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Quantummetrology holds the promise of an early practical application of quantum technologies, in whichmeasurements
of physical quantities can be made with much greater precision than what is achievable with classical technologies. In
this review, we collect some of the key theoretical results in quantum parameter estimation by presenting the theory
for the quantum estimation of a single parameter, multiple parameters, and optical estimation using Gaussian states.
We give an overview of results in areas of current research interest, such as Bayesian quantum estimation, noisy
quantum metrology, and distributed quantum sensing. We address the question how minimum measurement errors can
be achieved using entanglement as well as more general quantum states. This review is presented from a geometric
perspective. This has the advantage that it unifies a wide variety of estimation procedures and strategies, thus providing
a more intuitive big picture of quantum parameter estimation.
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I. INTRODUCTION

When we measure a physical quantity, we need to quantify the
error in that measurement, for example via the Mean Square
Error (mse). The actual mse is hard to calculate directly,
because it depends on the true unknown value of the quantity
we want to measure. Remarkably, we can bound the mse such
that for any given experiment it cannot be smaller than a value
that we can calculate. In addition, we can establish general
conditions under which this bound can be saturated, i.e., the
minimummse is in fact achieved. This is in broad strokes what
parameter estimation theory is about.
With the classical theory of parameter estimation well-

established in terms of the probability distribution of the ob-
served data given the value of the physical quantity, we turn
our attention to the space of probability distributions. Intu-
itively, when probability distributions move a large distance
in this space under a change in value of the physical quantity,
our measurements can pick up this change more easily than
when the probability distribution moves hardly at all. This
provides the link between measurement sensitivity (with cor-
respondingly small mse) and distance functions in the space of
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FIG. 1. We measure an observable M to obtain an estimate θest for a
parameter of interest θ. We can relate the error ∆θ in the estimate to
the standard deviation ∆M by relating the tangent at θest with angle
α to the ratio between ∆M (red vertical line) and the error ∆θ.

probabilities. Our task is to find a distance measure that allows
us to make this link quantitative such that the distance measure
can be directly related to the mse. This gives us a metric in the
space of probabilities, which is called the Fisher information.
We will review key properties of the Fisher information.

The extension to quantum mechanics requires that we con-
sider density operators instead of classical probability distri-
butions. These operators also live in a linear vector space,
and we can again construct distance measures in the space that
connects the density operator to the minimal mse in a phys-
ical experiment. However, since the density operators have
a richer structure than the classical probability distributions
(e.g., allowing non-commutative operators), the correspond-
ing distance measures are also more complex. Based on the
choice of inner product in the space of density operators, dif-
ferent distance measures can be constructed that have subtly
different physical interpretations. The direct generalisation
of the Fisher information, the quantum Fisher information, is
a well-studied quantity that provides an attainable bound for
the estimation of a single parameter that is imprinted on the
quantum state via a unitary evolution. When multiple pa-
rameters come into play, the picture complicates considerably
due to the potential non-commutativity of the observables that
best estimate the individual parameters. Here, there are close
links to generalised uncertainty relations. Alternative met-
rics can be more appropriate for different uses. For example,
the Kubo-Mori information will be shown to have a particu-
lar relevance when thermal states are considered, and when
we are interested in the relation between parameter estimation
and conserved quantities we may turn to the Wigner-Yanase
information.

Once we have established lower bounds for the error in the
parameters, we consider how we can attain these bounds. For
quantum estimation, entanglement plays an important, albeit
subtle role. We review two important special cases in quantum
estimation theory, namely estimation procedures using Gaus-
sian states in quantum optics, and the extension of quantum
estimation to the case where the evolution does not have a
simple phase-like unitary structure. The final two sections

are devoted to current areas of research interest, including
Bayesian quantum estimation, noisy quantum metrology and
some fault tolerant solutions, and distributed quantum sens-
ing. Throughout this review, we aim to emphasise the bigger
picture of quantum parameter estimation and how it very nat-
urally arises from a geometrical view of quantum states. To
achieve this we have prioritised practical examples and in-
tuition over mathematical rigour. Readers interested in the
technical mathematical details are referred to the references,
and more mathematically inclined readers are referred to the
collection of selected papers on quantum statistical inference
by Hayashi1.

II. CLASSICAL ESTIMATION THEORY

In this section, we briefly review classical estimation theory.
We introduce the expectation value and the variance between
the measured and the true value. We formulate a family of
generic lower bounds that constrain the variance of parameter
estimates, culminating in the well-known Cramér-Rao bound.
For a general introduction to classical estimation theory, see
Kay (1993)2.
Several features of estimation theory can be understood by

considering the following heuristic argument3: given a mea-
surement of the observable M whose outcomes depend on a
parameter θ, we can associate an estimate and error to θ. The
average value 〈M〉 over many measurements of M depends on
θ, and the error formula can be obtained from Fig. 1 as

δθ =
∆M
|∂θ 〈M〉|

, (1)

where ∂θ = ∂/∂θ, and ∆M = [〈M2〉 − 〈M〉2]
1
2 is the standard

deviation in the measurement outcomes. The denominator
|∂θ 〈M〉| can be viewed as a local correction in the units of δθ.
The steeper the tangent at θest, the more precise the estimate
of θ at that point, i.e., the smaller δθ. On the other hand, the
larger the standard deviation ∆M , the lower the precision.
To illustrate the concepts of classical estimation theory, we

use the example of the Mach-Zehnder interferometer (mzi), il-
lustrated in Fig. 2. It can be used to make high precision mea-
surements of a relative phase difference between two beams of
light derived from some optical input state. This phase refer-
enced method has become a standard tool in estimation theory
and has received considerable attention given its applications
in enhanced phase estimations in optical interferometry4,5, fre-
quency measurements6,7, and biosensors8,9.
Consider an experiment to estimate the relative phase dif-

ference in the interferometer, where a single photon is sent
into one input mode of the mzi, and the two output modes are
monitored with photodetectors. Each run of the experiment
provides two pieces of data x(1) and x(2) that measure the pho-
ton counts in each detector, D1 and D2 respectively. Assuming
no losses in the interferometer and ideal detectors, the prob-
ability distribution function p(x(1), x(2) |θ) has the following
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possible outcomes:

p(1, 1|θ) = 0, p(1, 0|θ) = cos2
(
θ

2

)
,

p(0, 0|θ) = 0, p(0, 1|θ) = sin2
(
θ

2

)
, (2)

with θ = Φ − φ the phase difference that we are interested in.
If we count N1 photons in detector D1 and N2 in detector D2,
a suitable estimator for θ is

θ̌ = arccos
(

N1 − N2
N

)
, (3)

where we denote the estimator of θ by θ̌ (the notation ·̂ is re-
served for quantum mechanical operators). The estimator is a
function of the data θ̌(x) and returns a value for θ. A gener-
alisation of this to an N-photon Fock state in one input mode
of the mzi distributes the photons binomially over the output
modes10, with a more complicated corresponding estimator.
If we inject a classical coherent state with intensity I0 into one
mode and measure the intensities I1 and I2 in detectors D1 and
D2, the estimator becomes

θ̌ = arccos
(

I1 − I2
I0

)
, (4)

which is the continuous version of equation (3).
To calculate the precision of the measurement of θ in this

experiment, we use the error propagation formula in Eq. (1),
and the measurement operator is M = n̂1 − n̂2, with n̂1 and n̂2
the photon number operators for the output modes. Using the
probability distribution in Eq. (2) we find that for N photons
sent into the interferometer

〈M〉 = N cos θ and (∆M)2 = N sin2 θ . (5)

This yields a precision of

δθ =

√
N sin θ

|N∂θ cos θ |
=

1
√

N
. (6)

This is the so-called shot noise limit for interferometry.

A. Fundamentals of estimation theory

The problem of estimating the value of a vector of pa-
rameters θ = (θ1, . . . , θD)

> from a set of observed data
x = (x1, . . . , xD)> is formally addressed in parameter estima-
tion theory. Here, > denotes the transpose. Owing to exper-
imental uncertainties and errors, the inference of parameters
is related to the measurement outcomes through some con-
ditional probability distribution p(θ |x) that is derived from a
model of the physical system under consideration. The main
question is how well we can estimate these parameters. In
other words, what is the best possible precision that we can
achieve? There are generally two possibilities for θ:

1. θ are not random, but unknown;

θ

φ

|ψin〉
â

b̂

FIG. 2. The Mach-Zehnder interferometer, drawn with two evanes-
cently coupled 50:50 beam splitters. Here, â and b̂ define two input
modes. An optical path difference between the internal arms of the
interferometer results in a relative phase difference. The objective is
to estimate the relative phase θ = Φ − φ by measuring the photon
intensities at the output using the photodetectors on the right. Figure
adapted with permission from Sidhu, J., Quantum metrology of grid
deformations and squeezed light: with applications in quantum imag-
ing & quantum information, Doctoral Thesis, University of Sheffield,
Copyright 201811.

