresponding vector space.

Similarly, X•next is isomorphic to

{Fc−1 : Fc−1 ⊃ Mr ∩ Fc, Fc−1 + Mr+1 ∩ Fc} ⊂ PF∗
c .

2.5. Two-flag Schubert varieties, and white checkers. Suppose {vij}, {wij} are achiev-
able rank tables dimMi ∩ Fj and dim V ∩ Mi ∩ Fj where M· and F· are two flags in Kn

and V is a k-plane. This data may be summarized conveniently by a configuration of n
black checkers and k white checkers on an n×n checkerboard as follows. The meaning of
the black checkers is the same as above; they encode the relative position of the two flags.
There is a unique way to place the k white checkers on the board such that dim V ∩Mi∩Fj

is the number of white checkers in squares dominated by (i, j). See Figure 3 for examples.
It is straightforward to check that (i) no two white checkers are in the same row or column,
and (ii) each white checker must be placed so that there is a black checker weakly to its
north (i.e. either in the same square, or in a square above it), and a black checker weakly
to its west. We say that white checkers satisfying (ii) are happy. Such a configuration of
black and white checkers will often be denoted ◦•; a configuration of white checkers will
often be denoted ◦.

If ◦• is a configuration of black and white checkers, let X◦• be the corresponding locally
closed subvariety of G(k, n) × F l(n) × F l(n); call this an open universal two-flag Schubert
variety. Call X◦• := ClG(k,n)×X•

X◦• a closed universal two-flag Schubert variety. (Notational

caution: X◦• is not closed in G(k, n) × F l(n) × F l(n).)

If M· and F· are two flags whose relative position is given by •, let the open two-flag
Schubert variety Y◦• = Y◦•(M·,F·) ⊂ G(k, n) be the set of k-planes whose position relative
to the flags is given by ◦•; define the closed two-flag Schubert variety Y ◦• to be ClG(k,n) Y◦•.
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Note that (i) X◦• → X• is a Y◦•-fibration; (ii) X◦• → X• is a Y ◦•-fibration, and is a
projective morphism; (iii) G(k, n) is the disjoint union of the Y◦• (for fixed M·, F·); (iv)
G(k, n) × F l(n) × F l(n) is the disjoint union of the X◦•. Caution: the disjoint unions of
(iii) and (iv) are not in general stratifications; see Caution 2.20(a) for a counterexample for
(iv).

The proof of the following Lemma is straightforward by constructing Y◦• as an open
subset of a tower of projective bundles (one for each white checker) and hence omitted.

2.6. Lemma. — The variety Y◦• is irreducible and smooth; its dimension is the sum over all white
checkers w of the number of black checkers w dominates minus the number of white checkers w
dominates (including itself).

Suppose that A = {a1, . . . , ak} and B = {b1, . . . , bk} are two subsets of {1, . . . , n}, where
a1 < · · · < ak and b1 < · · · < bk. Denote by ◦A,B the configuration of k white checkers
in the squares (a1, bk), (a2, bk−1), . . . , (ak, b1). (Informally: the white checkers are arranged
from southwest to northeast, such that they appear in the rows corresponding to A and
the columns corresponding to B. No white checker dominates another.)

2.7. Proposition (initial position of white checkers). — Suppose M· and F· are two transverse
flags (i.e. with relative position given by •init). Then (the scheme-theoretic intersection) ΩA(M·)∩
ΩB(F·) is the closed two-flag Schubert variety Y ◦A,B•init

.

In the literature, these intersections are known as Richardson varieties [R]; see [KL] for
more discussion and references. They are also called skew Schubert varieties by Stanley [St].

In particular, if (and only if) any of these white checkers are not happy (or equivalently
if ai + bk+1−i ≤ n for some i), then the intersection is empty. For example, this happens if
n = 2 and A = B = {1}, corresponding to the intersection of two distinct points in P1.

Proof. Assume first that the characteristic is 0. By the Kleiman-Bertini theorem (Sec-
tion 1.1), ΩA(M·) ∩ ΩB(F·) is reduced of the expected dimension. The generic point of
any of its components lies in Y◦•init

for some configuration ◦ of white checkers, where the
first coordinates of the white checkers of ◦ are given by the set A and the second coor-
dinates are given by the set B. A short calculation using Lemma 2.6 yields dim Y◦•init

≤
dim Y◦A,B•init

, with equality holding if and only if ◦ = ◦A,B. (Reason: the sum over all
white checkers w in ◦ of the number of black checkers w dominates is

∑

a∈A a +
∑

b∈B b −
kn, which is independent of ◦, so dim Y◦•init

is maximized when no white checker dom-
inates another, which is the definition of ◦A,B.) Then it can be checked directly that
dim Y◦A,B•init

= dim ΩA∩ΩB . As Y◦A,B•init
is irreducible, the result in characteristic 0 follows.

In positive characteristic, the same argument shows that the cycle ΩA(M·) ∩ ΩB(F·) is
some positive multiple of the the cycle Y ◦A,B•init

. It is an easy exercise to show that the
intersection is transverse, i.e. that this multiple is 1. It will be easier still to conclude the
proof combinatorially; we will do this — and finish the proof — in Section 2.18. �
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We will need to consider a particular subset of the possible ◦•, which we define now.

2.8. Definition. Suppose ◦• is a configuration of black and white checkers such that •
is in the specialization order, and the descending checker is in column c. Suppose the
white checkers are at (r1, c1), . . . , (rk, ck) with c1 < · · · < ck. If (ri, . . . , rk) is decreasing
when ci ≥ c, then we say that ◦• is mid-sort. For example, the white checkers of Figure 7
are mid-sort. As the black checkers in columns up to c − 1 are arranged diagonally, the
“happy” condition implies that (r1, . . . , rj) is increasing when cj < c, as may be seen
in Figure 7. Any initial configuration is clearly mid-sort. Other examples of mid-sort
highlighting the overall shape of the white checkers’ placement are given in Figures 18
and 19.

diagonally here

white checkers
arranged:

anti-diagonally here

FIGURE 7. An example of mid-sort checkers

2.9. The degenerations. Suppose now that ◦• is mid-sort. Consider the diagram:

(1) X◦• := ClG(k,n)×X•
X◦•

��

� �
open

// ClG(k,n)×(X•∪X•next)
X◦•

��

D?
_Cartier

oo

��

X•
� �

open
// X• ∪ X•next X•next .? _

Cartier
oo

The Cartier divisor D on ClG(k,n)×(X•∪X•next)
X◦• is defined by pullback; both squares in (1)

are fibered squares. The vertical morphisms are projective, and the vertical morphism
on the left is a Y ◦•-fibration. We will identify the irreducible components of D as certain
X◦′•next , each appearing with multiplicity 1.

2.10. Description of the movement of the white checkers. The movement of the white checkers
takes place in two phases. Phase 1 depends on the answers to two questions: Where (if
anywhere) is the white checker in the critical row? Where (if anywhere) is the highest
white checker in the critical diagonal? Based on the answers to these questions, these two
white checkers either swap rows (i.e. move from (r1, c1) and (r2, c2) to (r2, c1) and (r1, c2)),
or they stay where they are, according to Table 2. (The pictorial examples of Figure 8 may
be helpful.) The central entry of the table is the only time when there is a possibility for
choice: the pair of white checkers can stay, or if there are no white checkers in the rectangle

12



White checker in critical row?
yes, in descending yes, elsewhere no
checker’s square

Top white yes, in rising swap swap stay†

checker checker’s square
in yes, swap swap if no blocker stay

critical elsewhere or stay
diagonal? no stay stay stay

TABLE 2. Phase 1 of the white checker moves (see Figure 8 for a pictorial description)

between them they can swap. Call white checkers in this rectangle blockers. Figure 9 gives
an example of a blocker.

or

no

no

White checker in critical row?

elsewhere

checker’s square

moves:

phase 1:

phase 2:

Legend:

yes, in descending

yes, in
rising
checker’s
square

yes,

Top white
checker in
critical
diagonal?

black checker

white checker

white checker

yes, elsewhere

†

FIGURE 8. Examples of the entries of Table 2 (case † is discussed in Section 3.1)

white checker in critical row
blocker

top white checker in critical diagonal

FIGURE 9. Example of a blocker

After phase 1, at most one white checker is unhappy. Phase 2 is a “clean-up” phase: if a
white checker is not happy, then move it either left or up so that it becomes happy. This is
always possible, in a unique way. Afterwards, no two white checkers will be in the same
row or column.
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The resulting configuration is dubbed ◦stay•next or ◦swap•next (depending on which option
we chose in phase 1).

(A more concise — but less useful — description of the white checker moves, not re-
quiring Table 2 or the notion of blockers, is as follows. In phase 1, we always consider
the stay option, and we always consider the swap option if the critical row and the crit-
ical diagonal both contain white checkers. After phase 1, there are up to two unhappy
white checkers. We “clean up” following phase 2 as before, making all white checkers
happy. Then we have one or two possible configurations. If one of the configurations has
two white checkers in the same row or column, we discard it. If one of the configura-
tions ◦′•next has dimension less than desired — i.e. dim X◦′•next < dim D = dim X◦• − 1, or
equivalently dim Y◦′•next < dim Y◦•, see Lemma 2.6 — we discard it.)

The geometric meaning of each case in Table 2 is straightforward; we have already seen
seven of the cases in Figure 3. For example, in the bottom-right case of Table 2/Figure 8,
the k-plane V continues to meet flags M· and F· in the same way, although they are in
more special position (as in the first degeneration of Figure 3). In the top-right case of
Table 2/Figure 8, V meets F· in the same way, and is forced to meet M· in a more special
way (see the degenerations marked † in Figure 3). The reader is encouraged to compare
more degenerations of Figure 3 to Table 2/Figure 8 to develop a sense for the geometry
behind the checker moves.

2.11. The cases where there is no white checker in the critical row r (the third column of
Table 2) are essentially trivial; in this case the moving subspace Mr imposes no condition
on the k-plane (see Figure 3 for numerous examples). This will be made precise in Sec-
tion 5.2. Even the case where a checker moves (the top right entry in Figure 8), there is no
corresponding change in the position of the k-plane (see the degenerations marked † in
Figure 3 for examples).

The following may be shown by a straightforward induction.

2.12. Lemma. — If ◦• is mid-sort, then ◦stay•next and ◦swap•next (if they exist) are mid-sort.

We now state the main result of this paper, which will be proved in Section 5. (A
different proof, assuming the combinatorial Littlewood-Richardson rule, is outlined in
Section 2.19.)

2.13. Theorem (Geometric Littlewood-Richardson rule). —

D = X◦stay•next , X◦swap•next , or X◦stay•next ∪ X◦swap•next .

Note: Throughout this paper, the meaning of or in such a context will always be depend-
ing on which checker movements are possible according to Table 2.
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2.14. Interpretation of the rule in terms of deforming cycles in the Grassmannian.
From Theorem 2.13 we obtain the deformation description given in Section 1.5, as fol-
lows. Given a point p of F l(n) (parameterizing M·) in the dense open Schubert cell (with
respect to a fixed reference flag F·), there is a chain of

(

n
2

)

P1’s in F l(n), starting at p and
ending with the “most degenerate” point of F l(n) (corresponding to M· = F·). This chain
corresponds to the specialization order; each P1 is a fiber of the fibration of the appropri-
ate X• ∪ X•next → X•next . All but one point of the fiber lies in X•. The remaining point ∞
(where the P1 meets the next component of the degeneration) lies on a stratum X•next of
dimension one lower. If the move corresponds to the descending checker in critical row
r dropping one row, then all components of the flags F· and M· except Mr are held fixed
(as shown in Figure 2).

