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A GEOMETRIC PARAMETRIZATION FOR THE VIRTUAL 

EULER CHARACTERISTICS OF THE MODULI SPACES 

OF REAL AND COMPLEX ALGEBRAIC CURVES 

I. P. GOULDEN, J. L. HARER, AND D. M. JACKSON 

ABSTRACT. We determine an expression 9 (1X) for the virtual Euler char- 

acteristics of the moduli spaces of s-pointed real (-y = 1/2) and complex 

(-y = 1) algebraic curves. In particular, for the space of real curves of genus 

g with a fixed point free involution, we find that the Euler characteristic is 

(-2)s-1(1-29-1)(g?s-2)!Bg/g! where Bg is the gth Bernoulli number. This 

complements the result of Harer and Zagier that the Euler characteristic of the 
moduli space of complex algebraic curves is (-1) S (g+s-2)!Bg+ /(g+1) (g -1) ! 

The proof uses Strebel differentials to triangulate the moduli spaces and 
some recent techniques for map enumeration to counit cells. The approach 
involves a parameter y that permits specialization of the formula to the real 

and complex cases. This suggests that 4 (-y) itself may describe the Euler 
characteristics of some related moduli spaces, although we do not yet know 

what these spaces might be. 

1. INTRODUCTION 

We show that the virtual Euler characteristics for the mnoduli spaces of s-pointed 
algebraic curves of genus g can be determined from a polynomial 4 y) in -1 where 
the parameter zy permits specialisation, through 'y = 1, to the complex case treated 
by Harer and Zagier and, through -y = 1/2, to the real case. The latter yields a 
new result for the space of real curves of genus g with a fixed point free involutionl, 
givinlg the Euler characteristic as (-2)S-1(1 -29-1)(g + s- 2)!Bg/g! where Bg is 
the gth Bernoulli niumber. 

A detailed analysis of the parametrized quantity ~ (-y) provides startling evi- 
dence that it has geometric significance. Indeed, it may in fact be the virtual Euler 
characteristic of some moduli spaces, as yet unidentified. We carry out this analy- 
sis by establishing a connection with a previous combinatorial colnjecture that the 
indeterminate b = -y-1 - 1 is associated with a combinatorial invariant for cell de- 
compositions. The development uses Strebel differentials to triangulate the moduli 

spaces, and the identification of -y both as a parameter in a Jack symmetric function 
through the irreducible characters of the symmetric group and the hyperoctohedral 
group, alnd as a parameter in a matrix model through generalized Selberg inte- 
grals. Both the matrix models of Hermitian and real symmetric matrices and these 
character theoretic formulations for counting cell decompositions are used. 

To explain the parametrization that we have in mind, we begin with a brief 
introduction first to the complex case and then to the real case. 
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1.1. The complex and real cases. The inoduli space MA of s-pointed complex 
curves of genus g has been an important object of study in many branches of 
mathematics for a long time. The global structure of these spaces is only partially 
understood; in particular, the cohomology of .A/ is known in just a few cases. 
The primary tool for studying this cohomology has been a triangulation of Ag 
which is derived from work of Strebel on quadratic differentials by Harer [9]. In 
particular, the Euler characteristic of MA was computed by Harer and Zagier [10] 
using this triangulation and an associated matrix model to count cells. Since that 
time, much work has been done in applying other matrix models and variants of the 
Strebel triangulation to the study of moduli spaces. This includes the alternative 
formulation by Penner [24] of the work in [10], the character-theoretic approach 
to the same work by Jackson [15], the exposition by Itzykson and Zuber [13], and 
most recently the beautiful work of Kontsevich [18] in establishing a conjecture of 

Witten [30] on intersection numbers of cohomology classes of Ms. 
The moduli spaces of real algebraic curves have only come into the foreground 

more recently. Classically, a real algebraic curve C is the set of simultaneous zeros 
in RP" of a collection of homogeneous polynomials. By taking the solution in CPn 

of the same set of polynomials, we can associate to the curve a Riemann surface and 
an antiholomorphic involution on it (induced by complex conjugation) whose fixed 
point set is the real curve C. This suggest defining a real curve as a pair consisting 
of a complex curve X and an antiholomorphic involution T and it is this point of 
view that we shall use here. For a fixed topological type of orientation reversing 
involution T, there is then a moduli space Ms(T) whose points are isomorphism 
classes of pairs of this form. Seppala, Silhol, Buser and others [2, 26, 27] have made 
some progress in understanding these spaces, but up to now little is known about 
the topology of MA (T). In the present work we will apply the technique of the 
Strebel differential to obtain a triangulation of A (T). We then coulnt cells using 
enumerative techniques similar to those that have been used to study MA. 

It is particularly startling that the complex and real cases can be treated simul- 
taneously, through a generalized Selberg integral with parameter -y, and it is this 
that leads to the parametrization ~s((y) of the Euler characteristic. 

1.2. The geometric parametrization. Central to our approach are the two gen- 
erating series, MO for graphs embedded in orientable surfaces and M for graphs 
embedded in locally orientable surfaces. Collectively, orientable and nonorientable 
surfaces are referred to as locally orientable. (Of course every surface is locally 
orientable, but the terminology is provided to make it clear that we are considering 
both orientable and i-on-orientable surfaces at once.) The embedded graphs are 
combinatorial objects and we will call them maps. 

MO and M/I have been given in integral form as evaluations of expectation opera- 
tors over Hermitian complex matrices and real symmetric matrices. For orientable 
surfaces these are familiar from the work of 't Hooft [12] and Bessis, Itzykson and 
Zuber [1], while the corresponding result for surfaces is given by Goulden and Jack- 
son [5]. In the particular case of specialisation to the virtual Euler characteristics 
of the moduli spaces, the diagonalized forms of the associated expectations have 
a common generalization 9(ay) as a generalized Selberg integral, whose evaluation 
is known [25]. The virtual Euler characteristics for Ms and Ms(T) are therefore 
computed simultaneously by specialising the parameter, -y, that appears in this 
Selberg integral to y = 1 and y = 1/2, respectively. 
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Character theoretic formulations for the generatilng series MI0 and AI have been 
given by Jackson and Visentin [16] and Goulden and Jackson [6] in terrns of Schur- 
functions and zonal polynomials, respectively. Both of these filnctionls are special- 
isations of the Jack symmetric function through its parameter -Y. We have conjec- 
tured [4] that, in the character theoretic setting, b = -1-I is an indeterlminate 
associated with a combinatorial invariant of nonorientability fol maps, and this 
identification is therefore inherited in the Selberg integral formulation of this pa- 
per. In the context of moduli spaces, this enables us therefore to conjecture that 
the parameter b also has geometric significance, and that there is an appropliately 
defined moduli space involving b that specializes to Mg and MA(T) at b = 0 anld 
b 1, respectively. 

Jack symmetric functions and their dependence on the parameter -' have been 
studied quite intensively in the combinatorial community in the last decade (see, 
for example, Stanley [28]. They also appear in connection [20] with the Calogero- 
Sutherland model, for example, in statistical nmechanlics. 