2. θ are random and unknown.

In the first case we speak of Fisher estimation, while in the
second case we have Bayesian estimation. An advantage of
using Bayesian methods is that they do not rely on asymp-
totics to provide optimal performance, a property not enjoyed
by Fisher estimation12. The optimal performance for both
methods coincide in the large sample scenario1. Research ef-
forts in quantum metrology and estimation theory have been
dominated by work in the Fisher regime. To reflect this, we
focus our review mainly on the estimation of non-random pa-
rameters. The subtle difference between Fisher and Bayesian
estimation will be covered in subsection VH.
Given that the probability density function (pdf) of the data

p(x|θ) is known (i.e., we can model the physical process), the
set of parameters θ may be extracted from a set of observation
data x via an estimator θ̌, which is a function of the observed
data only. We will see that the estimators are also used to find
the estimation errors.
An important estimator for a non-random θ is the maximum

likelihood estimator

θ̌(x) = arg max
θ

p(θ |x) , (7)

where the likelihood function p(θ |x) is the probability of θ
being the true value given the data set x. This requires a model
for the process in order to generate the probability p(θ |x).
While the true value of θ is an array of numbers, its estimates

are random variables. This is due to the probabilistic nature
of the data; two runs of an experiment with equal parameters
θ will not generate equal data due to statistical fluctuations:
x1 , x2. Hence the estimates for both runs will differ from the
actual values, and not be equal to each other. Given a very
largemeasurement data set, an estimator that generates the true
values of the parameters is referred to as a perfect estimator.
In the next subsection, we introduce the covariance matrix as
a natural measure of the performance of an estimator.

B. Expectation values and covariance

A natural figure of merit to quantify the performance of an
estimator is the variance of a parameter estimate with respect
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to its true value. Hence, we can characterise the estimation
performance by searching for an estimator that has the small-
est variance in parameter estimates. Although various other
methods to characterise the performance exist, this is a nat-
ural choice that was first introduced by H. Cramér and C. R.
Rao13,14. In the remainder of this section we assume that the
measured data x is continuous without loss of generality.

For a multi-parameter estimation of θ, we may define the
natural optimality criterion as the difference between the esti-
mator and the true value of θ, ∆θ = θ̌ − θ. However, since this
relies directly on the unknown true value θ, it is often more
convenient to define the variation in the estimates of θ as

δθ̌ = θ̌ − Ex |θ
[
θ̌(x)

]
, (8)

where

Ex |θ
[
θ̌(x)

]
=

∫
dx p(x|θ) θ̌(x) (9)

is the expectation value of the estimator θ̌(x) with respect
to the probability distribution p(x|θ). When the estimator is
unbiased (i.e., there is no systematic error in the estimator), the
expectation value approaches the true value and δθ̌ reduces to
∆θ in the limit of large data sets.

We define the covariance matrix as

Cov(θ̌) = Ex |θ
[
δθ̌(x) δθ̌(x)>

]
= Ex |θ

[(
θ̌ − Ex |θ

[
θ̌
] ) (

θ̌ − Ex |θ
[
θ̌
] )>]

. (10)

The covariance matrix depends on the parameters via the ex-
pectation value of the estimators.

The diagonal elements of the covariance matrix are the vari-
ances of the different parameters θ j with j ∈ {1, . . . ,D}. No-
tice that the estimator’s covariance is not the same as its mean
square error matrix:

Ex |θ
[
(∆θ̌)(∆θ̌)>

]
= Ex |θ

[
(θ̌ − θ)(θ̌ − θ)>

]
= Cov[θ̌] + b(θ̌)b(θ̌)>,

(11)

where b(θ̌) = Ex |θ[θ̌(x)] − θ is the bias of the estimator. We
see that the mean square error is equal to the variance if and
only if we have an unbiased estimator: b(θ̌ j) = 0. Unbiased
estimators ensure that the average of the estimates converge to
the true value of the parameter: 〈θ̌〉 = θ. While we include the
effect that biased estimators have on the estimation precision
in subsection IVE, we assume unbiased estimators for the rest
of the review. In the next subsection we define the expectation
value and covariance of estimators.

C. Bounds on the covariance matrix

It is typically not possible to calculate the exact values of the
covariance matrix. We can often only hope to place some
limits on the mse, the variance, and other quantities. In this
section we will use the structure of the covariance matrix and

arguments from information geometry to formulate generic
bounds on the (elements of the) covariance matrix15,16.
For notational convenience we abbreviate Ex |θ by E for the

remainder of this section. For a positive semi-definite matrix
product XY we have that E[XY ] ≥ 0. We choose

X = f − Ag and Y = X> , (12)

with f a D-dimensional real vector of the same size as θ, g an
R-dimensional real vector, and A an R×D matrix that depends
only on θ. We then find

E
[
[ f (x, θ) − Ag(x, θ)][ f (x, θ) − Ag(x, θ)]>

]
≥ 0 . (13)

Since the expectation value is linear, we can expand this into

E
[

f f >
]
− E

[
f g>A>

]
− E

[
Ag f >

]
+ E

[
Agg>A>

]
≥ 0 ,

(14)

and extract the matrix A, which is a constant with respect to
the expectation:

E
[

f f >
]
≥ E

[
f g>

]
A> + AE

[
g f >

]
− AE

[
gg>

]
A> . (15)

When we redefine

T = E
[

f g>
]

and G = E
[
gg>

]
, (16)

we arrive at

E
[

f f >
]
≥ T A> + AT> − AGA> . (17)

This is a bound on the expectation value of f f > (which at
this point can be anything that is consistent with the general
definition of f ), and to make the bound as tight as possible we
must maximise the right-hand side of Eq. (17).
Since T and G do not depend on x (they are averaged over

the data set), we can choose A = TG−1 (where we require that
the inverse of G exists; this places a restriction on g). This
leads to the compact form

E
[

f f >
]
≥ TG−1T> . (18)

Next we choose f = θ̌(x) − E[θ̌], so that E[ f f >] = Cov(θ̌)
and therefore

Cov(θ̌) ≥ TG−1T> . (19)

This expression is valid for any estimator θ̌(x). The matrix G
is called the information matrix. Different definitions of g (and
thus G) will produce different bounds that may have various
advantages (computational, tightness, etc.). The matrix G is
the expectation of a projector gg> that may not be full rank
(and therefore has no inverse). This typically happens when
the estimator does not have enough degrees of freedom and
therefore cannot provide estimates of all parameters.

For the above choice of f the T matrix becomes

T = E
[(
θ̌(x) − E[θ̌]

)
g>(x, θ)

]
= E

[
θ̌(x)g>(x, θ)

]
− E

[
θg>(x, θ)

]
. (20)
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We restrict ourselves to choices of g that satisfy the condition
Eθ |x[g

>(x, θ)] = 0. Therefore, the first term in T becomes

Ex |θ
[
θ̌(x)g>(x, θ)

]
= Ex

[
θ̌(x)Eθ |x

[
g>(x, θ)

] ]
= 0 . (21)

As a result, the bounds on the covariance matrix are deter-
mined by the estimator θ̌(x) and our choice of the function
g(x, θ). Under suitable smoothness conditions on the proba-
bility distributions, we can define a family of definitions for
the Fisher information to obtain different bounds17. In the next
subsection, we introduce the most famous choice of g leading
to the Fisher information and the Cramér-Rao bound.

D. The Cramér-Rao bound

The choice for g(x, θ) we consider here is

g(x, θ) =
∂ ln p(x|θ)

∂θ
, (22)

which requires that the first derivative of p(x|θ) exists and is
absolutely integrable. The function g(x, θ) is a natural choice
in that it is additive for independent samples due to the log-
arithm (since independent events multiply probabilities), and
the derivative measures the rate of change of the probability
distribution with respect to the parameter of interest. The in-
tuition is that a fast changing probability distribution with θ
will produce a clearer change in measurement outcomes x as
we vary θ.