Given such a P1 ↪→ X• ∪X•next in the degeneration, we obtain the following by pullback
from (1) (introducing temporary notation Y◦• and DY):

(2) Y◦•

��

� �
open

// ClG(k,n)×P1 Y◦•

��

DY
? _

Cartier
oo

��

A1 � �
open

// P1 {∞}.? _
Cartier

oo

Again, the vertical morphisms are projective and the vertical morphism on the left is a
Y ◦•-fibration.

By applying base change from (1) to (2) to Theorem 2.13, we obtain:

2.15. Theorem (Geometric Littlewood-Richardson rule, degeneration version). —

DY = Y ◦stay•next , Y ◦swap•next , or Y ◦stay•next ∪ Y ◦swap•next .

(The notation Y◦• and DY will not be used hereafter.)

We use this theorem to compute the class (in H∗(G(k, n))) of the intersection of two
Schubert cycles as follows. By the Kleiman-Bertini theorem (Section 1.1), or the Grass-
mannian Kleiman-Bertini theorem [V2, Theorem 2.6] in positive characteristic, this is the
class of the intersection of two Schubert varieties with respect to two general (transverse)
flags, which by Proposition 2.7 is [Y ◦A,B•init

]. We use Theorem 2.15 repeatedly to break the

cycle inductively into pieces. We conclude by noting that each Y ◦•final
is a Schubert vari-

ety; the corresponding subset of {1, . . . , n} is precisely the set of black checkers sharing a
square with a white checker (as in Figure 3).

2.16. Littlewood-Richardson coefficients count checkergames. A checkergame with
input α and β and output γ is defined to be a sequence of moves ◦α,β•init, . . . , ◦γ•final,
as described by the Littlewood-Richardson rule (i.e. the position after ◦• is ◦stay•next or
◦swap•next).
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2.17. Corollary. — The Littlewood-Richardson coefficient cγ
αβ is the number of checkergames with

input α and β and output γ.

2.18. Enumerative problems and checkergame tournaments. Suppose [Ωα1 ], . . . , [Ωα`
]

are Schubert classes on G(k, n) of total codimension dim G(k, n). Then the degree of their
intersection — the solution to an enumerative problem by the Kleiman-Bertini theorem
(Section 1.1), or the Grassmannian Kleiman-Bertini theorem [V2, Theorem 2.6] in positive
characteristic) — can clearly be inductively computed using the Geometric Littlewood-
Richardson rule. (Such an enumerative problem is called a Schubert problem.) Hence
Schubert problems can be solved by counting checkergame tournaments of ` − 1 games,
where the input to the first game is α1 and α2, and for i > 1 the input to the ith game is
αi+1 and the output of the previous game. (The outcome of each checkergame tournament
will always be the same — the class of a point.)

Conclusion of proof of Proposition 2.7 in positive characteristic. We will show that the multi-
plicity with which Y ◦A,B•init

appears in ΩA(M·) ∩ ΩB(F·) is 1. We will not use the Grass-
mannian Kleiman-Bertini Theorem [V2, Theorem 2.6] as its proof relies on Proposition 2.7.

Choose C = {c1, . . . , ck} such that dim[ΩA]∪ [ΩB]∪ [ΩC ] = 0 (where ∪ is the cup product
in cohomology) and deg[ΩA] ∪ [ΩB] ∪ [ΩC ] > 0. In characteristic 0, the above discussion
shows that deg[ΩA] ∪ [ΩB] ∪ [ΩC ] is the number of checkergame tournaments with inputs
A, B, C. In positive characteristic, the above discussion shows that if the multiplicity
is greater than one, then deg[ΩA] ∪ [ΩB] ∪ [ΩC ] is strictly less than the same number of
checkergames. But deg[ΩA] ∪ [ΩB] ∪ [ΩC ] is independent of characteristic, yielding a con-
tradiction. �

2.19. A second proof of the rule (Theorem 2.13), assuming the combinatorial Littlewood-
Richardson rule. We now outline a second proof of the Geometric Littlewood-Richardson
rule that bypasses almost all of Sections 4 and 5. Proposition 5.15 shows that X◦stay•next

and/or X◦swap•next are contained in D with multiplicity 1. (It may be rewritten without the
language of Bott-Samelson varieties.) We seek to show that there are no other compo-
nents. The semigroup consisting of effective classes in H∗(G(k, n), Z) is generated by the
Schubert classes; this semigroup induces a partial order on H∗(G(k, n), Z). Let dγ

αβ be the
number of checkergames with input α and β, and output γ. Then at each stage of the
degeneration, [D]− [X◦stay•next ], [D]− [X◦swap•next], or [D]− [X◦stay•next ]− [X◦swap•next ] (depending
on the case) is effective, and hence

[Ωα] ∪ [Ωβ] −
∑

γ

dγ
αβ[Ωγ ] ≥ 0

with equality holding if and only if the Geometric Littlewood-Richardson rule Theo-
rem 2.13 is true at every stage in the degeneration. But by the combinatorial Littlewood-
Richardson rule,

[Ωα] ∪ [Ωβ] =
∑

γ

cγ
αβ[Ωγ].
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Theorem 3.2 gives a bijection between checkergames and tableaux. The proof uses the
bijection between checkergames and puzzles of Appendix A. This in turn was proved by
giving an injection from checkergames to puzzles, and using the Geometric Littlewood-
Richardson rule to show bijectivity. However, as described there, it is possible to show
bijectivity directly (by an omitted tedious combinatorial argument). Thus cγ

α,β = dγ
α,β, so

Theorem 2.13 is true for every ◦• that arises in the course of a checkergame.

Finally, one may show by induction on • that every ◦• (with ◦ mid-sort) does arise in
the course of a checkergame: It is clearly true for mid-sort ◦•init. Given a mid-sort ◦′•next,
one may easily verify using Figure 8 that there is some ◦• such that ◦′•next = ◦stay•next or
◦swap•next. �

2.20. Cautions. (a) The specialization order may not be replaced by an arbitrary path
through the weak Bruhat order. For example, if ◦• is as shown on the left of Figure 10,
then X◦• parameterizes: distinct points p1 and p2 in P3; lines `1 and `2 through p1 such
that `1, `2, and p2 span P3; and a point q ∈ `1 − p1. Then the line corresponding to the
white checkers (a point of G(1, 3)) is 〈q, p2〉. The degeneration shown in Figure 10 (• → •′,
say) corresponds to letting p2 tend to p1, and remembering the line `3 of approach. Then
the divisor on ClG(k,n)×(X•∪X•′ )

X◦• corresponding to X•′ parameterizes lines through p1

contained in 〈`1, `3〉. This is not of the form X◦′•′ for any ◦′.

p1

`3

`2

`1

F4F3F2F1

M1

M2

M3

M4

p2

p1

q

`2

`1

?
=⇒

F1 F4F3F2

M1

M2

M3

M4

FIGURE 10. The dangers of straying from the specialization order

(b) Unlike the variety X• = ClF l(n)×F l(n) X•, the variety X◦• cannot be defined numeri-

cally, i.e. in general X◦• will be only one irreducible component of

X
′

◦• := {(V,M·,F·) ∈ G(k, n) × X• ⊂ G(k, n) × F l(n) × F l(n) : dim V ∩ Mi ∩ Fj ≥ γi,j
◦ }

where γi,j
◦ is the number of white checkers dominated by (i, j). For example, in Figure 3,

if ◦• is the configuration marked “*” and ◦′• is the configuration marked “**”, then X
′

◦• =
X◦• ∪ X◦′•.

3. FIRST APPLICATIONS: LITTLEWOOD-RICHARDSON RULES

In this section, we discuss bijections between checkers, the classical Littlewood-Richardson
rule involving tableaux, and puzzles. We extend the checker and puzzle rules to K-theory,
proving a conjecture of Buch. We conclude with open questions. We assume familiarity
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with the following Littlewood-Richardson rules: tableaux [F], puzzles [KTW, KT], and
Buch’s set-valued tableaux [B1].

3.1. Checkers, puzzles, tableaux. We now give a bijection between tableaux and check-
ergames. We use the tableaux description of [F, Corollary 5.1.2]. More precisely, given
three partitions α, β, γ, construct a skew partition δ from α and β, with α in the upper
right and β in the lower left. Then cγ

αβ is the number of Littlewood-Richardson skew

tableaux [F, p. 63] on δ with content γ. In any such tableau on δ, the ith row of α must
consist only of i’s. Thus γ can be recovered from the induced tableaux on β: γi is αi plus
the number of i’s in the tableaux on β.

The bijection to such tableaux (on β) is as follows. Whenever there is a move described
by a † in Figure 8 (see also Table 2), where the “rising” white checker is the rth white
checker (counting by row) and the cth (counting by column), place an r in row c of the
tableau.

The geometric interpretation of the bijection is simple. In each step of the degeneration,
some intersection Mr ∩ Fc jumps in dimension. If in this step the k-plane V changes its
intersection with M· (or equivalently, V ∩ Mr jumps in dimension), then we place the final
value of dim V ∩ Mr in row dim V ∩ Fc of the tableau (in the rightmost square still empty).
In other words, given a sequence of degenerations, we can read off the tableau, and each
tableau gives instructions as to how to degenerate.

For example, in Figure 3, the left-most output corresponds to the tableau 2 , and the

right-most output corresponds to the tableau 1 . The moves where the tableaux are filled
are marked with †. (In the left case, at the crucial move, the rising white checker is the
second white checker counting by row and the first white checker counting by column,
so a “2” is placed in the first row of the diagram.)

3.2. Theorem (bijection from checkergames to tableaux). — The construction above gives a bijec-
tion from checkergames to tableaux.

Proof. A bijection between checkergames and puzzles is given in Appendix A. Combin-
ing this with Tao’s “proof-without-words” of a bijection between puzzles and tableaux
(given in Figure 11) yields the desired bijection between checkergames and tableaux. I
am grateful to Tao for telling me his bijection. �

(There is undoubtedly a simpler direct proof, given the elegance of this map, and the
inelegance of the bijection from checkergames to puzzles.)

Hence checkergames give the first geometric interpretation of tableaux and puzzles;
indeed there is a bijection between tableaux/puzzles and solutions of the corresponding
three-flag Schubert problem, once branch paths are chosen [V2, Section 4.3], [SVV].
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FIGURE 11. Tao’s “proof without words” of the bijection between puzzles
and tableaux (1-triangles are depicted as black, regions of 0-rectangles are
grey, and regions of rhombi are white)

Note that to each puzzle, there are three possible checkergames, depending on the ori-
entation of the puzzle. These correspond to three degenerations of three general flags. A.
Knutson points out that it would be interesting to relate these three degenerations.

3.3. K-theory: checkers, puzzles, tableaux. Buch [B2] has conjectured that checkergame
analysis can be extended to K-theory or the Grothendieck ring (see [B1] for background
on the K-theory of the Grassmannian). Precisely, the rules for checker moves are identical,
except there is a new term in the middle square of Table 2 (the case where there is a
choice of moves), of one lower dimension, with a minus sign. As with the swap case, this
term is included only if there is no blocker. If the two white checkers in question are at
(r1, c1) and (r2, c2), with r1 > r2 and c1 < c2, then they move to (r2, c1) and (r1 − 1, c2)
(see Figure 12). Call this a sub-swap, and denote the resulting configuration ◦sub•next. By
Lemma 2.6, dim Y ◦sub•next = dim Y ◦• − 1.