1.3. Organization of the paper. The paper is organized as follows. Section 2 
gives the reduction of the calculation of the virtual Euler characteristic /(.A4M(T)) 
to a combinatorial sum involving polygonal identifications. In Section 3 we show 
that both this combinatorial sum, and the correspondin-g sum for the coniplex 
case, can be realized as particular coefficients in the map series Al and Al0 at 
transformed arguments. We then evaluate these by first representing them each 
as matrix integrals and then constructing a single generalized Selberg integral Ak, 
with parameter -', that specializes to the diagonalized forms of these matrix inltegrals 
through choices of 'y. This integral is evaluated in Section 4 through asymptotic 
properties of the gamma function to give the parametrized Euler characteristic, 
(Qy), explicitly as a polynomial in y-1. In Section 5 we demonstrate that MI,, 

can be reexpressed in terms of Jack symmetric functions with parameter -y-1. A 
previous conjecture that gives combinatorial meaning to the paramneter b (recall 
that b = -1 - 1) in the context of maps then leads to the conjecture that b 
has geometric significance in the context of moduli spaces. For completeness, we 
include a brief account of the combinatorial encoding of maps and the algebras that 
carry the encoded combinatorial information that explain the appearance of Schlr 
functions and zonal polynomials (which are Jack symmetric futnctionls at I= 1 and 

-y= 1/2, respectively). 
The Appendix gives a table of the polynomial coefficients in b that arise in the 

first few terms of A/T. The polynomials are indexed by vertex distribution, the 
number of faces and the number of edges as combinatorial data. At b- 0 andl 
b =1 these evaluate to the numbers of maps, with prescribed combinatorial data, 
on orientable and locally orientable surfaces respectively. 

2. THE MODULI SPACES OF REAL CURVES 

2.1. The Teichmiiller spaces and mapping class groups of nonorientable 
surfaces. By a real algebraic curve we will mean a pair (X, a) where X is a Rie- 
mann surface and u- is an antiholomorphic involution. Two such curves (X1, a-) 
and (X2, 52) are isomorphic if there is a biholomorphisnm 0: X -> Y such that 

01 = 0720- 

Fix a closed oriented surface F of genus g and let 'r be an orientation reversing 
involution of F. The fixed point set Fix(r) of -r is a collection (possibly empty) 
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of inc disjoint silm-ple closed curves which separates F into e 1 or 2 connected 
components. If -ri is another such involution, 7 is conjugate to Ti if and only if in 
= m1 and c el (compare [26]). There are therefore [(3g + 4)/2] conjugacy classes 
of orientation reversing involutions on F. Fix(-) is nion-separating in g + 1 cases, 
while in the reimiaining cases Fix(T) separates F into two components, each of genus 

(g9-n + 1)/2. 
Choose 2s distinct, ordered points {qi} on F and let -7 be an orientationi revers- 

ing involution of F which acts without fixed points on the {qi}. We define the 
Teichmiiller space TEs (r) to be the space of all isomorphism classes of quadruples 

(X, u, {pli}, f ) wher e (X, u) is a real algebraic curve, {P } is an ordered collection 
of 2s distinct points of X on which o- acts fieely and 

f: (X, {pi}) -) (F, {qi}) 

is a homeoniorphism preserving the ordering of the points such that Tf = f. (F is 
called a marking of (X, u, {pi}).) The quadruples (X, o, {pi,} f) and (Y, 8i, {r-i}, g) 
are isomorphic if there exists an isomorphism 0 from (X, a) to (Y, ,t) with 0(pi) 
r- for eachl i such that g( is homotopic to f rel {pi}. 

Since the automorphism group of any Riemann surface X is finite, there are only 
finitely many antiholomorphic involutions u- of X (any two differ by an automor- 
phism). The natural map TS(r) 12S which forgets the involution is therefore 
finite-to-one. Topologize 'gs (-) via this map. By choosing an appropiiate pair of 
pants decomposition of F, it is stra,ightforward to use Fenchel-Nielsen coordinates 
to show that Tgf(r) is homeomorphic to Euclidean space of dimension 3g - 3 + 2s. 
(Here 3g - 3 diimensions come from the isomorphism class of the real curve while 
2s more dimensions come from the locations of s of the points and these determine 
that of the others.) 

It can be shown that when (X, u, {pi}, f) is isomorphic to (Y, ti, {ri}, g) using 
the definition above, the homotopy from g( to f can be replaced by an isotopy Ht 
such that at each time t, Ht(p-) q. and Hto = rHt. Therefore, if we let 

7X X > X/0 

and 

1rFF F F/7- 

be the cluotient maps, Pi = (pj) and -q - w(qj), the isomorphisnm class of (X, u, fpj, 
f) is determined uniquely by (Xjo, {P }) and the homotopy class rel {Pi } of the 

homeomorphisi-i of pairs (X/l, {, }) > (FJr, {}qi) induced by f. Thus T-8 (-r) may 
be thought of as the Teichmiiller spa,ce of non-orientable surfaces of genus g (Eluler 
characteristic 1 - g) with s ordered points and a local orientation of the surface at 
eacch point. 

Next, recall that the mappinig class group F2, is the group of isotopy classes 
rel {qi} of self-homeomilorphisms of F that fix each qi. We define the mapping class 
group F'(-r) to be the subgroup of F2, consisting of all mapping classes which 
admit a representative which commutes with -r. It can be showni that two such 
representatives are homotopic rel {qi} if and only if they are isotopic via an isotopy 
which commutes with - at each time. Since every self-homeomorphism of F/J has a 

unique orientation preserving lift to F which commutes with - (the two lifts differ by 
-r which is orielntation reversing), r, (-r) may be identified with the group of isotopy 
classes ( rel {}qi) of self-homeomorphisms of F/Ir which preserve each point qi and 
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preserve a local orientation of F/7r at each 1r(qi). (Notice that unlike the uisual 
mappin-g class group of a surface with boundary, we allow boulndary componlents 
of F/J to be permuted and we do not require that honleomorphisilms or isotopies of 
homeomorphisms fix boundary curves poinltwise.) The group rT(-r) acts properly 

discontinuously on T9S('r) via the usual actioln of F2, on T2S. The quotient will be 
denoted A4 (-r) and called the moduli space of s-pointed real algebraic curves. It 
is an orbifold (V-manifold) of real dimelnsion 3g - 3 + 2s and, like the mocluli space 
of complex curves, it has a finite cover which is an ordiinary manifold. Whenl two 
ilnvolutiolns of F are conijugate, there is a n-atural identificatioll of one moduli space 
with the other, so there are [(3g + 4)/2] such moduli spaces for each g and s. 