As an example, we consider a single parameter θ such that
g is a scalar function. Then we can evaluate T explicitly via
partial integration:

T = −Ex |θ

[
θ
∂ ln p(x|θ)

∂θ

]
= 1 . (23)

The information matrix G becomes

G = Ex |θ

[(
∂ ln p(x|θ)

∂θ

)2
]
≡ I(θ), (24)

which is better known as the Fisher information I(θ). The
classical Fisher information is generally dependent on θ. If we
have a model for the process under study, we can find p(x|θ)
and calculate the classical Fisher information directly. The
variance in θ can then be bounded by

(δθ)2 ≥ I−1 . (25)

This is the Cramér-Rao Bound (crb)14,18. It is saturated when

θ̌(x) − θ =
∂ ln p(x|θ)

∂θ
. (26)

For a general D-parameter problem, the crb is a matrix
inequality

[Cov(θ̌)]i j ≥
[
I(θ)−1]

i j
, (27)

where the inequality means that Cov(θ̌) − I(θ)−1 is a positive
semi-definite matrix. This bound is typically attainable using
a Maximum Likelihood estimator in the asymptotic regime
of many independent samples. Under the local asymptotic
normality and quadratic mean differentiability conditions, it
can be shown that no estimator can attain a smaller mse that
the Fisher information17,19.
The Fisher information matrix is symmetric and positive,

and it can be interpreted as the metric tensor in the pa-
rameter space. In particular, this means that when we re-
parameterize the space and wish to estimate the parameters
ϑ = (ϑ1 . . . , ϑD), with ϑj(θ) some function of the original pa-
rameters θ, the corresponding transformed Fisher information
matrix becomes

I(ϑ) = J>I(θ)J and Jjk =
∂θ j

∂ϑk
, (28)

where J is the Jacobian of the parameter transformation.
An important example for the Fisher information matrix is

for a Gaussian (normal) distribution, which has a closed form2.
Let the distribution be characterised by mean values µ(θ) and
covariance matrix Σ(θ):

p(x|θ) =
1√

(2π)D detΣ
exp

[
−

1
2
(x − µ)>Σ−1(x − µ)

]
.

(29)

The Fisher information matrix then takes the following closed
form

[I(θ)]jk =
∂µ>

∂θ j
Σ−1 ∂µ

∂θk
+

1
2

Tr
[
Σ−1 ∂Σ

∂θ j
Σ−1 ∂Σ

∂θk

]
. (30)

Often, when estimating parameters there are several nui-
sance parameters that must also be estimated. We are not
intrinsically interested in these parameters, but the estimators
of the parameters of interest depend on them. We can separate
the tuple of parameters θ into genuine and nuisance parame-
ters, θ = (θg, θn). The Fisher information matrix can then be
written in block form:

I(θ) =
(
I(θg, θg) I(θg, θn)
I(θn, θg) I(θn, θn)

)
. (31)

The crb is still given by the inverse of I, but now we can use
the inverse of a block matrix,

PA

(
A D>

D B

)−1
PA =

(
A − D>B−1D

)−1
, (32)

where PA is the projection operator onto the subspace occupied
by A, to establish how the nuisance parameters affect the crb:

Cov(θ̌g) ≥
[
I(θg, θg) − I(θg, θn)I(θn, θn)−1I(θn, θg)

]−1
.

(33)

In other words, the nuisance parameters lower the Fisher in-
formation matrix compared to the Fisher information matrix
for the genuine parameters alone, as expected.
There are other choices for the function g(x, θ) that lead to

different bounds. For more details on classical and Bayesian
bounds, see Van Trees and Bell (2007)20.
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p2

PB

PA

(a) The simplex.

p1
p3

p2

θ

(b) Paths in the simplex.

FIG. 3. Fig. 3a: the probability simplex where the measurement has
three outcomes with probabilities p1, p2, and p3. Every probability
distribution is represented by a point in the simplex (PA and PB).
Fig. 3b: θ parametrises a path through the probability simplex.

III. GEOMETRY OF ESTIMATION THEORY

The Fisher information in Eq. (24) followed from our choice
of g(x, θ). In this section we will give an intuitive geomet-
ric derivation21,22 that will help us with the derivation of the
quantum Fisher information in the next section. We relate
parameter estimation to methods of distinguishing probability
distributions, including the Fisher information and the relative
entropy.

A. The probability simplex

Any experiment used to infer a value of θ will return differ-
ent measurement outcomes x = (x1, . . . , xD). Assuming that
different values of θ produce variations in the measurement
outcomes (otherwise this particular measurement would not
be useful in extracting a value of θ), we can posit a probability
distribution p(x|θ), which may originate from some physical
model. The problem of finding the value of θ is then reduced
to telling the difference between two probability distributions
p(x|θA) and p(x|θB). In other words, how many times do we
have to sample the system (i.e., what is D) in order to tell the
difference between p(x|θA) and p(x|θB)?
The probability distributions p(x|θ) form a space called a

probability simplex (see Fig. 3 for a simple example). The
probability distributions p(x|θ) for a single parameter θ typi-
cally form a curve through the simplex that is parametrised by
θ. In order to tell howmany measurements we need to make in
order to distinguish two probability distributions on the curve
we need some distance measure (a metric) on the simplex that
fits naturally with statistics. This metric can then be used to
tell how far away two distributions are from each other. In turn
this will allow us to infer how many measurements we need
to make to distinguish between the two distributions. In what
follows we first specifically consider a single parameter θ for
simplicity.

In its general discrete form we can write the infinitesimal
distance ds on the simplex in terms of incremental probability

changes dp and a metric h:

ds2 =
∑
jk

hjk dpj dpk , (34)

where we used contravariant elements for the probability in-
crements and the covariant form of the metric. The metric
tensor obeys

hjkhkl = δjl , (35)

where we use Einstein’s summation convention and where δjl
is the Kronecker delta. We have to derive a natural form for h.

B. The Fisher-Rao metric and statistical distance

For this section, we follow the procedure in Bengtsson and
ÛZyczkowski23 to formulate an appropriate metric on the space
of probability distributions. A similar procedure is taken by
Kok and Lovett24. A natural scalar product on the simplex and
its dual space of classical random variables forms an expecta-
tion value:

〈A〉 =
∑
j

Ajpj . (36)

The correlation between two classical random variables A and
B is then

〈AB〉 =
∑
j

AjBkh jk =
∑
j

AjBjpj . (37)

Using the relation in Eq. (35) we find that

hjk =
δjk

pj
, (38)

which leads to the so-called Fisher-Rao metric (fr)23

ds2
FR =

∑
jk

dpj dpkhjk =
∑
j

dpj dpj

pj
. (39)

This defines the statistical distance between two probability
distributions in the probability simplex. The generalisation of
this metric for continuous probability density functions (pdf)
can be written as23

hab =
1
4

∫
Ω

dx
∂ap(x) ∂bp(x)

p(x)
, (40)

whereΩ defines a finite dimensional sub-manifold of the prob-
ability simplexwith coordinates θa, and ∂a ≡ ∂/∂θa. For sim-
plicity we will mostly use the discrete form in the remainder
of this section.
The probability simplex with the fr metric exhibits strong

curvature. Note that the statistical distance in Eq. (39) diverges
when one of the probabilities pj tends towards zero. This
gives us a clue how to interpret the distance between two
distributions: when the probability of one of the measurement
outcomes is strictly zero, then obtaining that measurement
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p1
p3

p2

PA

PB

FIG. 4. The distance between probability distributions PA and PB

diverges when one of them (B) lies on the hull of the simplex.

outcome will allow us to infer with certainty that the system is
governed by the other probability distribution (see Fig. 4).

Next, we consider the displacement ds in the probability
simplex along a line element dθ. We can write

ds2

dθ2 =
∑
j

1
pj

(dpj)2

dθ2 =
∑
j

pj

(
∂ ln pj

∂θ

)2

. (41)

Comparing this with Eq. (24) we see that this is the Fisher
information

I(θ) =
(

ds
dθ

)2
, (42)

and in the case of continuous data sets

I(θ) =
∫

dx p(x|θ)
(
∂ ln p(x|θ)

∂θ

)2
. (43)

Therefore, the Fisher information measures how fast the prob-
ability distribution changes along paths parametrised by θ. In
order to tell the difference between two values θ and θ ′ a
higher Fisher information will be beneficial. We can think of
the Fisher information I(θ) as the average amount of informa-
tion about θ in a single measurement.