3.4. Theorem (K-theory Geometric Littlewood-Richardson rule). — Buch’s sub-swap rule de-
scribes multiplication in the Grothendieck ring of G(k, n).

Sketch of Proof. We give a bijection from K-theory checkergames to Buch’s “set-valued
tableaux” (certain tableaux whose entries are sets of integers, [B1]), generalizing the bi-
jection of Theorem 3.2. To each checker is attached a set of integers, called its “memory”.
At the start of the algorithm, every checker’s memory is empty. Each time there is a sub-
swap, where a checker rises from being the rth white checker to being the (r−1)st (counting
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(−1)×

FIGURE 12. Buch’s “sub-swap” case for the K-theory Geometric
Littlewood-Richardson rule (cf. Figure 8)

by row), that checker adds to its memory the number r. (Informally, the checker remem-
bers that it had once been the rth checker counting by row.) Whenever there is a move
described by a † in Figure 8, where the white checker is the rth counting by row and the
cth counting by column, in row c of the tableau place the set consisting of r and the con-
tents of its memory (all remembered earlier rows). (Place the set in the rightmost square
still empty.) Then erase the memory of that white checker. The reader may verify that in
Figure 3, the result is an additional set-valued tableau, with a single cell containing the
set {1, 2}.

The proof that this is a bijection is omitted. �

This result suggests that Buch’s rule reflects a geometrically stronger fact, extending
the Geometric Littlewood-Richardson rule (Theorem 2.13).

3.5. Conjecture (K-theory Geometric Littlewood-Richardson rule, geometric form, with A. Buch).
—

(a) In the Grothendieck ring, [X◦•] = [X◦stay•next ], [X◦swap•next ], or [X◦stay•next ] + [X◦swap•next ] −

[X◦sub•next ].
(b) Scheme-theoretically, D = X◦stay•next , X◦swap•next , or X◦stay•next ∪ X◦swap•next . In the latter case,

the scheme-theoretic intersection X◦stay•next ∩ X◦swap•next is a translate of X◦sub•next .

Part (a) clearly follows from part (b).

Knutson has speculated that the total space of each degeneration is Cohen-Macaulay;
this would imply the conjecture.

The K-theory Geometric Littlewood-Richardson rule 3.4 can be extended to puzzles.

3.6. Theorem (K-theory Puzzle Littlewood-Richardson rule). — The K-theory Littlewood-
Richardson coefficient corresponding to subsets α, β, γ is the number of puzzles with sides given
by α, β, γ completed with the pieces shown in Figure 13. There is a factor of −1 for each K-theory
piece in the puzzle.
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FIGURE 13. The K-theory puzzle pieces

The first three pieces of Figure 13 are the usual puzzle pieces of [KTW, KT]; they may
be rotated. The fourth K-theory piece is new; it may not be rotated. Tao had earlier,
independently, discovered this piece.

Theorem 3.6 may be proved via the K-theory Geometric Littlewood-Richardson rule 3.4
(and extending Appendix A), or by generalizing Tao’s proof of Figure 11. Both proofs are
omitted.

As an immediate consequence, using the cyclic symmetry of K-theory puzzles:

3.7. Corollary (triality of K-theory Littlewood-Richardson coefficients). — If K-theory Littlewood-

Richardson coefficients are denoted C ·
··, Cγ∨

αβ = Cα∨

βγ = Cβ∨

γα .

This is immediate in cohomology, but not obvious in the Grothendieck ring. The fol-
lowing direct proof is due to Buch (cf. [B1, p. 30]).

Proof. Let ρ : G(k, n) → pt be the map to a point. Define a pairing on K0(X) by
(a, b) := ρ∗(a · b). This pairing is perfect, but (unlike for cohomology) the Schubert struc-
ture sheaf basis is not dual to itself. However, if t denotes the top exterior power of the
tautological subbundle on G(k, n), then the dual basis to the structure sheaf basis is {tOY :
Y is a Schubert variety}. More precisely, the structure sheaf for a partition λ = (λ1, . . . , λk)
is dual to t times the structure sheaf for λ∨. (For more details, see [B1, Section 8]; this prop-

erty is special for Grassmannians.) Hence ρ∗(tOαOβOγ) = Cγ∨

αβ = Cα∨

βγ = Cβ∨

γα . �

3.8. Questions. One motivation for the Geometric Littlewood-Richardson rule is that it
should generalize well to other important geometric situations (as it has to K-theory). We
briefly describe some potential applications; some are work in progress.

(a) Knutson and the author have extended these ideas to give a Geometric Littlewood-
Richardson rule in equivariant K-theory (most conveniently described by puzzles), which
is not yet proved [KV2]. As a special case, equivariant Littlewood-Richardson coefficients
may be understood geometrically; equivariant puzzles [KT] may be translated to check-
ers, and partially-completed equivariant puzzles may be given a geometric interpretation.

(b) These methods may apply to other groups where Littlewood-Richardson rules are not
known. For example, for the symplectic (type C) Grassmannian, there are only rules in
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the Lagrangian and Pieri cases. L. Mihalcea has made progress in finding a Geometric
Littlewood-Richardson rule in the Lagrangian case, and has suggested that a similar al-
gorithm should exist in general.

(c) The specialization order (and the philosophy of this paper) leads to a precise conjec-
ture about the existence of a Littlewood-Richardson rule for the (type A) flag variety, and
indeed for the equivariant K-theory of the flag variety. This conjecture will be given and
discussed in [V3]. The conjecture unfortunately does not seem to easily yield a combina-
torial rule, i.e. an explicit combinatorially described set whose cardinality is the desired
coefficient. However, (i) in any given case in cohomology, the conjecture may be checked
in cohomology, and the combinatorial object described, using methods from [BV]; (ii) the
conjecture is true in cohomology in for n ≤ 5; (iii) the conjecture is true in K-theory for
Grassmannian classes by Theorem 3.4; and (iv) the conjecture should be true in equivari-
ant K-theory for Grassmannian classes by [KV2]. Note that understanding the combi-
natorics underlying the geometry in the case of cohomology will give an answer to the
important open question of finding a Littlewood-Richardson rule for Schubert polynomi-
als (see for example [Mac, Man, BJS, BB] and [F, p. 172]).

(d) An intermediate stage between the Grassmannian and the full flag manifold is the
two-step partial flag manifold F l(k, l, n). This case has applications to Grassmannians of
other groups, and to the quantum cohomology of the Grassmannian [BKT]. Buch, Kresch,
and Tamvakis have suggested that Knutson’s proposed partial flag rule (which Knutson
showed fails for flags in general) holds for two-step flags, and have verified this up to
n = 16 [BKT, Section 2.3]. A geometric explanation for Knutson’s rule (as yet unproved)
will be given in [KV1].

(e) The quantum cohomology of the Grassmannian can be translated into classical ques-
tions about the enumerative geometry of surfaces. One may hope that degeneration
methods introduced here and in [V1] will apply. This perspective is being pursued (with
different motivation) by I. Coskun (for rational scrolls) [Co]. I. Ciocan-Fontanine has sug-
gested a different approach (to the three-point invariants) using Quot schemes, following
[C-F]: one degenerates two of the three points together, and then uses the Geometric
Littlewood-Richardson rule.

(f) D. Eisenbud and J. Harris [EH] describe a particular (irreducible, one-parameter) path
in the flag variety, whose general point is in the large open Schubert cell, and whose spe-
cial point is the smallest stratum: consider the osculating flag M· to a point p on a rational
normal curve, as p tends to a reference point q with osculating flag F·. Eisenbud has asked
if the specialization order is some sort of limit (a “polygonalization”) of such a path. This
would provide an irreducible path that breaks intersections of Schubert cells into Schubert
varieties. (Of course, the limit cycles could not have multiplicity 1 in general.) Eisenbud
and Harris’ proof of the Pieri formula is evidence that this could be true.

Sottile has a precise conjecture generalizing Eisenbud and Harris’ approach to all flag
manifolds [S3, Section 5]. He has generalized this further: one replaces the rational nor-
mal curve by the curve etηXu(F·), where η is a principal nilpotent in the Lie algebra of
the appropriate algebraic group, and the limit is then limt→0 etηXu(F·) ∩ Xw, where Xw is
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given by the flag fixed by limt→0 etη , [S4]. Eisenbud’s question in this context then involves
polygonalizing or degenerating this path.

(g) If the specialization order is indeed a polygonalization of the path corresponding to
the osculating flag, then the Geometric Littlewood-Richardson rule would imply that
the Shapiro-Shapiro conjecture is “asymptotically true” (via [V2, Proposition 2.9]). Cur-
rently the conjecture is known only for G(2, n) [EG]. Could the Geometric Littlewood-
Richardson rule yield a proof in some cases for general G(k, n)?

4. BOTT-SAMELSON VARIETIES

4.1. Definition: Quilts and their Bott-Samelson varieties. We will associate a variety to
the following data (Q, dim, n); n is the integer fixed throughout the paper.

(1) Q is a finite subset of the plane, with the partial order ≺ given by domination
(defined in Section 2.1). We require Q to have a maximum element and a minimum
element. (We visualize the plane so that downwards corresponds to increasing the
first coordinate and rightwards corresponds to increasing the second coordinate,
in keeping with the labeling convention for tables.)

(2) dim : Q → {0, 1, 2, . . . , n} is an order-preserving map, denoted dimension.
(3) If [a,b] is a covering relation in Q (i.e. minimal interval: a ≺ b, and there is no

c ∈ Q such that a ≺ c ≺ b), then we require that dim a = dimb − 1.
(4) If straight edges are drawn corresponding to the covering relations, then we require

the interior of the graph to be a union of quadrilaterals, with 4 elements of Q as
vertices, and 4 edges of Q as boundary. (Figure 14 shows two ways in which this
condition can be violated. Note that the closure of the interior need not be the
entire graph, e.g. Figure 19(b).)

We call this data a quilt, and abuse notation by denoting it by Q and leaving dim implicit.
For example, the quilt of Figure 15 has 10 elements and 5 quadrilaterals.

Note that the poset Qmust be a lattice, i.e. any two elements x, y have a unique minimal
element dominating both (denoted sup(x,y)), and a unique maximal element dominated
by both (denoted inf(x,y)). An element of Q at (i, j) is said to be on the southwest border
(resp. northeast border) if there are no other elements (i′, j′) of Q such that i′ > i and j′ < j
(resp. i′ < i and j′ > j); see Figure 15. Thus every element on the boundary is on the
southwest border or the northeast border. The maximum and minimum elements are on
both.

Define the Bott-Samelson variety BS(Q) associated to a quilt Q to be the variety param-
eterizing a (dim s)-plane Vs in Kn for each s ∈ Q, with Vs ⊂ Vt for s ≺ t. It is a closed
subvariety of

∏

s∈Q G(dim s, n). Elements s of Q will be written in bold-faced font, and
corresponding vector spaces will be denoted Vs.

4.2. Lemma. — The Bott-Samelson variety BS(Q) is smooth.
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FIGURE 14. Two planar posets (elements are grey dots). Neither is a quilt,
as they both violate condition (4).