2.2. The orbifold Euler characteristics. The Euler characteristic of an orbifold 

MA which has a finite manifold branched covering Al of degree d is defined to be 

wherey(M)is te ordnaryEule -.4 ___A__ 

where X,yM) is the ordinary Euler characteristic of M4. This niumber is ilndepeindent 

of the choice of Al because Euler characteristics multiply by degree for ulnbranched 
coverings. Recall that the Euler characteristic of a group G which is virtually 
torsion free is defined similarly, 

X(G) - _() 
ci 

where C is a torsion free subgroup of finite inidex d in G. Since 'T (-r) is contractible 
and PF (-r) acts properly discontinuously on ?gS(') with quotient Al9(-r), 

X(MA(T)) - 

2.3. The Euler characteristic for the real case. Let -F0 be an orientationi re- 
versing in-volution of F without fixed points. Let Bg be the gth Bernoulli number, 
defined by the exponential generatinig series 

(1) B(t) < 
B 

Theni the virtual Euler characteristic for the real case is given by the following 
result. 

Theorem 2.1. For g > 1, s > , g + s >1, 

X(M's4o)) (2)s-I(I - 29-1) (9 + s - 2)!B 

From this theorem it is clear that X(MA(o)) = 0 when g is odd anid g + s > 1 

since B2n+? = 0 for n- > 1. The group F(TO) is the subgroup of F1 consisting of all 
maps which commute with -. Now F1 is isomorphic to SL2Z() since every elemelnt 
of F1 is determined by the map it induces on w1r (T2) = Z e Z. The map T0 induces 

( -1 0 
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on 71 (T2), so F1(To) is simply {f?I}. Since Fo and p2 are trivial, so are Po(To) 

alid Fl(ro). Also, wo is infinite cyclic, isomorphic to F2(Qo). Therefore the above 
theorem may be completed with the statements: 

X(M?(To)) = X(Mo(To)) 1 for s = 0 or 1, x(MAQ(o)) = 0 for all s > 2. 

For all g and s with g + s > 1 there are exact sequences 

1 -> , 
1Q> 7+ (FO) -> 17(O) 1> 

where 7r' is the fundamental group of the orientable surface of genus g with 2s 
points removed. The map 

r+(-FO) ,r(-FO) 

is obtained by forgetting one of the pairs of points, say (q2s+l, q2s+2), which are 
interchanged by 0. Its kernel is 119 because the isotopy to the identity of an element 

of F+1 (To) which fixes {ql, ..., q2,} creates and is created by moving the point q2s+1 

along a loop representing an elemeent of the fundamental group of F - {ql, ..., q2s} 
(F occurs here instead of F/To because the points qi are not permuted. Equivalently, 
the self-maps of F/T which we consider are all locally orientable at the points wr(qj), 

so only orientation preserving loops lie in ] +1(TF).) 

Now, given any short exact sequence of groups 

I ,->A ,B --->C ,1> 

we have 

X(B) X(A)X(C). 

This means that for each g, Theorem 2.1 only needs to be proven for one value 
of s. We will, in fact, show it for all s > 1, as this is the more natural approach. 

The short exact sequence is lnecessary, however, to establish the case where s = 0. 

For the involutions r which have fixed points, let us consider separately the cases 
where the fixed point sets do or do not separate F. If Fix(r) conlsists of m disjoint 
simple closed curves which together do not separate F, then F/T is a non-orientable 

surface with m boundary components. The Dehn twist on a boundary curve of F/J 
is isotopic to the idenitity since it lifts to two Dehn twists on isotopic curves with 

opposite twist directions. In addition, elemenits can pernmtte the components of 

Fix(T). Therefore ]P+"' (To) may be identified with a subgroup of index rn! in the 

mapping class grouip of (F/T, {r(qi) }). The Euler characteristic of the former is 

given by Theorem 2.1 above, that of the latter is obtained by dividing by m!. 

If Fix(r) consists of m disjoint simple closed curves which together do separate 

F, then F/T is an orientable surface with m boundary components of genus h, 
where g = 2h + m - 1. In this case the ordinary mapping class group F'+' may be 

idlentified with a subgroup of index m7! in the mapping class group of (F/r, {wr(qi)}). 

The Euler characteristic of Fh+'j' was computed in [10]. Combining all of these 
results we have the following general statement. 

Corollary 2.2. If Fix(T) is non-separating and consists of m simple closed curves, 
then 
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If Fix(T) is separating and consists of m simple closed cutrves, then g - mn + 

must be even and 

(]ps s+m ~~~~~~~~~~~~~~ ~~~~~~~~~~~(g - n + s-2)! - 
x( ( =(-1)s?n n!(g - m + 1)(g - rn - 1)! 9-nl i 

2.4. Moduli spaces and polygonal identifications. We begin the proof of The- 
orem 2.1 by first expressing X(J4s(-Fo)) in terms of pairings of sides of polygons. 
Recall [29] that for every k-poilnted Riemann surface (X, {PI,... , Pk }) and every 
collection of weights (tl . .. ., tk) with ti > 0 and t1 + . . . + tk= 1, there is a unique 
quadratic differential which has double poles at the points Pi of type -dz2/z2, no 
other poles, closed real trajectories and connected singular trajectories with the 
distance (in the norm defined by the quadratic differential) from pi to the singular 
trajectory equal to ti. This concept was first used in [9] (see also [8]) to describe 
cells for the moduli space of curves. The singular trajectories of the differential 
then decompose X into k disks which, after scaling X, can be taken to be radius 

ti, centered at each pi. This exhibits (X, {P, ... , Pk }) as obtained in a unique 
manner by identifying the sides of k disks Di in C (compare [8] and [9]). Fixing an 
identification pattern with a marking and varying the edge lengths determines an 
open cell in T x Ak-, where A-i is ak-i simplex. 

Suppose now that X admits a fixed point free involution T0 which interchanges 
the points P2i-1 and P2i for i = 1, . . ., s. It follows directly from Strebel's work 
that the real and imaginary trajectories of the differential are invariant under T0. 

(This fact was first pointed out to us by Seppala.) This means that Tfs(To) x As-i 
admits an ideal triangulation with cells determined as follows: Choose positive 
integers nl, . . . , ns with ni + ... + ns = 2n. For each i take two copies PW+ and Pi- 
of a polygon with ni sides. Also take a pairing w of the sides of Ut<<s P7- 
which gives an oriented, connected surface of genus g and is compatible with the 
interchange maps Pt P-. These maps together induce an involution or of 

(Ul<i<s t3J;+ U &P?-)/w. We assume that a, is orientation reversing. This pairing 
(as in [9] and [10]) must satisfy the requirement that the valence of each vertex of 
the boundary graph (Ul<i<sP UP U & P)/w is at least 3. Finally, choose a marking 

fw of the result that identifies the center of Pt+ with q2i-i and the center of Pi- 
with q2i. Varying the edge lengths determines an open cell whose dimension is n -1. 
Orbits of cells are determined by the identification alone (without the marking). 
This gives an ideal triangulation in the following sense: Each marked identification 
determines an open cell, corresponding to positive lengths on each edge. By allowing 
an edge length to go to 0, we obtain a cell of one lower dimension as long as the 
resulting identification still gives a surface of genus g. If, however, the result has 
smaller genus, the face lies outside of Ts (To) x As-i. 