For small finite distances induced by a shift δθ, and start-
ing at θ, we can express the statistical distance as a Taylor
expansion

s(θ + δθ) = s(θ) + δθ
ds
dθ

����
θ

+O(δθ2) . (44)

Defining δs = s(θ + δθ) − s(θ), we obtain δs = δθ
√

I(θ) up
to first order in δθ. We postulate that two probability distribu-
tions are distinguishable after N measurements on independent
identically prepared systems if the resulting distance crosses
some threshold α:

Nδs2 ≥ α , (45)

where usually we set α = 1. We can eliminate δs fromEq. (45)
to obtain

(δθ)2 ≥
1

NI(θ)
, (46)

which is strongly reminiscent of the Cramér-Rao bound. The
difference is that δθ here is the segment of the path in the
probability simplex, rather than the variance in the estimator
of θ. Nevertheless, Eq. (45) is a powerful method for working
out the number of measurements that are required to see a
difference δθ in the data.
Eq. (39) can also be re–expressed in a more convenient way

if we introduce a new coordinate system (x j)2 = pj . This
transforms the fr metric to the Euclidean metric:

ds2 = 4
∑
j

dx j dx j . (47)

The factor 4 can be absorbed in a change of units, butwe choose
to keep it here since it will reappear in the quantum extension
later on. While in classical estimation theory the occurrence
of (real) probability amplitudes xi =

√
pi is something of a

curiosity, in the quantum extension to estimation theory this
allows us to construct the Fubini-Study metric25.

C. Relative entropy

In addition to distance measures, probability distributions are
conveniently characterised by entropic functions. The Shan-
non entropy of a random variable P26,

S(P) = −
N∑
i=1

pi log2 pi, (48)

measures the average amount of information in an event sam-
pled from a system described by the probability distribution
pi . The units are bits, and in the remainder of this review,
logarithms are base 2, unless stated otherwise.
To compare two probability distributions, we can make use

of the Kullback-Leibler, or relative entropy27,28

D(P ‖Q) =
N∑
i=1

pi log
pi
qi
. (49)

While this is not a metric since it is not symmetric under ex-
change of pi and qi , it remains sufficient as a distinguishability
measure between the two distributions. Eq. (49) describes the
information gain when a prior distribution Q is updated to the
posterior distribution P.
A Taylor expansion to first order of the logarithmic term of

the relative entropy in Eq. (49) yields

D(P ‖ P + dP) =
N∑
i=1

pi log
pi

pi + dpi
≈

∑
i

dpi dpi

2pi
. (50)

The last term is identical to the statistical distance in Eq. (39)
up to a factor two. The Fisher information must therefore be
closely related to the relative entropy D in Eq. (49). Assuming
that the two distributions in the relative entropy are connected
by a curve θ, we may label the distributions by θ and θ ′. We
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find that the Fisher information matrix can be approximated
by the second derivative of the relative entropy

[I(θ)]i j =

(
∂2

∂θ ′i∂θ
′
j

D(θ ‖ θ ′)

)
θ′=θ

= −

∫
dx p(x, θ)

∂2 log p(x, θ)
∂θi∂θ j

. (51)

Conversely, the relative entropy can be written in terms if the
Fisher information matrix

D(θ ‖ θ ′) =
1
2
(θ ′ − θ)> I(θ) (θ ′ − θ) , (52)

up to higher order corrections in (θ ′− θ). The relative entropy
has a number of advantages over the Fisher information in that
it is not affected by changes in parameterisation, it can be used
even if the distributions are not all members of a parametric
family, and fewer smoothness conditions on the probability
densities are needed.

IV. SINGLE PARAMETER QUANTUM ESTIMATION

In this section we review single-parameter quantum estimation
theory and derive the quantum Cramér-Rao bound. We show
how the quantum fisher information can be obtained as a lim-
iting case of the classical Fisher information, and we provide
an interpretation for the general parameter estimation scheme
illustrated in Fig. 5. We give various closed forms for the
quantum Fisher information.

A. Quantum model of precision measurements

Any estimation strategy is described through a probe prepa-
ration stage with state ρ(0), followed by an evolution that
imprints the parameters of interest through a quantum channel
ρ(θ) = Λ[ρ(0)](θ), and a measurement stage by a self-adjoint
observable X =

∫
dx x Π(x) where Π(x) dx is a positive oper-

ator valued measure (povm) element. This archetypal schema
is illustrated in Fig. 5 (in principle, a feedback mechanism can
be included). For any given interaction, this protocol describes
a two-step optimisation problem; an experimenter must make
a suitable choice of probe state that is sensitive to changes
in the parameters to assimilate maximal information, and they
must make an appropriate measurement that maximises the in-
formation extracted from the probe. Analytically, this can be
modelled by describing the evolved state of the system through
ρ(θ), and by associating the measurement yielding the data x
through the povm Π(x) dx. The probability distribution p(x|θ)
is then given by Born’s rule

p(x|θ) dx = Tr[Π(x)ρ(θ)] dx, (53)

where
∫

dxΠ(x) = I. Born’s rule gives the probability dis-
tribution function (pdf) that distributes the measurement out-
comes x, given the parameterisation θ. The state captures

θ s

N−s

θ̌ν (s)

Λ(θ) Π̂(x)dxρ(0) x θ̌ν (x)

FIG. 5. General channel parameter estimation scheme with the possi-
bility of adaptive control, shown in parallel with the phase estimation
procedure using a Mach-Zehnder interferometer. The quantum chan-
nel Λ(θ) imparts parameters θ on the input probe state. The probe is
measured by an operator of the formΠ(x) dx and distributes estimates
according to Born’s rule. By data processing the measurement out-
comes, we obtain our estimate θ̌. The goal of quantum metrology is
in finding both the optimal probe state and observable that minimises
the covariance matrix of unbiased estimates. Figure adapted with
permission from Sidhu, J., Quantum metrology of grid deformations
and squeezed light: with applications in quantum imaging & quan-
tum information, Doctoral Thesis, University of Sheffield, Copyright
201811.

uncertainties associated with the state-preparation procedure,
while the povm captures those associated with the measure-
ment stage. Together with Born’s rule, they model the proba-
bilistic nature of the measurement data.
The bounds in the previous section were derived for proba-

bility distributions p(x|θ). This immediately generalises to the
casewhere the probability distribution results from some quan-
tum mechanical process described above through Born’s rule.
A natural question iswhat is the best possible precision in θ that
can be obtained from (many copies of) ρ(θ)? By optimising
over all measurement strategies, the result to this question is
the quantum Cramér-Rao bound (qcrb), which lower bounds
the variance of any unbiased estimator that maps measured
data from quantum measurements to parameter estimations29.
It is of fundamental interest since it can be regarded as an
intrinsic property of the system, and is determined entirely by
the quantum Fisher information (qfi), which depends only on
the state ρ(θ). In the following section, we define the quantum
mechanical version of the Fisher information. We can derive
this via geometrical arguments on the probability space similar
to section III.

B. The quantum Fisher information

We will find an expression for the qfi inspired by the above
derivation of the classical Fisher information22,30. Notable
contributions to this extension were made by Wootters21,
Hilgevoord and Uffink31, and Braunstein and Caves22. We
restrict ourselves again to the case of a single parameter θ.
In the quantum mechanical case the expectation value of an
operator is given by the Born rule

〈A〉 = Tr[ρA] , (54)
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where ρ is the quantum state of the system and A is a self-
adjoint operator. In order to find the single parameter qfi we
again define a metric via the correlation between two observ-
ables A and B. There is, however, a complication. Since
observables in quantum mechanics generally do not commute,
the product AB is often not self-adjoint and cannot be con-
sidered an observable: (AB)† = B†A† = BA , AB. A nat-
ural remedy for this problem is to use the anti-commutator
{A, B} = AB + BA as the observable for the correlation:〈 1

2 {A, B}
〉
=

1
2

Tr[ρ{A, B}] =
1
2

Tr[A{ρ, B}]

≡ Tr
[
A Rρ(B)

]
, (55)

where we included a factor 1
2 for normalisation, andwe defined

the super-operator

Rρ(B) ≡
1
2
{ρ, B} , (56)

which plays the role of the metric with raised indices. We
can find the statistical distance by constructing the lowering
operator Lρ = R−1

ρ such that Lρ(Rρ(B)) = B. Explicit
verification shows that Lρ satisfies

Lρ(B) = 2
∑
jk

Bjk

pj + pk
| j〉 〈k | , (57)

where {| j〉} is the eigenbasis of ρ, with eigenvalues pj , and
Bjk is the matrix element of B corresponding to j and k. It
is similarly easy to show that Rρ(Lρ(B)) = B, which proves
that Rρ and Lρ are each others’ inverse operations. Note that
in this form the set of pure states is excluded from the space of
density matrices. However, we will show in section IVD that
we can also include pure states.