Proof. The variety parameterizing the subspaces corresponding to the southwest border of
the graph is a partial flag variety (and hence smooth). The Bott-Samelson variety BS(Q)
can be expressed as a tower of P1-bundles over the partial flag variety by inductively
adding the data of Vs for s ∈ S corresponding to “new” (northeast) vertices of quadrilat-
erals. �

For example, Figure 15 illustrates that one particular Bott-Samelson variety is a tower
of five P1-bundles over F l(4); the correspondence of the P1-bundles with quadrilaterals is
illustrated by the numbered arrows.

3

4

1 2

5

configuration •

northeast bordersouthwest border

0

quilt Q•

FIGURE 15. The northeast and southwest borders of a quilt generated by
a black checker configuration; description of a Bott-Samelson variety as a
tower of five P1-bundles over F l(4)

4.3. Strata of Bott-Samelson varieties BS(Q)S . Any set S of quadrilaterals of a quilt deter-
mines a stratum of the Bott-Samelson variety. The closed stratum corresponds to requiring
the spaces corresponding to the northeast and southwest vertices of each quadrilateral in
S to be the same. The open stratum corresponds to also requiring the spaces of the north-
east and southwest vertices of each quadrilateral not in S to be distinct. Denote the open
stratum by BS(Q)S , so the dense open stratum is BS(Q)∅. By the construction in the proof
of Lemma 4.2, (i) the open strata give a stratification, (ii) the closed strata are smooth, and
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(iii) codimBS(Q) BS(Q)S = |S|. We depict a stratum by placing an “=” in the quadrilaterals
of S, indicating the pairs of spaces that are required to be equal.

4.4. Example: quilts generated by a set of checkers. Given a checker configuration,
define the associated quilt as follows. Include the squares of the table where there is a
checker above (or possibly in the same square), and a checker to the left (or in the same
square); include also a “zero element” 0 above and to the left of the checkers. For s ∈ Q, let
dim s be the number of checkers s dominates, so dim0 = 0, and dim s is the edge-distance
from s to 0.

As a warm-up example, if • is a configuration of black checkers, let Q• be the associ-
ated quilt (as in Figure 15). Then the definition of happy in Section 2.5 can be rephrased
as: a white checker w is happy if w ∈ Q•. The southwest border of Q• corresponds to
F·, and the northeast border corresponds to M·; BS(Q•) is a tower of P1-bundles over
F l(n) = {F·}, and the fiber is a Bott-Samelson resolution of the corresponding Schubert
variety. The morphism BS(Q•) → X• is a resolution of singularities of the double Schu-
bert variety, e.g. Figure 15 describes a Bott-Samelson resolution of the double Schubert
variety corresponding to 1324. This morphism restricts to an isomorphism of the dense
open stratum BS(Q•)∅ of BS(Q•) with X•.

If ◦ is a configuration of white checkers, let Q◦ be the associated quilt. The structure
of Q◦ for mid-sort ◦ will be central to the proof. See Figures 18 and 19 for important
examples that we will refer to repeatedly.

5. PROOF OF THE GEOMETRIC LITTLEWOOD-RICHARDSON RULE (THEOREM 2.13)

5.1. Strategy of proof. The strategy is as follows. Instead of considering the divisor D
on the closure of X◦• in G(k, n)× (X• ∪ X•next), we consider the corresponding divisor DQ

on the closure of X◦• in BS(Q◦) × (X• ∪ X•next), see (3) below. Here the bottom two rows
are diagram (1). The vertical morphisms from the top row to the middle row (denoted π)
are projective. The top row is obtained from the bottom row by fibered product.

(3) ClBS(Q◦)×X•
X◦•

��

� �
open

// ClBS(Q◦)×(X•∪X•next)
X◦•

π

��

DQ
? _

Cartier
oo

��

X◦• := ClG(k,n)×X•
X◦•

��

� �
open

// ClG(k,n)×(X•∪X•next)
X◦•

��

D?
_Cartier

oo

��

X•
� �

open
// X• ∪ X•next X•next

? _
Cartier

oo

(i) In Section 5.2, we show that the result holds in the “trivial case” where there are
no white checkers in the critical row. We assume thereafter that the critical row is
non-empty.

25



(ii) We describe ClBS(Q◦)×(X•∪X•next)
X◦• more explicitly, giving it a modular interpreta-

tion rather than merely describing it as a closure (Theorem 5.8). (As a byproduct,
we show ClBS(Q◦)×(X•∪X•next)

X◦• is Cohen-Macaulay.)
(iii) We identify the irreducible components {DS} of DQ (Theorem 5.10). (Steps (ii) and

(iii) are the crux of the proof.)
(iv) We show that all but one or two DS are contracted by π (Proposition 5.13), so their

image is not a divisor on ClG(k,n)×(X•∪X•next)
X◦•. We do this by exhibiting a one-

parameter family through a general point of such a DS contracted by π.
(v) In Proposition 5.15, we show that in the one or two remaining cases the multiplic-

ity of DQ along DS is 1.
(vi) Finally, these one or two DS map birationally to (i.e. map with degree 1 to) X◦stay•next

or X◦swap•next (Proposition 5.16), ensuring that the multiplicity with which X◦stay•next

or X◦swap•next appears in D is indeed 1.

5.2. Proof of the rule in the case where there is no white checker in the critical row.
As pointed out in Section 2.11, this case is geometrically straightforward. Let X ′

◦• be the
projection of X◦• to

G(k, n) × F l(1, . . . , r − 1, r + 1, . . . , n) × F l(n)

“forgetting” Mr. Then X◦• is the P1-bundle over X ′
◦• corresponding to choosing Mr freely,

and X◦stay•next is the section given by the Cartier divisor DQ = {Mr : Mr ∩ Fc ⊂ Fc−1} (see

Section 2.4). Hence DQ = X◦stay•next , so we have completed the proof in the case where
there is no white checker in the critical row.

5.3. For the rest of Section 5, we assume that there is a white checker in the critical row.
We will need two preparatory lemmas.

Suppose we are given 1 ≤ a1 < a2 < · · · < ak ≤ n (with the convention a0 = 0,
ak+1 = ∞), and integers j and R such that aj ≤ R < aj+1. Consider the closed subvariety

(4) T ′ ⊂ F l(1, . . . , k, n) × F l(n) = {((Vi)i≤k,M·)}

defined by Vi ⊂ Mai
. Then we may construct T ′ as a tower of projective bundles over

F l(1, . . . , k, n) by inductively choosing Mn−1, . . . , M1 with Mj a hyperplane in Mj+1 con-
taining Vmaxai≤j i. Let B be a variety, B → F l(1, . . . , k, n) a morphism, and T ′′ the pullback
of T ′ to B (i.e. T ′′ := B ×F l(1,...,k,n) T ′).

5.4. Lemma. — For any δ, if Q is an irreducible subvariety of T ′′ where dim Vδ ∩ MR = j + `2,
then codimT ′′ Q ≥ `2. Equality holds only if

(i) `2 = 0, or
(ii) `2 = 1, aj < R, aj+1 = R + 1, and Vj+1 ⊂ MR for all points of Q.

Proof. It suffices to prove the result for δ = k, and B
∼
→ F l(1, . . . , k, n) (i.e. T ′′ = T ).

We follow the spirit of the construction of double Schubert cells (Section 2.2). We stratify
F l(1, . . . , k, n) × F l(n) by the numerical data dim Vi2 ∩ Mi1 (1 ≤ i2 ≤ k). The strata corre-
spond to checkerboards with k columns and n rows, with k checkers, no two in the same
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row or column, such that dim Vi2 ∩ Mi1 is the number of checkers dominated by (i1, i2).
See Figure 16 for an example. By building the stratum as an open subset of a tower of
projective bundles over F l(n), we observe that the dimension of this stratum is

dim F l(n) +
∑

checker c at (i1, i2)

(i1 − #{checkers dominated by c}) .

Then T ′ corresponds to configurations where there are at least i checkers in the first ai

rows, and the dense open stratum of T ′ corresponds to the configuration {(ai, i) : 1 ≤ i ≤
k}, so in particular there are j checkers in the first R rows. A dense open set of Q lies in
some stratum where there are at least j+`2 checkers in the first R rows. We are reduced to
the following combinatorial question (left to the reader): suppose k checkers are placed so
that there are i checkers in the first ai rows (1 ≤ i ≤ k) and there are j + `2 checkers in the
first R rows. Then the sum of the rows in which the checkers appear is at most

∑

ai − `2,
and inequality is strict unless (i) or (ii) holds. (Informally, at least `2 checkers must be in a
higher — i.e. lower-numbered — row than they would be for the general point of T ′, and
if neither (i) nor (ii) hold, one checker must be at least 2 rows higher. See Figure 16 for an
example of case (ii).) �

a1 = 1

a2 = aj = 3

R = 4

a3 = aj+1 = 5

j = 2

FIGURE 16. n × k checker configuration in proof of Lemma 5.4 (n = 5, k = 3)

Suppose we are given a vector space Z ⊂ Kn and an element (Vm)m∈Q◦
of BS(Q◦), and

each element m of Q◦ is labeled with label(m) := dim Vm ∩ Z. If (Vm) ∈ BS(Q◦)S then
mark the quadrilaterals of S with “=”. To each quadrilateral of Q◦ we attach a content of

label(mne) + label(msw) − label(mnw) − label(mse)

where mne, msw, mnw, mse are the northeast, southwest, northwest, southeast vertices
of the quadrilateral respectively. The total content of a region of quadrilaterals is a linear
combination of the labels of all vertices which appear. By inspection of all possible labeled
quadrilaterals (Figure 17), every quadrilateral with positive content is marked with “=”.

5.5. Lemma. — Suppose we are given a locally closed subvariety

U ⊂ F l(1, . . . , k, n) × G(R, n) = {((Vj),MR)}
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∗

FIGURE 17. Possible labeled quadrilaterals, where c is labeled with dim Vc∩
Z for some fixed vector space Z. Quadrilateral ∗ arises in Lemma 5.5.

where the rank data (Vj∩MR)1≤j≤k is constant, and (Vj)1≤j≤k corresponds to the northeast border
of some given Q◦. Define P via the pullback diagram

P

��

� � // BS(Q◦)S × G(R, n)

��

U
� � // F l(1, . . . , k, n) × G(R, n)

where BS(Q◦)S is a given open stratum of BS(Q◦) (and elements of S are marked with “=”). Let
((Vm)m∈Q◦

,MR) be a general point of P . Label m with dim Vm ∩ MR.

(a) Then no quadrilaterals of type ∗ in Figure 17 appear.
(b) Assume furthermore that no negative-content quadrilaterals appear, and all quadrilaterals

marked “=” have positive content.
(i) If the northern two vertices of a quadrilateral are labeled m, then the southern two

vertices are also labeled m, and the quadrilateral is not marked “=”.
(ii) If the western two vertices of a quadrilateral are labeled m, then the eastern two edges

are labeled the same (both m or m + 1), and the quadrilateral is not marked “=”.

Proof. (a) By the proof of Lemma 4.2 (with the role of southwest border now played by the
northeast border), P → U is a tower of P1-bundles corresponding to the quadrilaterals of
BS(Q◦) not in S. Suppose for a general point of P we had a quadrilateral of type ∗, with
vertices mnw, mne, msw, mse. Consider the P1-bundle associated to this quadrilateral,
corresponding to letting Vmsw

be any subspace (of dimension dimmsw) containing Vmnw

and contained in Vmse
; as dim Vmne

∩ MR = m, for general Vmsw
in the pencil dim Vmsw

∩
MR ≤ m as well, so the label on msw for a general point of the stratum cannot be m + 1,
yielding a contradiction.