By forming the quotient of X, by T0, the identification w induces an identification 
W' of the union of s polygons Pi having ni edges to obtain a connected, non- 
orientable surface XJ of Euler characteristic 1 - g. (The boundary graph has n 
edges and 1 + n - g - s vertices and the same valence condition as above, since TO 

is fixed point free.) The marking f, induces a marking fJ of XI which pairs the 
ordered center points {P-,.. , } with .l... ,q5 

Conversely, given an identification w' of the edges of Ul<i<s Pi to obtain a non- 

orientable surface XI of Euler characteristic 1 - , with special points { , - S} 
and given a marking fJ of XJ with fi (P) =, there are 2si corresponding choices 
of the pairing w and marking f,. To see this, visualize the disks Pt and Pi- in 
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a common plane so that assigning U for an up normal or D for a down normal 
orients them. Fix U as the orientation for P+ and D for P7-. Arbitrarily assign U 
or D to P. and the opposite to Pi- for i 2,... , s. Now there is one and only one 
identification w lifting w' which gives a surface on which the chosen orientations 
agree. 

Think of the disks Pi as also lying in a common plane with a U orientation on 
each. Let e1 be an edge of Pi and e2 an edge of 1% (perhaps i j) and suppose 
that w' pairs e1 with e2. Let eu be the edge corresponding to e1 in either P.A or 
P7- whichever is labelled U. Similarly define eD, eu and eD. If w' pairs e1 and 
e2 so that the orientations on Pi and Pj agree, then eu is paired with eu and eD 

with eD. Otherwise they switch. (Notice that we could have performed the entire 

process by first starting with any P+ as either up or down and we would have the 
same 2s-1 possibilities.) The marking fJ lifts to a unique f, once we specify which 
poinlt of 7r-w1(q) to call ql. Therefore, given (w', fJ), there are exactly 2s-1 distinct 
lifts (w, f,). Since elements of the mapping class group r' (T0) do not permute the 

points {qj}, there are similarly 2s-1 distinct w. 
We now consider polygonal identifications induced by w'. Define A N (nl,... n, rs) 

to be the number of identifications w of the edges of Ulj<i<s Pi that give a non- 

orientable surface of genus g (Euler characteristic 1 - g) and so that the valence 
of each vertex of the boundary graph (Ul<i<js &Pi)/lw is at least 3. Here we are 

assuming that an initial edge of each Pi is fixed so that, for example when s 1, 
the identifications aabb and abba would be counted as different ways of constructing 
a Klein bottle. As an illustration, 

(2) AN(2) = 4, 

corresponding to the four patterns: 

aabb, abba, abab-1, aba-1 b. 

Notice that if the surface has Euler characteristic 1 - g, then the number of vertices 
of the boundary graph is 1 + n - g - s. 

Similarly, we define A?(nl,... ,ns) to be the number of identifications of the 

edges of Pi<Z<s P; that give a orientable surface of genus g (Euler characteristic 

2 - 2g) with the same valence condition. Finally, define Ag (ni,... , ns) to be the 
num-iber of identifications of the edges Of Ul<i<s Pi that give a surface of Euler 
characteristic 1 - g, orientable or not, with the same valence condition. 

Now set 

As (n) Ag > (nl,... *i ,ns), 

77,1 + +7 =2 77 

and let As,N (n) and As'1)/2(n) be the sums, over the same range, with summands 

AN (ni,... , ins) and AOn+l)/2(hl... , S), respectively. Finally, let 

3g+3s-3 n-s 

(3) A = As (n) 
n=g+s 

and let As,N and As?0 be the analogous sums in which As(n) is replaced by g (g+l)/2 g 

AS,N (n) and A s?)/2 (n), respectively. 
Next we express x( Ts(o)) in terms of one of the combinatorial sums defined 

above. 
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Lemma 2.3. 

X(MA(To)) = 2s-1As,N 

Proof. Recall that MA (To)) is an orbifold andl by definition, each point of an orbifold 

M has a neighborhood that is locally modeled on Rdim(M) modulo a finite group. 
An orbifold triangulation of A4 is a triangulation by simplices w which have the 
property that the finite group associated to each point of the interior of w is the 
same. If we call this group G(w), the Euler characteristic on AM is computed with 
the formula 

E 1)dim (U) 

o(G(w)) 

To compute the Euler characteristic of Ais (To), consider the ideal triangulation 

of Ms (To) x As-' described by identification patterns. We cannot apply the formula 
above directly because cells of the triangulation must be closed. Instead we use the 
dual complex described in [9]: Ms(To) x As-' retracts onto a spine complex Y 
of dimension 2g - 3 + 3s which has a k-cell for each identification pattern w with 
n - = 3g - 3s -4- k. The cells are the identification patterns and the local groups 
are the symmetries of the configuration which determines the cell. Since these must 
fix the poinlts qi, they are all cyclic. Counting each identification pattern of (with 
no initial edges) weighted by the reciprocal of the order of the cyclic symmetry 
group is the same as counting each pattern with a choice of initial edge weighted 
by 1/2n (compare [10]). The result follows. O 

Now clearly 

(4) Asg = Ag + A(g+1)/2' 

where the second term on the right is naturally zero when g is even. Then Lemma 2.3 
and (4) enable us to establish the result of Theorem 2.1 by determining As and 

A +, . This will be carried out in the next section, where we actually determine 
(g+1)/2' 

a parametrized quantity that specializes to each of As and As'0 at different g (g+1)/2 
values of the parameter. 

Previously Harer and Zagier [10] showed that X(MA) = A and thus de- 
g (g?1)/2 

termined that 

X(.As1) = (-I)s 
(g 
(+s1 -2)1! Bg+l, 

when g is odd (of course, X(Ms) = 0 for g even). 

3. MATRIX MODELS AND THE COUNTING SERIES FOR EMBEDDED GRAPHS 

3.1. Polygonal identifications and graph embeddings. To determine As and 

A s+1)/2 we first identify As (n) and A>s'l)/2 (n) as solutions of equivalent enumera- 

tive questions for combinatorial maps, since appropriate forms for their generating 
series are already available, from current work in algebraic combinatorics. A map is 
an embedded graph in a surface with the property that each complemlentary region 
is a 2-cell. In topology one says the graph fills the surface and in combinatorics 
ones calls this a 2-cell embeddiing. The graph divides the surface into regions called 
faces. In an orientable surface a map is rooted by distinguishing an edge, and an 
end of this edge. In nonorientable surfaces an edge is distinguished together with 
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an end of this edge, and a side of this end of the edge. Rooted maps have only the 
trivial automorphism. From this point of view, an identification w of the edges of 

P, with boundary graph (PF)/Iw corresponds precisely to a two-cell embeddinlg 
of the boundary graph with a single face; the rooting allows us to uniquely re- 
cover the labels of the sides and the orientation of P,. Thus we have the following 
combinatorial identifications: 

* A9'0 (n) is s! times the number of rooted maps with s faces, n edges and no ver- 
tices of valences 1 or 2, in orientable surfaces of genus g (Euler characteristic 
2 - 29), 

* A'(n) is s! times the number of rooted maps with s faces, n edges and no 
vertices of valences 1 or 2, in locally orientable surfaces of Euler characteristic 

1- 

For i =(i1, i2,...) , let n(i, j,n) and m?(i, j,n) be, respectively, the numbers of 
rooted maps in locally orientable and orientable surfaces, with n edges, j faces and 

ik vertices of valence k for k > 1. Thus Ek>1 kik= 2n, and Ek>1 k =V, the 
number of vertices. But from the Euler-Poincare theorem, for the maps counted by 
AO /(n) and Ag(n) we have jFj-jEj+jVj = s-n+jV 1-g so IVI = n-g-s+1. 