The lowering operator allows us to construct a scalar product
between density operators Tr[σ1Lρ(σ2)]. In particular, for
small changes in the density operator dρ we can construct the
infinitesimal quantum statistical distance dsQ

ds2
Q = Tr

[
dρLρ(dρ)

]
. (58)

The qfi is then given by the change of the quantum statistical
distance along the curve θ:

IQ(θ) ≡
(

dsQ
dθ

)2
= Tr

[
∂θ ρLρ(∂θ ρ)

]
, (59)

where again ∂θ ≡ ∂/∂θ.
The qfi in Eq. (59) is a Riemannian metric on the quantum

state space. Nagaoka32 and Braunstein and Caves22 show that
this quantum Fisher information can be attained by a judicially
chosen measurement. In other words, consider a measurement
M expressed in terms of its povm elements:

M =
∫

dx m(x) Π(x) , (60)

where m(x) is the real eigenspectrum of M . For the optimal
choice of M the qfi in Eq. (59) coincides with the Fisher

information in Eq (42), where p(x|θ) = Tr[Π(x)ρ(θ)] is the
probability distribution over the measurement outcomes of M .
The two necessary and sufficient conditions for M to be optimal
are that for all x

(1) Im Tr
[
ρΠ(x)Lρ(∂θ ρ)

]
= 0 ,

(2)
√
Π(x)√ρ

Tr[Π(x)ρ]
=

√
Π(x)Lρ(∂θ ρ)

√
ρ

Tr[ρΠ(x)Lρ(∂θ ρ)]
,

(61)

where Im denotes the imaginary part.
The qfi has a number of interesting properties33,34. First, it

is convex in the quantum states This means that for any two
states ρ1 and ρ2 we have

IQ(p1ρ1 + p2ρ2) ≤ p1IQ(ρ1) + p2IQ(ρ2) , (62)

with probabilities p1 and p2 such that p1 + p2 = 1. Moreover,
the qfi is additive for independent measurements

IQ(ρ1 ⊗ ρ2, θ) = IQ(ρ1, θ) + IQ(ρ2, θ) , (63)

as well as for direct sums:

IQ(p1ρ1 ⊕ p2ρ2, θ) = p1IQ(ρ1, θ) + p2IQ(ρ2, θ) . (64)

Second, for unitary evolutions U = exp(−iθG) generated by a
Hermitian operator G, the qfi does not depend on the position
along the orbit of U:

IQ(UρU†,G) = IQ(ρ,U†GU) = IQ(ρ,G) . (65)

It does not increase under cptp maps E [ρ] that do not depend
on the parameter of interest:

IQ(ρ, θ) ≥ IQ (E [ρ], θ) , (66)

and tracing out a subsystem cannot increase the qfi:

IQ(ρ,G1 ⊗ I2) ≥ IQ(Tr2[ρ],G1) . (67)

Adding white noise to the state of N particles, each described
in a d-dimensional Hilbert space, is equivalent to mixing in
the identity matrix, such that

ρ = p |ψ〉 〈ψ | + (1 − p)
I

dN
. (68)

The qfi then becomes

IQ(ρ, θ) =
p2

p + 1−p
2 d−N

IQ(ψ, θ) . (69)

Third, we can write the qfi for a unitarily evolved state in terms
of the generator G as

IQ(θ) = 4
∑
j,k

pj |〈 j |G |k〉|2 − 8
∑
j,k

pjpk
pj + pk

|〈 j |G |k〉|2 (70)

= 〈G2〉 − 8
∑
j,k

pjpk
pj + pk

|〈 j |G |k〉|2 , (71)
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where we used the diagonal form of the density operator
ρ =

∑
j pj | j〉 〈 j |. The qfi does not depend on the diagonal

elements of G, so we can write

IQ(ρ,G) = IQ(ρ,G + D) , (72)

where D is any diagonal matrix. Another way to express the
qfi for mixed states is via purifications35:

IQ(ρ, θ) = min
Ψ

(〈
ÛΨ
�� ÛΨ〉
−

��〈 ÛΨ��Ψ〉��2) , (73)

where |Ψ〉 is a purification of ρ. Another form is due to
Fujiwara and Imai36:

IQ(ρ, θ) = min
Ψ

〈
ÛΨ
�� ÛΨ〉

. (74)

Eqs. (73) and (74) are equivalent for the purification that
achieves the minimum. In other words, |〈 ÛΨ|Ψ〉|2 = 0 for
the minimal purification state |Ψmin〉.

C. Distance measures in quantum estimation

We momentarily return to the role of distance measures in the
definition of the qfi, and its relation to other distance functions
in classical and quantum parameter estimation.
The classical statistical distance induces a curvature in the

probability simplex that can be removed by introducing proba-
bility amplitudes, as shown in Eq. (47). Introducing a complex
phase in the amplitudes, xj → xjeiφ j , allows us to relate these
amplitudes to normalised vectors |ψ〉 in a complex Hilbert
space H whose distance to other vectors in H is then given
by the angle between them. In infinitesimal form, this gives
the Wootters distance21,37

ds2
W = (arccos|〈ψ |ψ + δψ〉|)2 , (75)

and the metric is called the Fubini-Study metric on the pro-
jective space R(H ) = H ⊗H . The pullback metric38, one
which pulls the metric from the codomain of R(H ) to the
domain of H , for the Fubini-Study metric is given by25

hFS =
〈∂θψ |∂θψ〉

〈ψ |ψ〉
−
〈∂θψ |ψ〉〈ψ |∂θψ〉

〈ψ |ψ〉2
, (76)

where |∂θψ〉 ≡ ∂θ |ψ〉. Assuming 〈ψ |ψ〉 = 1 then up to a
factor 4 this equals the qfi for pure states39

IQ(θ) = 4hFS = 4
[
〈∂θψ |∂θψ〉 − |〈∂θψ |ψ〉|

2] . (77)

When we extend the Fubini-Study metric to density operators
in R(H ) we obtain the Bures metric15,25,40 given in Eq. (58)

4 ds2
Bures = ds2

Q = Tr
[
dρLρ(dρ)

]
. (78)

The origin of the factor 4 is the same as in Eq. (47).
The Wootters distance between two quantum states |ψ〉 and
|φ〉 is closely related to the fidelity F = |〈ψ |φ〉|2 between the

states, ds2
W = (arccos

√
F)2. The corresponding fidelity for

mixed states is the Uhlmann fidelity41,42

F (ρ, σ) =
(
Tr

√
√
ρσ
√
ρ

)2
, (79)

and we can express the quantum statistical distance ds2
Q as

ds2
Q(ρ, ρ + dρ) = 8

[
1 −

√
F(ρ, ρ + dρ)

]
. (80)

The qfi can then be written in terms of the quantum fidelity
as22

IQ(θ) =
8
δθ2

[
1 −

√
F(ρ, ρ + δρ)

]
, (81)

which will allow for analytic expressions in a variety of cases.
Sometimes the square root of the Uhlmann fidelity in Eq. (79)
is used as an alternative definition. This form is referred to
as the quantity fidelity43 and has been shown to have better
fit with other quantities in quantum metrology44 and quantum
hypothesis testing45,46.