(b) follows from (a) by inspection of Figure 17. �
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5.6. Modular description of ClBS(Q◦)×(X•∪X•next )
X◦•. We describe a closed subscheme of

BS(Q◦)×(X•∪X•next) and show it is ClBS(Q◦)×(X•∪X•next)
X◦• (Theorem 5.8). The subscheme

will be constructed as an intersection of two subvarieties of an open subset of a tower of
projective bundles over BS(Q◦). We are working harder than necessary to prove the Geo-
metric Littlewood-Richardson rule; it would suffice to show that ClBS(Q◦)×(X•∪X•next)

X◦• is
contained in this intersection (see the preprint version of this paper). However, we ex-
pect that the Cohen-Macaulayness of this variety (shown en route) will be important in
understanding the K-theory of the Grassmannian (see Knutson’s remark after Conjec-
ture 3.5, and [KV2]). In any case, ideas from the proof of Theorem 5.8 will be used later in
Theorem 5.10.

Let m(Mi) (1 ≤ i ≤ n) be the maximum element m of Q◦ such that m ≺ (i, n), i.e.
the maximum element of Q◦ in the rows up to i. Thus Vm(Mi) is the largest vector space
of BS(Q◦) required to be contained in Mi. Define m(Fj) similarly, to be the maximum
element m ∈ Q◦ with m ≺ (n, j), so Vm(Fj) is the largest vector space of BS(Q◦) required
to be contained in Fj .

We name important elements of Q◦ (see Figures 18 and 19).

• Let a = m(Fc−1), the lowest (or equivalently, rightmost) white checker appearing
in the first c − 1 columns (or 0 if there are none).

• Let a′ = m(Mr) and a′′ = m(Mr−1).
• Let d be the white checker in the critical row (if there is one).

Then the reader should quickly check that: (i) inf(a, a′′) is the maximal element in columns
up to c−1 and rows up to r−1. (ii) inf(a, a′′) = inf(a, a′). (iii) The critical diagonal contains
no white checkers if and only if a is in row less than r, i.e. a = inf(a, a′′) (Figure 19(a)).
(iv) There are no white checkers directly north of the critical row (at (i, j) with i < r and
j > c) if and only if a′′ is in column less than c, i.e. a′′ = inf(a, a′′) (Figure 19(b)).

critical row a
′

a
′′

inf(a, a′′)

d

a

0

sup(a, a′)

FIGURE 18. An example of Q◦ for mid-sort ◦. The internal diagonal edges
of the region inf(a, a′′)a′′ sup(a, a′)a are thickened.
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a
′ = d

a
′′ = inf(a, a′′)

a

critical row

0

(b) no white checkers directly above the critical row
a
′ = sup(a, a′)

(a) no white checkers in critical diagonal

critical row a
′

d

0

a = inf(a, a′′)
a
′′

critical diagonal

FIGURE 19. Two more examples of Q◦ for mid-sort ◦

5.7. Construct an open subvariety T of a tower of projective bundles over BS(Q◦)

T ⊂ BS(Q◦) × F l(n) × F l(c, . . . , n) = {Vm : m ∈ Q◦} × {M·} × {F≥c}

as follows.

Step A. First, for i = n − 1, n − 2, . . . , 1, inductively choose Mi in Mi+1 containing Vm(Mi).

Step B. Then, for j = n−1, . . . , c, inductively choose Fj in Fj+1 containing Vm(Fj), satisfying
the open condition that Fj is transverse to the flag M·.

Over T we have inclusions of vector bundles Vinf(a,a′′) ⊂ Va ⊂ Vm(Fc) ⊂ Fc. Consider
the projective bundle over T

P(Fc/Vinf(a,a′′))
∗ = {(t ∈ T,Fc−1)}

parameterizing hyperplanes Fc−1 in Fc containing Vinf(a,a′′). Define two smooth subvari-
eties of P(Fc/Vinf(a,a′′))

∗:

Wa := {(t ∈ T,Fc−1) : Va ⊂ Fc−1}

W••next := {(t ∈ T,Fc−1) : Mr−1 ∩ Fc ⊂ Fc−1, Mr+1 ∩ Fc * Fc−1}.

Then Wa is a closed subvariety and W••next is a locally closed subvariety. There is a natural
closed immersion W••next ↪→ BS(Q◦) × (X• ∪ X•next), cf. Section 2.4.

The codimension in P(Fc/Vinf(a,a′′))
∗ of every irreducible component of W••next ∩ Wa is

bounded above by the “expected codimension”

expcod(W••next ∩ Wa) := codimP(Fc/Vinf(a,a′′))
∗ W••next + codimP(Fc/Vinf(a,a′′))

∗ Wa

= (dim Mr−1 ∩ Fc − dim inf(a, a′′)) + (dim Va − dim inf(a, a′′))(5)

and W••next ∩ Wa is a local complete intersection if equality holds.
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5.8. Theorem (modular description of ClBS(Q◦)×(X•∪X•next )
X◦•). — We have a (scheme-theoretic)

equality

W••next ∩ Wa = ClBS(Q◦)×(X•∪X•next )
X◦•,

and the variety is a local complete intersection and hence Cohen-Macaulay.

Note that X◦• ⊂ W••next and X◦• ⊂ Wa, so the inclusion ClBS(Q◦)×(X•∪X•next)
X◦• ⊂ W••next∩

Wa is clear.

If there is no white checker in the critical row, the theorem may be false, which is why
that case was dealt with earlier in Section 5.2. But even in that case: (i) the proof below
shows that the intersection has the expected dimension. There may be other components,
however; Caution 2.20(b) gives such an example. (ii) ClBS(Q◦)×(X•∪X•next)

X◦• is still Cohen-
Macaulay: by Section 5.2, ClBS(Q◦)×(X•∪X•next)

X◦• is a P1-bundle over ClBS(Q◦)×X•next
X◦stay•next ,

so it suffices to show the latter variety is Cohen-Macaulay. Hence by induction (using the
Geometric Littlewood-Richardson rule) it suffices to show the result when ◦• has a white
checker in the critical row (Theorem 5.8), or to show that ClBS(Q◦)×X•final

X◦•final
is Cohen-

Macaulay (but this is the smooth variety T ′ of (4)).

Proof. Fix an irreducible component Z of W••next ∩ Wa, necessarily of codimension at
most expcod(W••next ∩ Wa). We will show that (a) there is only one possibility for Z, and
codimP(Fc/Vinf(a,a′′))

∗ Z = expcod(W••next ∩ Wa). (b) We then observe that Z is generically

reduced, and the general point of Z lies in X◦•. Hence Z is a local complete intersection,
thus Cohen-Macaulay, and thus has no non-trivial associated points, so Z = ClZ X◦• =
ClBS(Q◦)×(X•∪X•next)

X◦•, and we are done.

(a) Z is unique, and codimP(Fc/Vinf(a,a′′))
∗ Z = expcod(W••next ∩ Wa). We consider three

cases, depending on whether inf(a, a′′) = a, or inf(a, a′′) 6= a, a′′, or inf(a, a′′) = a′′. (These
cases correspond to Figures 19(a), 18, and 19(b) respectively. The first and third cases may
hold simultaneously.) The first case inf(a, a′′) = a is straightforward: Wa is codimension
0, so Z = W••next .

We next deal with the second case. (The reader may wish to refer repeatedly to Fig-
ure 18.) We will construct a dense open subscheme of Z following Steps A and B (Sec-
tion 5.7). Let ZBS(Q◦) (resp. ZStep A, ZStep B) be the image of Z in BS(Q◦) (resp. BS(Q◦) ×
{M·}, T ⊂ BS(Q◦) × {M·} × {F≥c}).

Let `1 = codimBS(Q◦) ZBS(Q◦). ZBS(Q◦) is contained in some closed stratum of codimen-

sion at most `1, which corresponds to a set S of at most `1 quadrilaterals of Q◦. If |S| = `1,
then ZBS(Q◦) is this stratum BS(Q◦)S .

We next consider M· (following Step A). Let `4 be the codimension of ZStep A in the
fibration

{(V·,M·) : (V·) ∈ ZBS(Q◦), Vm(Mi) ⊂ Mi} → ZBS(Q◦).

Suppose that for a general point in Z,

dim Vsup(a,a′) ∩ Mr−1 − dim Va′′ = `2.
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By Lemma 5.4 (taking R = r − 1, j = dim a′′, δ = dim sup(a, a′), B = ZBS(Q◦), and
B → F l(1, . . . , k, n) the map giving the spaces of the northeast border of BS(Q◦)), `4 ≥ `2.

Let `5 be the codimension of ZStep B in the fibration

{(V·,M·,F≥c) : (V·,M·) ∈ ZStep A, Vm(Fj) ⊂ Fj for j ≥ c} → ZStep A.

Then codimT ZStep B = `1 + `4 + `5.

For a general point {(V·,M·,F≥c)} of ZStep B, the choice of Fc−1 in Fc containing Va and
Mr−1 ∩ Fc is of codimension (in P(Fc/Vinf(a,a′′))

∗)

dim

〈

Va

Vinf(a,a′′)

,
Mr−1 ∩ Fc

Vinf(a,a′′)

〉

= dim Va + dimMr−1 ∩ Fc − dim Va ∩ Mr−1 ∩ Fc − dim Vinf(a,a′′)

= dim a + dimMr−1 ∩ Fc − dim Va ∩ Mr−1 − dim inf(a, a′′)

= expcod(W••next ∩ Wa) + dim inf(a, a′′) − dim Va ∩ Mr−1

from (5). Let `3 = dim Va ∩ Mr−1 − dim inf(a, a′′) (non-negative as Vinf(a,a′′) ⊂ Va ∩ Mr−1).

Thus this step contributes a (negative) codimension of −`3 compared to the expected

codimension. Let `6 be the codimension of Z in

{(V·,M·,F≥c−1) : (V·,M·,F≥c) ∈ ZStep B, 〈Va,Mr−1 ∩ Fc〉 ⊂ Fc−1}.

Summing the boxed codimensional contributions,

(6) codim Z − expcod(W••next ∩ Wa) = `1 + `4 + `5 − `3 + `6 ≥ `1 + `2 − `3.

At (5) we observed that the left side is nonpositive.

We now show that the right side of (6) is nonnegative. Label vertex m of Q◦ with the
value dim Vm∩Mr−1 for a general point of Z. For example, Vinf(a,a′′) is labeled dim inf(a, a′′),
and Va′′ is labeled dim a′′. We consider the region inf(a, a′′)a′′ sup(a, a′)a of vertices dom-
inating inf(a, a′′) and dominated by sup(a, a′). The total content of the quadrilaterals in
this region is a linear combination of the labels of the vertices. The net contribution of a
vertex m ∈ Q◦ is the number of quadrilaterals in region inf(a, a′′)a′′ sup(a, a′)a of which
it is the northeast or southwest corner, minus the number of which it is the northwest or
southeast corner (all multiplied by the label dim Vm ∩ Mr−1 of m). Hence the only ver-
tices with a non-zero net contribution are the following. (The reader may wish to consult
Figure 18.)

• Each diagonal edge (i.e. non-horizontal and non-vertical edge, see Figure 18) inter-
nal to region inf(a, a′′)a′′ sup(a, a′)a contributes the label of its larger vertex minus
the label of its smaller vertex, a non-negative contribution.