Thus we can write 

(5) A' (n) = s! Em(i, s, n), AS4 n)/2(n) = s! E m , s, n), 

where, in both cases the sum is over i such that 

(6) il= i2 = Z1 kik = 2n, Ek= n- 9-s +1. 

k>3 k>3 

The vector i is called the vertex distribution of such maps. Let the generating 
series for maps with respect to vertex distribution be 

(7) M(y,x,z) = n(i,j,n)yixjzn, MO(y,z) = mO(ij,n)yixjzn, 
i,j,n i,j,n 

where y = (YI,Y2... ), and yi [klyik 

3.2. A pair of matrix integrals. These two series have the following integral 
representatiolns, as given in Jackson [14], for MO, and Goulden and Jackson [5], for 
Ml: 

( '/ eEk>?1 kTYk \traceM - trace 
I JV~~~~ M22dM\~ 

MO (y, N, z) 2z 
a 

log N 

OZ ' e_trace M2 dyJ 

'VVN e 2 Zk1 Yk V Z trace e -4 traceMdM 

AII (y, N, z) 4z ,log JNN ) 
OZ / trace M2 d 

\ JW~~N 

where VN and WN are, respectively, the vector spaces of Hermitian complex and 
real symmetric N x N matrices. The reader who wishes to have greater detail is 
directed to the above sources, and to the discussion in Section 5 of this paper. 

The integrals over VN and WN can be transformed by the Weyl integration 
theorems [11] to the following integrals over the reals. For a positive integer N, let 
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A (A1, * I AN), let V(A) be the Vandermonde determinant 1<i<JN (Aj -A), 

let pk(A) A= +k * + Ak, the power sum symmetric function of degree k, for k > 1, 
and dA = dA1 ... dAN. Then 

0 t~~J V(A)| _Ek>l kX ykke-2 d2A)> 

(8) MO1 (y, N, z) =2z- log (LN A 
0z 1 v()2e- 

1 P2()d 
LN V (A) 2e7P2AdAJ N 

(f tJ V(A)|e2 Ek>l 
1 rYkPkv 1 P2(A) 

(9) M (y, N, z) = 4z- log RN 
az k t 

t~~V(A\)Je-1 P(/)dA 
N 

A joint generalization of these is afforded by 

(10) MJl(y, x, z) -z - log Z(y, x, z), 

where 

I V(A) 2~~ye'~YZkZ1 
k 

rkp X V(A) 12-,e-Ek>l k. YkPk (A )e 22P2( dA 

1l) Z, (y, N, z) = 
V V(A) 2ye-YP2( )dA 

N 

since 

(12) A/IM(y, N, z) M M l/2(y, N, z), M 0 (y, N, z) = MAI, (y, N, z). 

Thus both Mvi and MO can be obtained by specializing the parameter i in MAII, 
and it is the series MA1? that we therefore study in detail. We now make a few 
comments about the interpretation of the above series. First, the numerator of (11) 

is an even function of z (to see this, consider the simultaneous substitutions 

Aj -Aj, j 1,... , N), so the occurrence of z is of no concern; M/I, really 
is a power series in z. Second, the second argument in these map series is an 
indeterminate, x, yet in each case the integral representation evaluates the series at 

any positive integer value N (which is the dimension of the region of integration). 
However, the number of rooted maps with n edges is finite for each n, so A4", can be 
viewed as a power series in z with coefficients that are polynomials in Yi, .. . I Y2n, X. 

Thus, since this holds for infinitely many N, a polynomiality argument allows 
us to obtain MlI(y,x,z) from M,,(y,N,z), in principle, by deriving an explicit 
presentation of M\I (y, N, z) as a power series in z, and formally replacing N by x 
in the resulting (polynomial) coefficients of each power of z. 

In the following result, we obtain preliminary expressions for As and A s,O 
(g-1l)/2' 

as specializations of the parameter in a quantity ~ ('y), which is therefore referred 
to as the parametrized Euler characteristic. Here we use the notation [A]B for 
the coefficient of A in the expansion of B. The result gives (s(-y) as a particular 
coefficient of MII, evaluated at transformed arguments. 

Proposition 3.1. Let 

(13) C( y) = s!(_1)s[xstg+s-ll -log W (x t), 
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where 

N\ 

,I V lv(A) l2-, fII e-tA /t A/ _i/,j) /) dA 

(14) Wi (N L t) =( 
i 

fN V(A) 2yeyP2(A)/2dA 

Then, for s,g? 1, 

(15) s = (s(1) ~~~~~(g?+l)/2 = CM(1 

Proof. Let u(t) (Ul,U2,...), where ul = U2 = 0, Uk =-(i It)k2k > 3 (here i 

is -1, and is not an index), and let 4 be the operator whose action is defined by 

'hf (y, x,Iz) = i f (u(t), x,z) dz 

Now, for i satisfying the conditions in (6), under the specialization y = u(t), we 
obtain 

yi=(-1)71-9-s+l+- 27 -2(n-g-s+I)J t- 27 -2(7 -9-s+I)f n )7tg+s-1. 

Then we obtain As =s!(-1)s[xst9+s-1]'FA1I and A )/9= s!(-1)s[xst9g+s-lj4MI0, 

for g > 1i s > 1, from (3), (5) and (7). But, from (10) and (11), 

T'1/1 1 = 1 (+ log Z (u(t), N, z)) dz = - log Z (u(t), N, 1), 

since Z (u(t), N,O) 0 1. Now let Wa (N, t) Z (u(t), N, 1). The result follows 
from (12) and the simplification 