D. The Symmetric Logarithmic Derivative

The classical Fisher information is the expectation value of the
squared derivative of the logarithm of the probability distri-
bution, as shown in Eq. (24). In quantum estimation theory,
we can define a similar quantity, now an operator Lθ , that is
called the symmetric logarithmic derivative47,48 (sld), which
is equal to the lowering operator in Eq. (57) of the derivative
of ρ

Lθ = Lρ(∂θ ρ) . (82)

Moreover, the sld is implicitly defined by the relation

∂θ ρ =
1
2
(ρLθ + Lθ ρ) . (83)

The symmetric form of this definition is directly related to
the symmetrized definition of the correlation between quan-
tum observables 1

2 〈{A, B}〉 in Eq. (55) via the identification
with Lρ(∂θ ρ), which is a metric operator derived directly
from the inner product 1

2 〈{A, B}〉. Some intuition for the
definition of Lθ can be gained from the classical logarith-
mic derivative Lcl = ∂θ log p(x|θ), which gives the relation
∂θp(x|θ) = p(x|θ)Lcl (Note that Lcl is equal to the function
g(x, θ) in Eq. (22)). Replacing the classical probability distri-
bution p(x|θ) with a density operator introduces an ambiguity
in the operator order of ρ and Lθ , which is resolved by taking
the anti-commutator in Eq. (83).
To prove relation Eq. (82), we write Lθ in the eigenbasis of

ρ:

Lθ =
∑
jk

Ljk | j〉 〈k | and ρ =
∑
l

pl |l〉 〈l | , (84)
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and construct the operator form of Lθ

1
2
(Lθ ρ + ρLθ ) =

1
2

∑
jk

(
pj + pk

)
Ljk | j〉 〈k |

=
∑
jk

(∂θ ρ)jk | j〉 〈k | . (85)

Each matrix element of ∂θ ρmust match that of 1
2 (Lθ ρ+ ρLθ ),

and therefore we have

Ljk =
2(∂θ ρ)jk
pj + pk

. (86)

Substituting this back into Lθ we see that the sld in Eq. (86)
takes the same form as Lρ(∂θ ρ) in Eq. (57), and the identity
in Eq. (82) is proved. This identification unifies the geometric
interpretation of the qfi with its interpretation as a limiting
case of the classical Fisher information in the next subsection.

The qfi can now be written in terms of the sld Lθ by noting
that

IQ(θ) = Tr
[
(∂θ ρ)Lρ(∂θ ρ)

]
= Tr[(∂θ ρ)Lθ ]

=
1
2

Tr[(Lθ ρ + ρLθ ) Lθ ]

= Tr
[
ρL2

θ

]
. (87)

In the eigenbasis of the density operator ρ and using Eq. (59),
the qfi can then be written as

IQ(θ) = 2
∑
jk

|〈 j |(∂θ ρ)|k〉|2

pj + pk
. (88)

The sum extends over all j with nonzero pj . For vanish-
ing probabilities pj , the qfi becomes ill-defined and we have
to find an alternative way to define it49,50, such as through
Eq. (77). Alternatively, we review a regularisation procedure
in section VI which can be used to determine the qfi for pure
states from expressions valid for mixed states. From Eq. (88),
we observe that the qfi is dependent on the quantum state
and its derivative only, and not on the measurement that is
performed. In this sense, the qfi is a property of the state.

We also note that the qfi is the expectation value of the
square of the sld (i.e., its second moment), which prompts
us to ask what is the first moment of Lθ . Using the fact that
Tr[∂θ ρ] = 0, it is straightforward to show that Tr[ρLθ ] = 0.
This leads us to the important relations

〈Lθ〉 = 0 and IQ(θ) = 〈L2
θ〉 = (∆Lθ )2 , (89)

where (∆A)2 ≡ 〈A2〉 − 〈A〉2 is the variance of an operator A.
Next, we will show that the sld form of the qfi in Eq. (87)

originates from the maximisation over all possible measure-
ments in an estimation procedure22,32. This connects the geo-
metric interpretation of the qfi as the Bures metric in the space
of density operators to the statistical interpretation of the qfi
as the maximum amount of information about θ that can be
extracted on average in an optimal measurement. Using the

Born rule and the fact that the sld is traceless, the classical
Fisher information can be written as51

I(θ) =
∫

dx
(Re {Tr[ρ(θ)Π(x)Lθ ]})2

Tr[Π(x)ρ(θ)]
, (90)

Next, we maximise this quantity over all possible povms Π(x).
Given the complex vectors α, β ∈ C2, and Re[α]Re[β] ≤ |αβ|,
we develop Eq. (90) into

I(θ) ≤
∫

dx

�����Tr[ρ(θ)Π(x)Lθ ]√
Tr[Π(x)ρ(θ)]

�����2
=

∫
dx

�����Tr

[ √
ρ(θ)

√
Π(x)√

Tr[Π(x)ρ(θ)]

√
Π(x)Lθ

√
ρ(θ)

] �����2 , (91)

where equality holds if and only if Im[Tr[ρ(θ)Π(x)Lθ ]] = 0,
i.e. if the vectors lie in the real space R2. This requires the
sld to be Hermitian. Introducing (∆Lθ )2 as the variance of
the sld, we use the Schwartz inequality for the trace��Tr

[
AB†

] ��2 ≤ Tr
[
AA†

]
Tr

[
BB†

]
, (92)

to obtain:

I(θ) ≤
∫

dx Tr
[√
ρ(θ)Lθ

√
Π(x)

√
Π(x)Lθ

√
ρ(θ)

]
,

=

∫
dx Tr[ρ(θ)LθΠ(x)Lθ ],

= Tr
[
ρ(θ)L2

θ

]
,

(93)

where the final equality arises since integrating the povm gives
the identity. This completes the maximisation of the cfim over
all possible measurements. It shows that the classical Fisher
information for any measurement is upper bounded by the
quantum Fisher information (qfi)

I(θ) ≤ IQ(θ) = Tr
[
ρ(θ)L2

θ

]
= Tr[∂θ ρ(θ)Lθ ]. (94)

Note that the qfi is independent of the povm and is a function
of the state only.
As we observe from Eq. (84), the sld for mixed states often

requires diagonalising the density matrix. For arbitrarily large
s-dimensional states, this becomes increasingly difficult. To
address this difficulty, alternative methods at determining Lθ
have been developed. For example, it has been shown that
evaluating Lθ is isomorphic to solving a set of linear algebraic
equations52.
The implicit definition of the sld in Eq. (83) is a basis-

independent Lyapunov matrix equation that has the general
solution51

Lθ = 2
∫ ∞

0
ds exp [−ρ(θ)s] ∂θ ρ(θ) exp [−ρ(θ)s] . (95)

When ρ is not full rank we can still define Lθ in this way,
but some care needs to be taken in order to show that the qfi
is still well-defined53. The sld is not uniquely defined when
the state is not full-rank, since the part of the operator acting
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on the null-space of ρ is not specified. The qfi based on this
expression for the sld can then be written as

IQ(θ) = 2
∫ ∞

0
ds Tr[(∂θ ρ)e−ρs(∂θ ρ)e−ρs] . (96)

The Lyapunov representation proves to be very useful for sce-
narios in which a periodic nature is observed for the anti-
commutator of the density matrix and its partial derivative53.
When the evolution imparting the parameter θ onto the

quantum state ρ(θ) is a unitary transformation of the form
U = exp(−iθG) with G a Hermitian observable and the eigen-
values of ρ independent of θ, we can use the Lyapunov form
to find a particularly elegant expression for the qfi.

IQ(θ) = 2
∫ ∞

0
ds Tr[(∂θ ρ)e−ρs(∂θ ρ)e−ρs]

= −2
∫ ∞

0
ds Tr

[
([G, ρ]e−ρs)2

]
.

(97)

Braunstein, Caves and Milburn showed how the qfi can be
lower bounded by the generator through30

IQ(θ) ≤ 4(∆G)2 . (98)

When the probe state is pure (ρ2 = ρ), we obtain

IQ(θ, ψ) = 4(∆G)2 , (99)

which can often be found analytically.
Finally, we address the issue that the sld, as defined in

Eq. (86) becomes singular for pure states. Nevertheless, there
is a simple expression for the qfi for pure states, as shown in
Eq. (99). We can also find a simple expression for the sld
when ρ is pure. Using ρ2 = ρ, differentiating with respect to
the parameters θ and comparing with the definition Eq. (83)
we arrive at

Lθ = 2∂θ ρ = 2i[ρ,G] , (100)

wherewe relate the sld to the vonNeumann equation ofmotion
describing the dynamics of the system.