• In addition, a and a′′ contribute their labels, and inf(a, a′′) and sup(a, a′) contribute
the negative of their labels.
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Thus the total content of region inf(a, a′′)a′′ sup(a, a′)a is

(internal diag. contribution) + dim Va ∩Mr−1 + dim Va′′ ∩ Mr−1

− dim Vinf(a,a′′) ∩Mr−1 − dim Vsup(a,a′′) ∩ Mr−1

≥ (dim Va′′ − dim Vsup(a,a′) ∩ Mr−1) + (dim Va ∩ Mr−1 − dim Vinf(a,a′′))(7)

= −`2 + `3.

However, the content is bounded above by `1 with equality only if no negative-content
quadrilaterals appear: from Figure 17 each content 1 quadrilateral gives an element of our
set S of quadrilaterals, and |S| ≤ `1. Thus `1 +`2−`3 ≥ 0, so we must have `1 +`2−`3 = 0,
and equality must hold in all inequalities above. In particular, `5 = `6 = 0, `4 = `2; from
equality in Lemma 5.4, `2 = 0 or 1 (and if `2 = 1 then Va′ ⊂ Mr−1); ZBS(Q◦) = BS(Q◦)S ;
and no quadrilaterals with negative content appear.

By equality in (7), any internal diagonal edge must have the same labels on both ver-
tices. Now inf(a, a′′)d is an internal diagonal edge (see Figure 18), so both vertices must
be labeled the same (dim inf(a, a′′)). By Lemma 5.5(b)(ii), if the western two vertices of a
quadrilateral have the same label, then the eastern two vertices have the same label (pos-
sibly different from the western vertices). Repeated application of this observation to the
quadrilaterals in the region inf(a, a′′)a′′a′d (inductively from left to right) yields that the
labels on a′′ and a′ are the same, so

dim Va′ ∩ Mr−1 = dim Va′′ ∩ Mr−1 = dim Va′′ < dim Va′,

so Va′ * Mr−1, so (from the last sentence of the previous paragraph) `2 = 0.

By Lemma 5.5(b)(i), any quadrilateral whose northern two vertices are labeled m must
have all four vertices labeled m. By repeated application of this observation to the region
south of edge inf(a, a′′)d (inductively from top to bottom), all vertices in this region (and
in particular, a) must be labeled dim inf(a, a′′) as well (see Figure 18). Thus `1 = 0, and
hence `3 = 0 from `1 + `2 − `3 = 0.

We have completed part (a) in the case where inf(a, a′′) 6= a, a′′ by describing an open
subscheme of Z explicitly as an open subscheme of a tower of projective bundles over
BS(Q◦)∅, and showing that it has the expected codimension.

The third case a′′ = inf(a, a′′) is similar. (The reader may wish to refer repeatedly to
Figure 19(b).) The previous argument applies verbatim until (6) to yield

0 ≥ codim Z − expcod(W••next ∩ Wa) ≥ `1 + `2 − `3.

We show the right side is non-negative by again labeling vertex m of Q◦ with dim Vm ∩
Mr−1. As Va′′ is a hyperplane in Va′ ,

dim Va′ ∩ Mr−1 − dim Va′′ ∩Mr−1 = 0 or 1.

Call this value ε.

This time we consider the region a′′a′ sup(a, a′)a. Summing the content of the region
we obtain ε + `3 − `2 plus a non-negative contribution from internal diagonal edges; this
is again bounded above by `1. Then 0 ≥ `1 + `2 − `3 gives ε = 0, and equality holds in all
previous inequalities. In particular, Lemma 5.4 (taking R = r−1 and B = BS(Q◦)) implies
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`2 = 0 or 1, and `2 = 1 only if ε = 1; but we have established ε = 0, so `2 = 0. Also, a′′ and
a′ have the same label dim a′′ (again as ε = 0), so by repeated use of Lemma 5.5(b)(i), all
vertices south of edge a′′a′ have label dim a′′ as well. In particular, both a and sup(a, a′)
have this label, so `1 = `3 = 0. We have completed part (a) in the third case where
inf(a, a′′) = a′′.

(b) Rest of proof. In each of the three cases, there is one possibility for Z, and we have de-
scribed the construction of an open subscheme explicitly: take the open stratum BS(Q◦)∅,
take all M· so that Mi ⊃ Vm(Mi), then take all Fn−1, . . . , Fc transverse to M· so that
Fj ⊃ Vm(Fj), then take the open subset where Va ∩ Mr−1 ∩ Fc = Vinf(a,a′′), then take all
Fc−1 containing both Mr−1 ∩ Fc and Va but not containing Mr+1 ∩ Fc. By construction Z
is generically reduced, and also by construction the general point of Z lies in X◦•. �

5.9. We will identify the components of DQ, in terms of strata on BS(Q◦). Define the
western good quadrilaterals of Q◦ to be those quadrilaterals with eastern two vertices domi-
nating d, and the western two dominated by a. Let the eastern good quadrilaterals be those
quadrilaterals whose vertices all dominate d, and to the east of a western good quadrilat-
eral. Let b (resp. b′) be the bottom left (resp. right) corner of the region of good quadri-
laterals. See Figure 20 for an explanatory picture, and note that the good quadrilaterals
are arranged in a grid. If there is a blocker, there are no western good quadrilaterals and
hence no eastern good quadrilaterals (see Figure 21). In this case let b = inf(a, a′) and
b′ = a′, so in all cases the region of good quadrilaterals is inf(a, a′)a′b′b (possibly empty).

= eastern good quadrilaterals

= western good quadrilaterals

a′′

a′

b′=
=

=

sup(a,a′)

inf(a,a′)

b

b′′

a

0

d

FIGURE 20. Good quadrilaterals. Three are marked with “=” so that none
is weakly southeast of another (Theorem 5.10). Both b′′ and the set E of
thickened edges arise in the proof of Theorem 5.10.

Following Section 2.4, define

W•next := {Fc−1 : Mr ∩ Fc ⊂ Fc−1, Mr+1 ∩ Fc * Fc−1} ⊂ P(Fc/Vinf(a,a′′))
∗,

a divisor on the smooth variety W••next . The divisor DQ is the pullback of X•next ⊂ X•∪X•next ,
from which DQ = W•next ∩ Wa ⊂ W••next ∩ Wa (cf. Section 2.4).
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b′ = a′
a′′

0

a

b = inf(a, a′)

d

FIGURE 21. If there is a blocker, there are no good quadrilaterals

Suppose S is a set of good quadrilaterals, with none weakly southeast (i.e. south or east
or southeast) of another. Such a set is shown (marked with “=”) in Figure 20. Define a
subvariety DS of W•next ∩ Wa as follows. Over the stratum BS(Q◦)S , choose M· and F≥c

following Steps A and B. Over the open set of the resulting variety where Va ∩ Mr is
constant, let Fc−1 be the set of hyperplanes of Fc containing both Va and Mr ∩ Fc. Let DS

be the closure (in W•next ∩ Wa) of this locus.

5.10. Theorem. — The irreducible components of DQ are a subset of the DS described above.

Proof. We parallel the proof of Theorem 5.8; the roles of r − 1 and a′′ are here played by r
and a′. The case inf(a, a′) = a is again immediate: W•next ∩ Wa = W•next = D∅. (In this case
there are no good quadrilaterals.) We assume inf(a, a′) 6= a for the rest of the proof.

Let Z be an irreducible component of DQ, so

codimP(Fc/Vinf(a,a′′))
∗ Z = codimP(Fc/Vinf(a,a′′))

∗ W••next ∩ Wa + 1.

Let ZBS(Q◦) (resp. ZStep A, ZStep B) be the image of Z in BS(Q◦) (resp. BS(Q◦) × {M·},
T ⊂ BS(Q◦) × {M·} × {F≥c}).

Let `1 = codimBS(Q◦) ZBS(Q◦), and S the set of (at most `1) quadrilaterals corresponding

to the smallest stratum of BS(Q◦) in which ZBS(Q◦) is contained. Let `4 be the codimen-

sion of ZStep A in {(V·,M·) : (V·) ∈ ZBS(Q◦), Vm(Mi) ⊂ Mi}, and suppose that for a general
point in Z,

dim Vsup(a,a′) ∩Mr − dim Va′ = `2.

By Lemma 5.4 (taking R = r, j = dim a′, and B = ZBS(Q◦)), `4 ≥ `2. If equality holds
then `2 = 0 (as Lemma 5.4(ii) cannot occur: αj = R, as we have a white checker in the

critical row r = R). Let `5 be the codimension of ZStep B in {(V·,M·,F≥c) : (V·,M·) ∈
ZStep A, Vm(Fj) ⊂ Fj for j ≥ c}, so as before codimT ZStep B = `1 + `4 + `5. For a general
point of ZStep B = {(V·,M·,F≥c)}, the choice of Fc−1 in Fc containing Va and Mr ∩ Fc is of
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codimension (in P(Fc/Vinf(a,a′′))
∗)

dim

〈

Va

Vinf(a,a′′)

,
Mr ∩ Fc

Vinf(a,a′′)

〉

= dim Va + dimMr ∩ Fc − dim Va ∩Mr ∩ Fc − dim Vinf(a,a′′)

= dim a + (r + c − n) − dim Va ∩Mr − dim inf(a, a′′)

= codimP(Fc/Vinf(a,a′′))
∗(W••next ∩ Wa) + 1 + dim inf(a, a′′) − dim Va ∩ Mr.

Let `3 = dim Va ∩Mr − dim inf(a, a′′) ≥ 0 so this step contributes a codimension of 1 − `3

compared to codim(W••next ∩ Wa). Let `6 be the codimension of Z in

{(V·,M·,F≥c−1) : (V·,M·,F≥c) ∈ ZStep B, 〈Va,Mr−1 ∩ Fc〉 ⊂ Fc−1}.

Summing the boxed contributions,

1 = codim Z − codim(W••next ∩ Wa) = 1 + `1 + `4 + `5 − `3 + `6 ≥ 1 + `1 + `2 − `3.

We again show that `1 + `2 − `3 is nonnegative. Label vertex m of Q◦ with dim Vm ∩Mr.
We compute the content of the region inf(a, a′)a′ sup(a, a′)a. As before, each internal di-
agonal edge contributes the label of its larger vertex minus the label of its smaller ver-
tex, a non-negative contribution. Also, a and a′ contribute their labels, and inf(a, a′)
and sup(a, a′) contribute the negative of their labels. Thus the total content of region
inf(a, a′)a′′ sup(a, a′)a is

(internal diag. contribution) + dim Va ∩ Mr + dim Va′ ∩ Mr

− dim Vinf(a,a′) ∩ Mr − dim Vsup(a,a′) ∩ Mr

≥ (dim Va′ − dim Vsup(a,a′) ∩ Mr) + (dim Va ∩ Mr − dim Vinf(a,a′))(8)

= −`2 + `3.

But the content is again bounded above by `1 (using Figure 17), so `1 + `2 − `3 ≥ 0,
hence `1 + `2 − `3 = 0, and equality must hold in all inequalities above. In particular,
`5 = `6 = `2 = `4 = 0; `1 = `3 (not necessarily zero!); ZBS(Q◦) is the stratum corresponding
to S; and all quadrilaterals have content 0 except for `1 quadrilaterals with content 1 in
region inf(a, a′)a′ sup(a, a′)a.