2pP2J(A) + E kUkPk(A -) k Pk(A) 
k>1 k>2 

1 (A)) + - ( Pk) 
i 

~~~k>I 

, ( +/ + t log(l -;c 9,-j )-l) 

Note that the application of T to ML, is justified, since the number of maps with 

no vertices of valences 1 or 2 (this is forced by the specialization Yi = Y2 = 0), 

and JEJ - V = g + s - 1 is finite for each g and s (e.g., these conditions imply 

that there are at most 3g + 3s - 3 edges, as in the upper bound for the summation 
in (3)). Thus W (x, t) can be viewed as a power series in t with coefficients that 
are polynomials in x. Dl 

4. DETERMINATION OF THE PARAMETRIZED EULER CHARACTERISTIC 

The following detailed calculation involving properties of the gamma function 
of the parameter -y is necessary sinice we wish to obtain the parametrized Euler 

characteristic (s(-y) as an explicit polynomial in 7 -1 In Section 5 we shall show 

that b - 1 is an indeterminate that is conjectured to be associated with a 
combinatorial invariant of rooted maps. 
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4.1. Selberg integration. We now determine Wa (x, t) from the integral represen- 
tation (14) for VW (N, t) by giving an explicit presentation of W (N, t) as a series in 
t, with coefficients that are polynomials in N, and then, appealing to polynomiality, 
formally replacing N by x. To evaluate W;Z (N, t) we use the following theorem due 
to MVlehta [221. It is derived in a similar fashion to Selberg's theorem, but based on 
an integral of Cauclly instead of the beta integral (note that again i -1, and 
is not an index). 

Theorem 4.1. ForRajWb, b , a?3 > O,(c+,?3) > 1 and 

1 ,< 
( R a ct , (aj + , +1) \ 

N N-1 ' N-1 ' 2(N-1)/J 

we have 

J V(A)l2-y I + +i I) (- i b dA 
j=1l 

F(o + 1-(N+j- 1)-i1) 

j= tO r(c - 'j)T(Q - _yj) 

where 

2-wacb ~ N N-1 

- )e aab 
P (1+ (1 + j>y) 

K (a + b)(a+3)-y(N>-1)-1 (1 + 1- ) 

In proving the following result we use Mehta's integration theorem to evalu- 
ate log W-, (N, t), and then apply the polynomiality argument to give an explicit 
(asymptotic) power series presentation of log W, (It). 

Theorem 4.2. As an asymptotic expansion in I/t we have 

log Wl(x,t) =-xZ 2k(2k 1) + E + E B6r+1+ 

k>1 2k261 >1 
66+1 

= 

x 
(Xr -i)a?1r - (1' + 1) B-+, -n (xm )6?Th) 

V a6-7' a~~~~n r + 1 -'7I 

Proof. From (1 4), W,(x, t) = F(x, t)/G(x, t), where 

Fy(N,t) J V (A) 12-, 
( 

- vAjIV(1 i tA3/tj) ! dA, 

and 

Gy (N, t) N V(A)l 2ye7YP2 (A)/2dA. 
N 

We begin by determining the integrals F (N, t) and G' (N, t) as different special- 
izations of Mehta's integral in Theorem 4.1 above. 

To determline GI: We can rewrite GC in the form 
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so applying Theorem 4.1, with a = b = L and a =,B = -yL/2, gives 

7 (NH P(i(+ .))) Lo ( (2L)YL-Y(N-1)1) 
N 

N-1i-y 

N i P(yL -(N + j-1)2-1) 

But the duplication theorem for the gamma function gives 

r(yL - (N+j j-1> -1) 

2YL Y(N+ l)-2P(1yL -(N +j - 1>- ))P(2(yL (N+j - 1)), 

and it is straightforward to establish by standard properties of the gamma fuinction 
that 

lirn r(-QyL- (N+j -1)>-1)) 
1 1- 2~ 12 

z 
L ro F(pL - a jr) (yL) (N-j- )Y-y 

lim 
2 (a-N+j-)) 

L ro( - L yj) (L) (N-j-1)y 

It follows that 

G,y(N, t) = ( r (I + (I + j 

To determine Fa: We can rewrite F in the form 

N (-yL/t 

JFII(N, t) lim ] V (A)2 fj( t 
LAj) (I1- i /t-Ad1Y/tdA 

so applying Theorem 4.1 with a = l t, b = 1/t, o = ryL/t and , =y/t, gives 

y ( w2 ) NAy (N, t) By(N, t) (+(I ) 

where 

L ( t N -t ) 

Ay(N,t) =gaim (y st:2:I:2 pori Nf tNe ga) N, 

and, again by stanidard properties of the gamma functioni 
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Thus 

Fy (N,t) (ty7 2l)l)Y/ (2)(a(N-)+))pN rF(l + (1 +j>) 

These evaluations for Fa and Ga immediately yield 

W, (N t) G- (N, t ) 
G-~(N, t) 

(16) ( /t (N1)((Nl)Y?l)) 1 

We now exhibit log W (N, t) explicitly as a power series in t, with coefficients 
that are polynomials in N. Let N = qK and ry / llq where q and K are positive 

integers. This specialization of N does not affect the recoverability of log W (x,t) 
from log W (N, t), since there is an infinite set of such K, so the polynomiality 

argument still holds. With these choices for N and -y we have 

qK -1 I1 K /q-1 

, tq q) rP K) _ (t- q 

and the product over k can be simplified by Gauss' multiplication theorem for the 

gamma function, whence 

( = )PU(q q (l -K) (,qV 2 (K+1)) Hl( -qi). 

But 

I/ I ( _q)= (t) I (h) /2 v F(2) 1 

logq 1- K K ) q)t) 1 2 q 

Cobnngtee eut wthq1)adte ih(6 ie 

K r,(I)KtqK(K+1)1 K K 

IF q' t and tq (I (1-tjj) 

ForbnigthesBernoullnmes Bit giv ndtenb (1), recal thats 

lo ( ( l) (et) ________tqj 

as an asymptotic series in 1/t, and 

ZE k 1 E (kc + 1t 2k(2k+1r r 

j=1 + r1 ~ ,JJ+~~)i 
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for k > 0 and n > 1. Then applying these results to (18) gives, as an asymptotic 

expansion in 1/t, 

Bt2k-I Kf tj K ql tj 

log W (qK, t) = -K B 2 2k1 A - q 1 
2k(2k 1) 

k>1 jr(l )?1 l=1 j1 ) ?1 

B2k t2klIt 6+1 
6 + I 

k>12k(k -1) >]6>1 

rqA +1= m1 "r 
n r 

The result follows by polynomiality, upon replacing q by 1/a' and K by N-y, thus 
giving an explicit power series presenitation of log 4 (x, t). U 

We are now in a position to give an explicit expression for the coefficient ( Qy) 
given in (13). 

Corollary 4.3. For g > 1, s > 1, 

49Sa 

(g + s -2)' 2s Bg (1 _1 iJg is even, 

1 (g + s-2)!(-1)s+l { (g+])B' + (g + l)B B7. }, if g is odd 

Proof. The ring of asymptotic series in l/t is a subring of the ring of formal power 
series in t. Thus log Wy has an asymptotic expansion that is the generating series 
for s( Qy) in l/t. Moreover, if a function has an asymptotic series then it is unique. 
Thus from Proposition 3.1 and Theorem 4.2 we obtain, for g > 1 and s > 2, 

gS(Qy) = s!(-)S[xst9+s-11 log W(X, t) 

s!-)+ | Kg+8s Bg +E , g + s8 
Bg- 

Kr + 18 B? +I_s 

(g + s)(g + s-1) { V (s)y9+>1( 7 s) (r + 1)r+1-s 

(g + s - 2)!(-1)9+s (g + )Bg9+s g +1 B B?+_s 

(g + 1)! )B 1 9+s rj2t 

For g > 1 and s= 1, we obtain 

__ (-1) 
g+1g (1B 

g1 
R 

(19) s g(g ) {B9+i + ( ) + E ( + 1)Bg+l-ri9j } 

where, for the first term in (19), we have used the fact that the Bernoulli number 
B- is 0 for j odd and greater than 1. 

Thus, for all g > 1, s > 1, we have 

(20) 

_ _+_s_-2)!(-1)9+s (g +1)B g+s g +1 +Br+l-s 