The calculation of the qfi for any physical system is at
the heart of quantum metrology and is typically a difficult
task. Determining the qfi using the sld operator is partic-
ularly suited to unitary quantum metrology. It is less suited
for noisy processes, where the calculation involves complex
optimisation procedures35,54. To address this, an extended
Hilbert space approach may be taken where information about
the parameter is obtained by observing both the system and
its environment55. This method prescribes the qfi in terms
of the state evolving Hamiltonian, and is well suited to many
physical implementations of parameter estimations, including
open quantum systems56–59.

E. The quantum Cramér-Rao bound

In this section we will derive qcrb (or theHelstrom bound) for
a single parameter θ. We follow Helstrom’s original deriva-
tion47 that employs the sld. First, we consider a measurement

M on a system in state ρ that serves as an estimator for θ. In
other words, the expectation value Tr[ρM] provides an esti-
mate for the particular measurement result with a possible bias
b(θ) = Tr[ρ(M − θ)]. We can take the derivative of the bias
with respect to θ to obtain

∂θb(θ) = Tr[(M − θ)∂θ ρ] − 1 , (101)

where we assume that M does not itself depend on θ, since
the measurement should work for a sufficiently wide range of
parameters around θ. This is an important caveat that we will
return to when we wish to determine the optimal estimator in
section VC. We next square Eq. (101), and together with the
sld and the Schwarz inequality for the trace we get

(1 + ∂θb)2 = Tr[(M − θ)∂θ ρ]2

=
1
4

Tr[(M − θ) (Lθ ρ + ρLθ )]2

= (Re Tr[(M − θ)ρLθ ])2

≤ |Tr[(M − θ)Lθ ρ]|2 =
��Tr

[√
ρ(M − θ)Lθ

√
ρ
] ��2

≤ Tr
[
ρL2

θ

]
Tr

[
ρ(M − θ)2

]
. (102)

Identifying Tr[ρ(M − θ)2] with the mse in θ, we arrive at the
quantum Cramér-Rao bound (qcrb)

Var θ = Eρ
[
(M − θ)2

]
≥
(1 + ∂θb)2

Tr[ρL2
θ ]
= (1 + ∂θb)2I−1

Q (θ) , (103)

where we have identified Tr[ρL2
θ ] with the qfi IQ(θ). Note

that for types of bias with negative derivatives the mse appears
to be better than in the case of an unbiased estimator (b =
0). This can cause some confusion when comparing the mse
with a pre-calculated value of the qfi. When N independent
measurements aremade using an unbiased estimator, additivity
of the qfi implies that the resulting bound is given by

Var θ ≥
1

NIQ
. (104)

This is the form of the crb for a single parameter that is mostly
used.
The qcrb, together with the bound in Eq. (98) on the qfi,

leads immediately to a familiar result. For a single shot mea-
surement (N = 1) Eq. (104) becomes

Var θ ≥
1

4(∆G)2
. (105)

When we define Var θ = (δθ)2, this leads to30

δθ ∆G ≥
1
2
, (106)

and can be interpreted as an uncertainty relation for a quan-
tity θ and its generator of translations G. While Heisenberg’s
uncertainty relations are typically derived for conjugate ob-
servables like position and momentum, Eq. (106) allows us
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to define uncertainty relations between energy and time, or
angular momentum and rotation angles where Robertson in-
equalities cannot be constructed due to a lack of self-adjoint
operators for time and rotation angles.

The next question to address is how to find the optimal
estimator that saturates the qcrb. First, does there exist a
measurement for which the qfi equals the classical Fisher
information? And if so, what is this measurement? To answer
these questions, we recall the error propagation formula from
Eq. (1):

Var θ =
(∆M)2

|d〈M〉/dθ |2
. (107)

This formula relates the variance in the parameter θ to
the variance of the operator M that is used to estimate θ.
Helstrom48 states that the qcrb is saturated if and only if
Lθ = k(θ)(Mopt − θ), with Mopt the optimal measurement
strategy that saturates the qcrb and k(θ) some function that
does not depend on Mopt. Choosing

Mopt = θ I +
Lθ

IQ(θ)
, (108)

with k(θ) = IQ(θ), we can prove that Var θ saturates the qcrb.
Notice that although any general measurement will not depend
on the true parameter, the optimal measurement may. For the
optimal measurement in Eq. (108) the bias vanishes: b(θ) =
Tr[ρ(Mopt − θ)] = 0. From Eq. (89) we calculate that

〈Mopt〉 = θ and
d〈Mopt〉

dθ
= 1 , (109)

and

〈M2
opt〉 =

〈
θ2 + 2θ

Lθ
IQ
+

L2
θ

I2
Q

〉
= θ2 +

1
IQ

. (110)

From this, we find that Var θ = I−1
Q , which saturates Eq. (104).

In addition, for the optimal measurement to saturate the qcrb,
the right-hand side of Eq. (101) must be zero. Substituting
Eq. (109) into Eq. (101) shows that this is indeed the case.
The dependence of Mopt on θ ensures that when θ changes, the
expectation value of the estimate changes accordingly.

So there indeed does exist an estimator that saturates the
qcrb, but it generally depends on the unknown parameter θ.
It was shown by Braunstein and Caves22 that the optimal

measurement for θ is a von Neumann measurement that con-
sists of projections onto the eigenstates of the sld Lθ . How-
ever, Lθ generally depends on the unknown value of θ, and it
may not be possible to choose the optimal estimator at the out-
set60. Since the qcrb, like the classical crb, is an asymptotic
bound on the variance of θ, many measurements must be made
before the bound is saturated, and this allows for adaptive mea-
surements that converge to the optimal measurement1,32,61.

F. The role of entanglement

Consider an experiment that estimates a parameter θ. The
experiment is repeated N times under identical conditions,

and each time the average information that is extracted about
θ is given by the qfi. Since the Fisher information is additive
for independent measurements, the total information in the N
experiments is NIQ, leading to the crb in Eq. (104). The Root
Mean Square Error (rmse) then behaves as

δθ ≥
1√

NIQ
. (111)

The square-root scaling 1/
√

N of δθ is called the Standard
Quantum Limit (sql), or shot-noise limit. This is the best pos-
sible performance for a classical estimation procedure, i.e., es-
timation procedures that do not employ entangled probe states.
To see how we can improve over Eq. (111), we consider the

case where the parameter is imparted on the quantum state via
the unitary evolution exp(−iθG), such that the qfi takes the
form

I(max)
Q
(θ) = 4(∆G)2 . (112)

To maximise the qfi is therefore to maximise (∆GN )
2 over the

state of the N physical systems. Clearly, when each experiment
is independent, the variances (∆GN )

2 add, such that (∆GN )
2 =

N(∆G)2 and we recover the sql in Eq. (111). However, we can
also prepare the N systems in a suitable entangled state. This
will allow us to increase (∆GN )

2 substantially, scaling instead
with N2. The qcrb then becomes

Var θ ≥
α

N2 , (113)

where α is some constant, typically of order unity. This leads
to an rmse that scales with N−1:

δθ ∼
1
N
. (114)

This is called the Heisenberg limit, and it is the ultimate limit
for quantum parameter estimation62.
To see how such a precision can be achieved, we consider

the optical noon state6,7,63–65

|ψ〉 =
|N, 0〉 + |0, N〉

√
2

, (115)

where |N〉 is the N-photon Fock state. This is a two-mode
entangled state that is extremely challenging to make in the
lab66,67, but it serves as a clear proof of principle. Assuming
a simple phase shift θ in the second mode, the noon state
evolves to

|ψ(θ)〉 =
|N, 0〉 + eiNθ |0, N〉

√
2

, (116)

where each photon in the second mode picks up a phase eiNθ .
We calculate the qfi using the expression in Eq. (77)

IQ(θ) = 4〈∂θψ(θ)|∂θψ(θ)〉 − 4 |〈∂θψ(θ)|ψ(θ)〉|2 . (117)

The derivative of the state is given by

|∂θψ(θ)〉 = −
iNeiNθ
√

2
|0, N〉 , (118)
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FIG. 6. General parallel parameter estimation strategies. The initial
probe states, ρ(0) are represented by the circles on the left. The probe
states may be entangled before passing through an evolving channel,
illustrated by the grey central squares. The state passes through
another potentially entangling evolution and is finally measured using
local povms Πj , represented by the blue polygons on the right. This
setup allows for four classes of estimation, where the input states
many be entangled or not (Q/C on the left), and where the input state
may be subjected to entangled or separable measurement observables
(Q/C on the right). Figure adapted with permission from Sidhu, J.,
Quantum metrology of grid deformations and squeezed light: with
applications in quantum imaging & quantum information, Doctoral
Thesis, University of Sheffield, Copyright 201811.

and the qfi becomes IQ = N2, as required. To complete the es-
timation procedure, practical measurement observables were
proposed by Pryde et al.68 and Cable et al.69. A similar argu-
ment can be constructed using Greenberger-Horne-Zeilinger
(ghz) states70.