If b = a, then region inf(a, a′)a′′ sup(a, a′)a is precisely the region of good quadrilaterals;
proceed to 5.11. Otherwise, let b′′ ∈ Q◦ be be the other end of the northernmost diagonal
edge emanating southeast from b (see Figure 20). By equality in (8), b and b′′ have the
same label. By repeated application of Lemma 5.5(b)(i) to the region below edge bb′′, all
vertices below b and b′′ have the same label too. In particular, the labels of b and a are
the same. Let E be set of edges due south of b′′, union the edge bb′′, shown in Figure 20.
The region directly to the east of E consists of a grid of quadrilaterals, as it contains no
white checkers (see Figure 20). By repeated application of Lemma 5.5(b)(ii) to this region,
any two vertices east of E in the same column have the same label. Hence the labels
of b′ and sup(a, a′) are the same. Thus the content of the region of good quadrilaterals
inf(a, a′)a′b′b is the same as the content of the region inf(a, a′)a′ sup(a, a′)a considered
earlier, which is `1. Thus the `1 positive-content quadrilaterals S are a subset of the good
quadrilaterals.
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5.11. We conclude by showing that no element of S is weakly southeast of another. Fix
a positive-content quadrilateral. Then its northeast, southeast, and southwest vertices
have the same label. Thus by repeated application of Lemma 5.5(b)(i), all vertices south
of its southern edge are labeled the same, and there are no positive-content quadrilaterals
(elements of S) south of this edge. Let E ′ be the union of edges due south of the northeast
vertex of our positive-content quadrilateral. Repeated applications of Lemma 5.5(b)(ii)
imply that any two vertices east of E ′ in the same column have the same label, and there
are no positive content quadrilaterals here either. �

A little more work shows that all such DS are components of DQ: given any set S
of good quadrilaterals, none weakly southeast of another, show that `1 = `3 by explic-
itly describing the labels dim Vm ∩ Mr for all m ∈ BS(Q◦). As ClBS(Q◦)×(X•∪X•next)

X◦• is
Cohen-Macaulay and DQ is an effective Cartier divisor, DQ has no non-maximal associ-
ated points, so DQ is the scheme-theoretic union of the DS . We will not need these facts,
so we omit the details.

5.12. Contraction of all but one or two divisors by π. The divisors D∅ and D{northwest good quad.}

correspond to the stay and swap options respectively of the Geometric Littlewood-Richardson
rule. We next show that all but possibly D∅ and D{northwest good quad.} are contracted by π.
Part (a) of the following proposition shows that all other DS are contracted by π, and (b)
shows that D∅ is contracted by π when predicted (the three entries of Table 2 where there
is no “stay” option).

5.13. Proposition. —

(a) If S 6= ∅, {northwest good quad.}, then DS is contracted by π.
(b) If S = ∅ and

(i) the white checker in the critical diagonal is in the rising black checker’s square (recall
we are assuming there is a white checker in the critical row), or

(ii) the white checker in the critical row is in the descending checker’s square, and there is
a checker in the critical diagonal,

then DS is contracted by π.

Proof. (a) The construction of an open subset of DS involves starting with BS(Q◦)S and
constructing M· and F· using the spaces corresponding to the northeast border of BS(Q◦),
and those elements of the southwest border dominating a. Given a general point ((Vm)m∈Q◦

,M·,F·)
of DS, we will produce a one-parameter family (V ′

m)m∈Q◦
through (Vm)m∈Q◦

in the stratum
BS(Q◦)S, fixing those Vm on the border. The corresponding family {((V ′

m)m∈Q◦
,M·,F·)}

is contained in DS , as the inclusions Vm(Mi) ⊂ Mi and Vm(Fj) ⊂ Fj are preserved. Also,
the k-plane Vmax(Q◦) is fixed, so the corresponding locus in DS is contracted by π, proving
the result.

Choose a quadrilateral stuv in S. Name the elements of Q◦ as in Figure 22(a); gm is the
white checker in the column of s, and fm−1 is the next white checker to the west. Note
that gm has only one edge pointing northwest, and two pointing southeast. The desired
family corresponds to letting V ′

m ≡ Vm for m 6= s, g1, . . . , gm, and letting V ′
s vary in an
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open set of P(Vv/Ve) ∼= P1, such that V ′
gi

:= V ′
s ∩ Vhi

has dimension dimgi (1 ≤ i ≤ m).
Note that Vfi is contained in V ′

gi
, as V ′

gi
= V ′

s ∩ Vhi
contains Ve ∩ Vhi

= Vfi by construction.

(Note how this argument fails if S = {northwest good quad.}, so stuv is the northwest
good quadrilateral. Then s = inf(a, a′′) = gm. If inf(a, a′′) 6= a′′, as in Figure 18, then
s = inf(a, a′′) has a third southeastern edge, pointing due east. If inf(a, a′′) = a′′, as in
Figure 19(b), then s = inf(a, a′′) is on the northeast border, so Vs was required to be fixed.)

gm−1

.

..

f1

e

v

gm

g1

hm

hm−1

h1

fm−1

t

uvarying spaces

f1 · · · fm = a′′

g1

h1 · · · hm

inf(a,a′)

d

t s

gm = a′

row < r

critical row r

varying spaces

s

fm

(a) (b)

.

..

FIGURE 22.

(b) (i) Name the elements of Q◦ as in Figure 22(b); here the white checker in the rising
black checker’s square is t. Given a general point ((Vm)m∈Q◦

,M·,F·) of DS , we will pro-
duce a one-parameter family (V ′

m)m∈Q◦
in BS(Q◦) through (Vm)m∈Q◦

preserving all spaces
in BS(Q◦) on the northeast and southeast borders except V ′

a′ . We will verify that V ′
a′ ⊂ Mr

for every point in the family. Then as in (a) the corresponding family (V ′
m,M·,F·) is con-

tained in DS and is contracted by π, proving the desired result.

The family corresponds to letting V ′
m = Vm for m 6= d, g1, . . . , gm, and letting V ′

d vary
in an open set of P(Vs/Vinf(a,a′)) ∼= P1, such that V ′

gi
:= 〈V ′

d, Vfi〉 has dimension dimgi

(1 ≤ i ≤ m). Note that Vt ⊂ Mr+1 ∩ Fc−1 = Mr ∩ Fc−1 (as Mr+1 ∩ Fc ⊃ Mr ∩ Fc−1, and
they are the same dimension by the definition of •next) and V ′

d ⊂ Vs = 〈Vd, Vt〉 ⊂ Mr, so
V ′

a′ = Vfm + Vd ⊂ Mr as well. (Note where the hypothesis that t was on row r + 1 was
used: Vt ⊂ Mr+1.)

Case (ii) is essentially identical (with roles of rows and columns exchanged) and hence
omitted. �

5.14. Multiplicity 1. We have shown that at most one or two of the DS are not con-
tracted by π, and these correspond to the divisors predicted by the Geometric Littlewood-
Richardson rule. We now show that such DS appear with multiplicity 1 in the Cartier
divisor DQ.

5.15. Proposition. —
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(a) The multiplicity of the Cartier divisor DQ along the Weil divisor D∅ is 1.
(b) If there are good quadrilaterals, the multiplicity of DQ along D{northwest good quad.} is 1.

Proof. (a) Consider the open subset T ′ of T that lies in the preimage of the dense open
stratum BS(Q◦)∅, and where Va ∩ Mr = Vinf(a,a′′). By construction, W•next ∩ Wa restricted
to this locus is reduced, so the Cartier divisor W•next ∩ Wa on W••next ∩ Wa has multiplicity
1 along the corresponding Weil divisor D∅.

(b) We give a test family F through a general point (V·,M·,F·) of ClBS(Q◦)×(X•∪X•next)
X◦•

meeting DQ along D{northwest good quad.} with multiplicity 1. Label the elements of Q◦ as in
Figure 22(b). For example, t is the highest white checker in the critical diagonal; let r′ be
the row of t. The family F = {(V ′

· ,M
′
·,F

′
·)} is given by:

• V ′
m = Vm for m 6= d, g1, . . . , gm = a′.

• Choose et ∈ Vt and ed ∈ Vd so that et is a generator of Vt/Vinf(a,a′) and ed is a
generator of Vd/Vinf(a,a′). Let V ′

d = 〈Vinf(a,a′), µet + νed〉 (where [µ; ν] varies in P1), so
V ′

d varies in the pencil P(Vs/Vinf(a,a′)); take V ′
gi

= 〈Vfi, V
′
d〉.

• M′
i = Mi except for r ≤ i < r′.

• Let M′
r = 〈Mr−1, V

′
d〉 = 〈Mr−1, µet + νed〉. Let M′

i (r < i < r′) vary freely (subject
to Mr ⊂ Mr+1 ⊂ · · · ⊂ Mr′).

• F′
i = Fi for i ≥ c.

• Let F′
c−1 vary freely in P(Fc/〈Va,Mr−1∩Fc〉)

∗, and take F′
j := Mij∩F′

c−1 for j < c−1
as described in Section 2.4.

Then (V·,M·,F·) ∈ F (take µ = 0 and M′
i = Mi), so F * DQ. Also, when ν = 0, V ′

d = V ′
t ,

so (V ′
· ) ∈ BS(Q◦){northwest good quad.}, so F meets D{northwest good quad.} at ν = 0. We will see

that DQ contains the divisor ν = 0 with multiplicity 1, proving the result. Keep in mind
that F′

c−1 ⊃ 〈Va,Mr−1 ∩ Fc〉 for all points of F . The divisor DQ on F is given (scheme-
theoretically) by

(9) 〈Va,Mr ∩ Fc〉 ⊂ F′
c−1 ⇐⇒ Mr ∩ Fc ⊂ F′

c−1 (as Va ⊂ F′
c−1).

As 〈Mr−1,Fc〉 = Kn, we may choose a projection σ : Kn → Fc vanishing on Mr−1/〈Mr−1,Fc〉,
so (Id − σ)(Kn) ⊂ Mr−1. Then from (9), DQ is given by

〈Mr−1, µet + νed〉 ∩ Fc ⊂ F′
c−1 ⇐⇒ 〈Mr−1, σ(µet + νed)〉 ∩ Fc ⊂ F′

c−1

As σ(µet + νed) ∈ Fc, this is equivalent to

µσ(et) + νσ(ed) ∈ F′
c−1

⇐⇒ µet + νσ(ed) ∈ F′
c−1 (as t is in column ≤ c, so et ∈ Fc, so σ(et) = et)

⇐⇒ νσ(ed) ∈ F′
c−1 (as t ≺ a, so et ∈ Va; and Va ⊂ F′

c−1).

This condition is not satisfied by all elements of F (as F * DQ as stated earlier), so
σ(ed) /∈ 〈Va,Mr−1 ∩ Fc〉. Thus the restriction of DQ to F has two components, each
with multiplicity 1. One component is the hyperplane section {F′

c−1 : σ(ed) ∈ F′
c−1}

of P(Fc/〈Va,Mr−1 ∩ Fc〉)
∗; we have again verified that the multiplicity of DQ along D∅ is

1 (in the special case where there is a northwest good quadrilateral). The fiber for ν = 0 is
also a component, appearing with multiplicity 1, as desired. �
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We have two loose ends to tie up to conclude the proof of the Geometric Littlewood-
Richardson rule:

(i) π(D∅) = X◦stay•next and/or π(D{northwest good quad.}) = X◦swap•next .

(ii) Furthermore X◦stay•next appears with multiplicity 1 in ClG(k,n)×(X•∪X•next)
X◦• if D∅

appears with multiplicity 1 in ClBS(Q◦)×(X•∪X•next)
X◦•, and similarly for X◦swap•next

and D{northwest good quad.}.