9 7 (g + 1)! 9 + 7- + 1-sj s g+s-r }Tl-s J - 
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(For s > 2, the summand in (20) corresponding to r = 0 is zero, so (20) agrees 
with (19) in this case. For s = 1, the summand in (20) corresponding to r = 0 is 

Bg+l, since Bo = 1, so (20) agrees with (19) in this case also.) This gives the result 
immediately for g odd. 

For g even, the zero values for Bernoulli numbers of odd subscript bigger than 
1 mean that for the summation in (20), only the terms correspondinlg to r - s and 
r = g + s - 1 are non-zero, so for g even we obtain 

C - (g + s -2)!(-l)s ((D + 1)B9 + (g + 1)BgB 1- + (g + 1)BjB9ag 1 

and the result follows in this case, since B1 -1/2. Ol 

4.2. Proof of Theorem 2.1. Next we prove Theorem 2.1 that gives As and 

A9+1)/2 by specializing the parameter ay in Corollary 4.3. This is straightforward, 
although it requires additional properties of the Bernoulli numbers. 

Corollary 4.4. For g, s > 1, 

((g +zs -v2) 

As 
g 

(g+ s 2)!() 1)B9, if g is even, 

(g + 1)(g 1) Bg+ if g is odd; 

sO 0, if g is even, 

g (g + 1) (g- 1)! Bg+1) if g is odd. 

Proof. From Proposition 3.1 we have As -S( ) and A SO+ = 4(1), so for g g g 2 (g+1)/2 g' or 
even the result follows immediately from Corollary 4.3. 

For.g odd, we obtain from Corollary 4.3 that 

(21) () =(g + s-2)!(-1) ' ((g <B + JB(t)B( t 
9 ~~~~(g + 1)! Fy ( '! - 

where B(t) is the exponential generating series for Bernoulli numbers, given in (1). 
Now the following differential equations can be easily verified: 

B(t)2 = (1 - t)B(t) - ttB(t), 

B (t) B(2t) = (1 -t) B(t) -tdtB(t)-2tB (2t). 

Thus (for g odd), applying the first of these differential equations to (21) gives 

(g + s 2)!( 1) + {(g + 1)Bg + (Bg+i - (g + 1)Bg -( + 1)Bg+i)} 

(g + s-2)!(-1)5 

(g + 1)(g-1)! 
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Applying the second differential equation gives 

S( 1) = (g + s -2)!(-1)s?l {(g + 1)B929 + (Bg+1 - (g + 1)Bg 9 2 
~~(9g? 1)! 

-(g + 1)Bg+1 - (g + 1)Bg29-')} 

(g + s -2)!(-1)s+1 {gB + (g + 1)Bg(29 - 29-1-1)1 
(g?+ 1)! 

and the result follows, since Bg = 0 for g odd except when g = 1, and 29- 29-1 1 
O when g = 1. 0I 

As discussed at the end of Section 2, Corollary 4.4 completes the proof of The- 

orem 2.1. Note that the natural zero value for As?0 for g even is in agreement 

with the computed value for 49(1) in Corollary 4.4. 

5. A GEOMETRIC PARAMETRIZATION OF THE VIRTUAL EULER CHARACTERISTIC 

The argument -y of the parametrized Euler characteristic (Qy) was introduced 
as an artifact for interpolating between complex curves (-y = 1) and real curves 
(-y = 1/2), as specialized in (15). However, we conjecture that the parameter 
-y itself has geometric significance. In particular, '(-y) has been expressed as a 

polynomial in 1/-y in Corollary 4.3, and we conjecture that the coefficients in this 
polynomial have a geometric interpretation. 

The evidence for this is indirect, but can be lifted from a combinatorial treat- 
ment of maps in Goulden and Jackson [4], that specializes to the series expansion 
(compare with (7)), 

(22) M(y, x, z) Tmy(i, j, n)ryxizn, 
i,j,n 

of M,(y,x,z), defined in terms of an integral in (10). Note that M,(y,x,z) is in 
fact a parametrized map series because of the specializations in (12). We conjecture 
that m (i, j, n) is a polynomial in 1/-y, with integer coefficients, and that these 
coefficients have combinatorial significance. Moreover, 

9Qy) - s!(-l)s[xst9?sl]PMa, 

from the proof of Proposition 3.1, so we deduce that s(-y) is a finite alternating 
summation of my(i, j, n)'s, and thus we can lift the investigation of the significance 
of ma (i, j, n) to 4Q(y) itself. 

The lifting from maps is through properties of symmetric functions, and Jack 
functions in particular, which we now summarize (for further details see Macdon- 
ald [21]). 

5.1. Jack symmetric functions. We say that M = (Ali... , Ltk) is a partition of 

n, written Mt P n or nti - n, with k parts, written l(At) - k, if t ? .. ? uk > 1, and 

btl + + Pk = n. The pi's are the parts of M. The monomial symmetric function 
Mi1 in a countable set of algebraically independent indeterminates x = (xl, ... ), is 

the sum of all distinct monomials in the xi's whose exponents are the parts of A,t 
with repetition, in some permuted order. If 'P is the set of all partitions (including a 
single, empty, partition of 0), then {nm,i},icp forms a basis for the ring of symmetric 

functions. If p,1 = p,1 .. P1Pk, where Pm is the mth power sum (symmetric function) 
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in x, then {p1,}1i,c is also a basis, and hence we can define an inner product ( ,)C 

for an indeterminate o, by the orthogonality 

(~~~) -~ A ___ 

m)J\,, (P,\ PHR=ICla'Hd 
lcm 

where C,1 is the conijugacy class in the symmetric group on btj symbols with disjoint 

cycle lengths given by the parts of Mt. Then with respect to this inner product, the 

Jack symmetric functions {J,1 (x; o) },Ecp also form a basis for symmetric functions 

in x (depending on the parameter o), defined by the conditions 

(JA, J11) c=O for A zh ,l; [mt]jJA =0 unless ,t -l A; 

[Xl ...xl]J L =rn!, where At 2n, 

imposing orthogonality, triangularity and normalization, respectively, where i de- 

notes reverse lexicographic order. The Cauchy theorem for Jack functions is 

fi (i -xiyj)-l/= E Jo(x; o)Jo(y; a) 

i,j>1 oc',P (JJ)c 

Finally, let 

L v(A) 2Y -P2 f(A)dA 
(f (A))RN 

L V(A)e e-P2dA 
N 

Then, as a connection between integration and Jack symmetric functions, it has 

been previously conjectured in Goulden and Jackson [5] that 

(23) (Jo(A; 0cf))RN = JO(1N; O)[P2 Jo, 

where 1N is the vector with N l's, and 0 F- 2m. This conijecture was recently proved 

by Okounkov [23]. 

5.2. Lifting from the combinatorial conjecture. We can now give a symmetric 
function representation for M,(p(y), x, z). 

Proposition 5.1. Let p(y) = (pi(y),... ). Then 

(24) M ( p(y), x, z) =-z log E z2P22 Jo. 

Proof. If we replace Yi by Pi (y), i > 1 (this presents no difficulties since the pi(y) 
are algebraically independent for countable y), then from (10) and (11) we obtain 

M, (p(y), x, z) -z- log ey k>1 k 
Z 

Pk (Y)Pk() 

az+1ogfHH(1- zyiAj) a) 

2 0 log ( l Jo (y; 1/') Jo (A; 1/a) 

y 19Z Oc-'P (~~Jo, Jo) i/ /, RN 