Both are a consequence of the next result ((ii) using the fact that π is birational).

5.16. Proposition. — The morphism π induces birational maps from (a) D∅ to X◦stay•next and (b)

D{northwest good quad.} to X◦swap•next .

Proof. (a) The inverse rational map X◦stay•next 99K D∅ is given by the morphism X◦stay•next →
BS(Q◦) × X•next : by definition X◦stay•next parameterizes flags M· and F· in •next-position, as
well as a k-plane V and vector spaces V ∩ Mi ∩ Fj , which correspond to elements of Q◦

(and dim V ∩Mi ∩ Fj equals the dimension of the corresponding element of Q◦) .

(b) The inverse rational map X◦swap•next 99K D{northwest good quad.} is similarly given by
the morphism X◦swap•next → BS(Q◦) × X•next , by way of the locally closed immersion
BS(Q◦swap)∅

∼= BS(Q◦){northwest good quad.} ↪→ BS(Q◦). �
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Montréal, 1991.
[Man] L. Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, J. Swallow trans.,

SMF/AMS Texts and Monographs 6, Amer. Math. Soc. Providence RI; Soc. Math. de France, Paris,
2001.

[P] M. Pieri, Sul problema degli spazi secanti, Rendiconti (Reale Istituto lombardo di scienze e lettere),
Vol. 26 (1893), 534–546.

[R] R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math., (N.S.), 3 (1992),
69–77.

[S1] F. Sottile, Enumerative geometry for the real Grassmannian of lines in projective space, Duke Math. J., 87
(1997), 59–85.

[S2] F. Sottile, Pieri’s formula via explicit rational equivalence, Can. J. Math., 46 (1997), 1281–1298.
[S3] F. Sottile, Some real and unreal enumerative geometry for Flag manifolds, Michigan Math. J. 48 (2000),

573–592.
[S4] F. Sottile, personal communication.
[SVV] F. Sottile, R. Vakil, and J. Verschelde, Effective solutions to all Schubert problems, work in progress.
[St] R. Stanley, Combinatorial aspects of the Schubert calculus, Combinatoire et représentation du groupe

symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), 217–251.
Lecture Notes in Math., Vol. 579, Springer, Berlin, 1977.

[V1] R. Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew.
Math. (Crelle) 529 (2000), 101–153.

[V2] R. Vakil, Schubert induction, preprint 2003, math.AG/0302296v1, submitted for publication.
[V3] R. Vakil, A conjectural geometric Littlewood-Richardson rule for the equivariant K-theory of the flag vari-

ety, in preparation.

APPENDIX A. THE BIJECTION BETWEEN CHECKERGAMES AND PUZZLES (WITH A.
KNUTSON)

We assume familiarity with puzzles [KT, KTW]. Fix k and n. We fill in a puzzle with
given inputs, one row of triangles at a time, from left to right. Row m consists of those
triangles between the mth edges from the top on the sides of the triangle.

The placement of vertical rhombi may cause parts of subsequent rows to be filled; call
these teeth. The mth row of the puzzle corresponds to the part of the checkergame where
the black checker in the mth column is descending. The possible choices for filling in
puzzle pieces correspond to the possible choices of next moves in the checkergame; this
will give the bijection.

We now describe an injection from checkergames to puzzles; to each checkergame we
will associate a different puzzle. As both count Littlewood-Richardson coefficients, this
injection must be a bijection. Alternatively, to show that this is a bijection, one can instead
show that there are no puzzles not accounted for here. For example, one can show easily
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that there are no puzzles if the checkergame predicts there shouldn’t be (i.e. if the sets
are a1 < · · · < ak and b1 < · · · < bk, and if ai + bk+1−i ≤ n for some i), by focusing on a
certain parallelogram-shaped region of the puzzle. More generally, one may show com-
binatorially that if a partially-filled-in puzzle doesn’t correspond to a valid checkergame-
in-progress, then there is no way to complete it. This argument is lengthy and combina-
torially tedious, and hence omitted.

A.1. Bijection of starting positions. Place the partition α corresponding to the moving
flag on the left side of the puzzle, and the partition β corresponding to the fixed flag on
the right side of the puzzle. Fill in the top row of the puzzle in the only way possible. (As
remarked earlier, the translation to checkers will give an immediate criterion for there to
be no puzzles.)

A.2. The translation part-way through the checkergame. At each stage, the partially
complete puzzle will look like Figure 23. Any of a, b, and c may be zero. In the check-
ergame, a, b, and c correspond to the the numbers shown in Figure 24. The rows of the
white checkers in the game are given by the edges of Figure 25 — a “1” indicates that
there is a white checker in that row. The columns are given by the edges of Figure 26. As
the white checkers are mid-sort, it turns out that this specifies their position completely.
See Figure 27 for a more explicit description.

c

b

a

0 1

10

tooth
to fill in next

tooth

FIGURE 23. The puzzle in the process of being filled

We now go through the various cases of how to fill in the next part of the puzzle,
and verify that they correspond to the possible next moves of the checkergames. Each
case is depicted in Figure 28, along with the portion of Table 2 that it corresponds to (in
checkers). The reader should verify that all possible puzzle piece placements, and all
possible checker moves, are accounted for in the bijection.

Case 1. There is no white checker in the critical row, or in the next row. Then make one
move in the checkergame.

Case 2. There is no white checker in the critical row, and there is a white checker in the
next row, not on the rising black checker.
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b

a

c

FIGURE 24. The corresponding point in the checkergame

critical row

1

1

row n

row 1

FIGURE 25. The rows of the white checkers

column 1

0

0

column n
column of descending checker

FIGURE 26. The columns of the white checkers

Case 3. There is no white checker in the critical row, and there is a white checker on the
rising black checker.

Case 4. There is a white checker in the descending checker’s square. In this case, we
finish the row of the puzzle, and make a series of checker moves to move the descending
checker to the bottom row.

Case 5. There is a white checker in the critical row but not in the descending checker’s
square, and there are no white checkers in any lower row. We finish the row of the puzzle,
and make a series of checker moves to move the descending checker to the bottom row.
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c

1

r

no teeth

1 1

1

r

c

r

c

critical diagonal

critical row

0

0

1

r

c

teeth, and/or 0 here

FIGURE 27. How to locate the white checker given the partially completed
puzzle (r is the row and c is the column; see Figures 25 and 26 to interpret
them as numbers)

Case 6. There is a white checker in the critical row, and there is another white checker
in a lower row, but in a higher row than any white checkers on the critical diagonal (e.g.
a blocker if there is a white checker on the critical diagonal). We finish the part of the row
of the puzzle up to the corresponding tooth, and make a series of checker moves to move
the descending checker to the blocker’s row.

Case 7. There is a white checker in the critical row but not in the descending checker’s
square, and there is a white checker in the rising checker’s square. Then we place two
puzzle pieces and make one checker move, as shown.

Case 8. There is a white checker in the critical row, but not on the descending checker;
there is a white checker in the critical diagonal, but not on the rising checker; and there
is no blocker. Then there are two cases. If the white checkers “stay”, then then we make
one checker move, and place two pieces. If the white checkers “swap”, then we fill in the
part of the puzzle until the “1” in the region marked a in Figure 23, and make a series of
checker moves to move the descending checker to the row of the lower white checker in
question.

APPENDIX B. COMBINATORIAL SUMMARY OF THE RULE

For the convenience of combinatorialists, we summarize the checker description of the
Geometric Littlewood-Richardson rule here, without reference to any geometry. In this
context, the rule will necessarily appear somewhat byzantine. Fix positive integers k < n.
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0
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0 0· · · 1 · · ·

1
1111
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or swap:
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0 0· · ·
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Puzzle Before Puzzle After Checker movement Part of Table 1Case

1 1

no teeth α · · · ω

1 1
1

1 · · ·α

0

1
0

0· · ·

1

1

1 · · ·

0 1

1

1

1

1

4

right side

(same)6

tooth or right side

7

ω

FIGURE 28. How to place the next piece in the puzzle

Fix two partitions α, β ∈ Reck,n−k (where Reck,n−k are those partitions that are contained
in a k × (n − k) rectangle). We consider α and β as size k subsets of {1, . . . , n} via the
usual bijection (Figure 1). Then a checkergame with inputs α and β is defined as follows.
We have an n × n board, and n black checkers and k white checkers. We start by placing
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the n black checkers along the antidiagonal (in configuration •init, Section 2.3), and the k
white checkers in configuration ◦α,β (Proposition 2.7). If the white checkers are not happy
(Section 2.5), then we stop; there are no checkergames with inputs α and β. Otherwise,
we perform

(

n
2

)

moves. The moves of the black checkers are predetermined, and are given
by the specialization order (Section 2.3). For each move, there will be either one or two
choices for how the white checkers may move (Section 2.10); after every move they will
still be happy. At the end of the checkergame, the black checkers will be lined up along
the diagonal (in configuration •final), and the white checkers (in order to be happy) will
be on a subset of the black checkers. The resulting size k subset of {1, . . . , n} is called the
output of the checkergame.

Let Ik,n be the ideal in the ring of symmetric functions Λ (in countably many variables)
generated by the Schur functions {sλ}λ/∈Reck,n−k

. Then Λ/Ik,n is isomorphic to the coho-
mology ring of the Grassmannian G(k, n).

B.1. Theorem (Geometric Littlewood-Richardson rule, combinatorial version). —

(i)

sαsβ ≡
∑

checkergames G

soutput(G) (mod Ik,n)

where the sum is over all checkergames with input α and β, and output(G) is the output
of checkergame G.

(ii) Hence if γ ∈ Reck,n−k, then the integer cγ
αβ is the number of checkergames starting with

configuration ◦α,β•init and ending with configuration ◦γ•final.

For example, Figure 3 computes s2
(1) = s(2) + s(1,1). Figure 29 computes c

(3,2,1)
(2,1),(2,1) = 2

using k = 3, n = 6. (In this case, there are four games with inputs α = β = (2, 1); two of
them have output (3, 2, 1).)

Theorem B.1 follows immediately from Theorem 2.15, or more explicitly from Corol-
lary 2.17.

B.2. Remarks. (a) Like Pieri’s formula and Monk’s formula, this rule most naturally gives
all terms in the product at once (part (i)), but the individual coefficients may be easily
extracted (part (ii)).

(b) A derivation of Pieri’s formula from the Geometric Littlewood-Richardson rule is left
as an exercise to the reader. Note that Pieri’s original proof [P] was also by degeneration
methods.

(c) Some properties of Littlewood-Richardson coefficients clearly follow from the Geo-
metric Littlewood-Richardson rule, while others do not. For example, it is not clear why
cγ
αβ = cγ

βα. However, it can be combinatorially shown (e.g. via the link to puzzles, Appen-
dix A) that (i) the rule is independent of the choice of n and k (i.e. the computation of cγ

αβ
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A = B = {2, 4, 6}

swap

steps omitted

swapswap

{2, 3, 4} {1, 3, 5} {1, 3, 5} {1, 2, 6}

output:

input:

steps omitted

FIGURE 29. Computing c
(3,2,1)
(2,1),(2,1) = 2 using k = 3, n = 6; some intermediate

steps are omitted

is independent of any n and k such that γ ∈ Reck,n−k), and (ii) the “triality” cγ
αβ = cα∨

βγ∨ for
α, β, γ ∈ Reck,n−k holds.
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