from Cauchy's theorem above, and the result follows from the integral evalua- 

tion (23). OI 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:32:18 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


4424 I. P. GOULDEN, J. L. HARER, AND D. M. JACKSON 

Jack function series like that on the right hand side of (24) have been considered 
in [4], where a combinatorial conjecture is made about their coefficients. The con- 
jecture specialized to m-(i, j, n) is that rn1/(b+1) (i, j, n) is a polynomial in b with 
nonnegative integer coefficients. Note from (7), (12) and (22) that these coefficients 
sun-i to n(i, j, n) (here b = 1), and the constant term is rn(i, j, n) (here b = 0). Thus 
b in this context is a parameter of nonorientability. 

Table 1 of the Appendix gives the values of m1/(b+1)(i,J,n) for maps with at 
most three edges. For example, the number 4 in (2) of Section 1 is consistent 
with the value m((O, 0, 0,1), 1, 2; b) = 1 + b + 3b2 in the table. The constant term 
1 identifies the single orientable rooted map (in the torus) with 2 edges, a single 
face and a single vertex. The other terms b and 3b2 mean that there are indeed 4 
nonorientable rooted maps (in the Klein bottle) with 2 edges, 1 face and 1 vertex. 
In this case, these 4 maps would be further subdivided into two classes, of size 
1 and 3, with different values, 1 and 2, respectively, of the unknown measure of 
nonorientability recorded by this parameter. 

We conclude that -y, which interpolates between complex curves and real curves 
in the context of Euler characteristics, has a separate and classical existence in 
terms of the Jack parameter. It should be noted that, even in the formal study of 
Jack functions themselves (rather than, for example, the complicated summation 
we are considering here), a combinatorial interpretation of the Jack parameter has 
been sought over the last decade (see Hanlon [7] and Stanley [28]), with recent 
success reported by Lapointe and Vinet [19] and Knop and Sahi [17]. 

5.3. Schur symmetric and zonal polynomials. We have introduced symmetric 
fuLnctions here indirectly, for technical reasons. However, the special cases -y = 1/2, 1 
of the series MVIy give the map series M, MO, respectively, from (12). Moreover, the 
special cases -y = 1/2, 1 of Jack functions with parameter 1/-y are zonal polynomials, 
Schur symmetric functions, respectively (in the latter case there is also a known 
scalar introduced). Applying these specializations to the Jack function expres- 
sion (24) therefore yields expressions with zonal polynomials and Schur symmetric 
functions, respectively. These expressions have been obtained directly by Jackson 
and Visentin [16] (for y= 1) and Goulden and Jackson [6] (for y= 1/2). (This 
means that (23) and (24) have been proved in the cases av = 2,1 and -y = 1/2, 1, 
respectively.) The combinatorial encodings providing these direct derivations is 
quite different from the Wick's lemma methodology that yielded the integral ex- 
pressions (9) for Al and (8) for A/1?, in [5] and [14], respectively. We conclude with 
a sketch of these combinatorial encodings. For more complete details see the above 
references. 

A graph embedded in an orientable surface is rooted, and the two ends of its ni 

edges are labelled from 1 to 2n, with the root end of the root edge labelled 1. The 
map is encoded by two permutations in &2?n. In the first, the disjoint cycles are 
the cyclic lists of the labels at the ends of edges incident with a vertex, in clockwise 
order, one for each vertex. In the second, the cycles are transpositions interchanging 
the labels at the two ends of a vertex, one for each edge. The cycles of the product 
of these permutations then specify the labels of edges in the boundary of each face 
of the map, and the determination of M0I? is therefore reduced to a computation in 
the centre of the group algebra of 62n2), derivable from the connection coefficients of 
this subalgebra. The generating series for these yields the Schur symmetric function 
expression that follows from the summation over 0 in (24) by setting -y = 1. The 
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logarithm is applied by the standard combinatorial construction to recover the 
connected componenits in this enumeration (since an arbitrary pair of pernmtations 
in the group algebra corresponds in general to an uniordered collection of labelled 
maps). The operator 2z&/&z is applied to account for the rootinlg of the map. 

For M, a graph embedded in a locally orientable surface has the four side-end 
positions of its n edges labelled from 1 to 4n, with the root side and end of the 
root edge labelled 1. The map is encoded by three matchings (pairings) on the 4n 
symbols. In the first, the pairs consist of the labels that appear at the two ends of 
the same side of ani edge. In the second, the pairs consist of the labels that appear 
at the two sides of the same end of an edge. In the third, the pairs consist of the 
labels that appear in a corner of a face. It can then be shown that the determination 
of Ali can therefore be reduced to a computation in the double coset algebra of the 
hyperoctahedral group embedded in &L174 as the centralizer of a fixed fixed poilnt free 
involution. The generating series that follows from this yields the zonal polynomial 
expression that follows from the summation over 0 in (24) by setting Y = 1/2. The 
logarithm and application of 4z&/&z occur as in the determination of NI0. 

Note added in proof. A related formula for the Euler characteristic in the real case 
appears in [3]. 

APPENDIX A. TABLE 

TABLE 1. The refinied map niumbers ml1/(b+1) (i, j, n), for n < 3 edges. 

n j i rnl/(b+) (i, j, n) n j i 211/(b+1) (i, j,1) 

1 1 (2) 1 3 2 (0,3) 1 
(0,1) b (1,1,1) 12 

2 (0, 1) 1 (0,0, 2) 9b 

2 1 (2,1) 2 (2,0, 0,1) 9 
(0,2) b (0, 1, 0, 1) 15b 
(1,0,1) 4b (1,0,0,0,1) 30b 
(0, 0, 0,1) 1 + b + 3b2 (0, 0, 0, 0, 0, 1) 10 + lOb + 32b2 

2 (0,2) 1 3 (0,0, 2) 4 
(1, 0, 1) 4 (0, 1, 0, 1) 6 

(0,0,0,1) 5b (1,0,0,0,1) 12 

3 (0,0,0,1) 2 (0,0,0,0,0,1) 22b 
3 1 (2,2) 3 4 (0,0,0,0,0, 1) 5 

(0, 3) b 
(3,0,1) 2 
(1,1, 1) 12b 
(0,0,2) 1+b+5b2 
(2,0,0,1) 9b 

(01,0, 1) 3+3b+9b2 
(1, 0, 0, 0, 1) 6 + 6b + 18b2 
(0,0,0,0,0,1) 13b+ 13b2 + 15b3 
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