To understand more generally how quantum entanglement
can improve the estimation precision, Giovannetti, Lloyd and
Maccone classified various metrology approaches62. They
unified parallel and adaptive sequential strategies into a gen-
eral framework shown in Fig. 6. The unitary evolutions U
imparting the parameter are again of the formU = exp(−iθG).
This classification allows for classical or quantum state prepa-
ration and measurement procedures, resulting in four different
classes of experiments: classical states and classical mea-
surements (cc), classical states and quantum measurements
(cq), quantum states and classical measurements (qc), and
both quantum states and measurements (qq). Here, we under-
stand by “classical” that the input state is separable, and the
measurement projects onto separable povm elements. Since
the qcrb is determined by the quantum state via the qfi, no
quantum entangling strategies at the measurement stage can
introduce further enhancements to the estimation procedure
than what is already present in the quantum state. Therefore
the cc and cq strategies will always yield at best the sql71.
Any resolution enhancements must then be sourced from the
probe preparation. Bound entanglement can also surpass the
shot noise limit72,73.

Toth74 showed that for qubits, genuine multi-partite entan-
glement is required to achieve the Heisenberg limit. Consid-
ering three possible parameters θx , θy and θz generated by the

Pauli operators σx , σy , and σz , the following general results
hold:

1. for N-qubit separable states the qfi is bounded by∑
j IQ(θ j) ≤ 2N and for a single parameter IQ(θ j) ≤ N;

2. for general N-qubit quantum states
∑

j IQ(θ j) ≤ N(N +
2),

3. for k-producible states, where a pure state is k-produ-
cible if it is a tensor product state of at most k qubits,
IQ(θ j) ≤ nk2 + (N − nk)2, where n is the integer part of
N/k.

4. the sum of the qfi’s for each parameter is bounded by∑
j

IQ(θ j) ≤ nk(k + 2) + (N − nk)(N − nk + 2) (119)

if N − nk , 1, and∑
j

IQ(θ j) ≤ nk(k + 2) + 2 (120)

if N − nk = 1;
5. for multi-partite quantum states with M unentangled

particles
∑

j IQ(θ j) ≤ M + (N − M)(N − M + 2).

The broader question of how useful quantum states are for
quantum metrology was answered by Oszmaniec et al.75, who
showed that pure states chosen randomly from the symmet-
ric subspace typically achieve the optimal Heisenberg scaling
without the need for local unitary optimisation. Further, an ex-
plicit non-random choice of symmetric probe states with error
correction capabilities has recently been demonstrated useful
for robust metrology76. In this work, it was shown that if the
probe state lies within the code space of certain permutation-
invariant quantum codes77, a precision enhancement is pos-
sible even in the presence of noise. Other symmetric states
have been considered for robust quantum metrology78. These
studies reflect the current area of intense research on error
correction inspired robust metrology, where quantum error
correction is not applied. This removes the requirement for
feed-forward and error-correction, which reduces the difficulty
and practicality of implementing practical quantummetrology.
These methods are motivated by the near term emergence of
noisy quantum devices; the so-called noisy intermediate-scale
quantum (nisq) era. We review fault-tolerant quantummetrol-
ogy methods later in section VII.

The entanglement requirements above can be turned on their
head, such that a qfi in excess of a certain value indicates that
at least genuine k-partite entanglement must be present in the
quantum state. This is a so-called entanglement witness79–82.
In other words, the difference in precision scaling can be used
to deduce whether entanglement is present in the probe state.
Relaxing the Heisenberg limit to δθ ∼ 1/N1−ε for any ε > 0,
the amount of entanglement required can be made arbitrarily
small83.
The bounds established by Toth on the qfi holds for qubits

undergoing unitary evolutions exp(−iθ jσj/2). The question
remains whether other types of evolution can lead to a different
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scaling. Indeed, when the generator of translations in θ is
a multi-particle Hamiltonian, the estimation precision in an
experiment using N particles can scale with N−m for some
m > 1, or even 2−N , as shown by Boixo et al.84 and Roy and
Braunstein85, respectively. The key feature of these schemes
is that the norm of the Hamiltonian is large. These results
cannot be compared directly with the Heisenberg limit, since
the evolution in those generalised scaling laws is generated
by fundamentally different physical processes than the typical
single-particle evolution exp(−iθG).
Oneway to understand these limits is via the query complex-

ity of the estimation procedure86. In the standard parameter
estimation procedure each particle evolves according to the ef-
fective Hamiltonian G. However, for systems with a bi-partite
Hamiltonian Hjk = G j ⊗ Gk each evolution requires a pair of
particles. Each pair is now a query of the parameter θ, and for
N particles there are Q = 1

2 N(N − 1) queries. This structure
generalises to multi-partite Hamiltonians. The precision limit
always scales at most linearly with the number of queries, not
the number of particles86–89.

G. Non-entangling strategies

The entanglement strategies in the previous section refer to
systems consisting of distinguishable particles. A different
situation arises in quantum optics, where at least in princi-
ple, non-entangled states can achieve sub-shot noise precision.
In particular, the squeezed vacuum can be used to suppress
the fluctuations due to shot noise90,91. Other states that have
been used to attain the Heisenberg limit are the class of en-
tangled coherent states (ecs)92–94. For phase estimations in
a Mach-Zehnder interferometer, ecs have demonstrated better
precision scalings than noon states95. Even in a lossy interfer-
ometer, ecs can still beat the shot-noise limit for modest loss
rates96.

Nevertheless, generating highly entangled states is practi-
cally difficult for two main reasons. First, the photonic over-
head increases exponentially with the number of entangled
modes and second, the fidelity decreases due to decoherence
processes97. Furthermore, despite the results in the previous
section the use of quantum entanglement as a resource is still
poorly understood. Specifically, the performance of noon
states for optical phase imaging performs worst in compari-
son with the class of other states including entangled coher-
ent states, entangled squeezed coherent states, and entangled
squeezed vacuum98. This suggests that mode entanglement
alone is not sufficient to provide certain precision enhance-
ments. Indeed, too much entanglement is detrimental to at-
taining the Heisenberg scaling in the estimation of unitarily
generated parameters99. Similarly, the estimation precision
of n optical phase differences can be enhanced by using an
n-mode entangled state as input in a multi-mode interferom-
eter100–102. However, this precision enhancement has also
been matched using separable states with equal number of
modes103. This has been demonstrated theoretically for spa-
tial distinguishability of different light emitters104. Alternative
approaches to achieve quantum enhanced measurements have

been investigated105. These methods rely on the use of quan-
tum correlations, and nontrivial Hamiltonian extensions.

H. Optimal estimation strategies

Once the fundamental limits to the precision of parameter es-
timations have been determined, a natural question that arises
is given that all classical noise has been eliminated, how can
we identify the measurement(s) that practically saturate these
bounds? Optimal measurements can be constructed from the
eigenstates of the sld51. In almost all cases, determining the
measurement that corresponds to this theoretical description
is difficult. Generally it depends on the parameters that we
would like to estimate.
Adaptive strategies have been suggested to circumvent the

parameter dependence of the optimal measurements106. Wise-
man showed that feedback control of the phase of a local oscil-
lator can approximate the measurement of the phase quadra-
ture in an optical mode107. This was demonstrated experi-
mentally by Armen et al.108 By adaptively changing the phase
in one arm of a Mach-Zehnder interferometer, nearly optimal
measurement of the relative phase given N input photons can
be achieved109,110. This technique was extended to narrow-
band squeezed beams by Berry and Wiseman111,112. Fujiwara
proved that a sequence of maximum likelihood estimators is
asymptotically efficient for adaptive quantum parameter esti-
mation113. Okamoto et al. use this technique to estimate the
phase between left- and right-handed circular polarisation of
single photons114. For a review of quantum feedback control
techniques, see Serafini115. Palittapongarnpim and Sanders
proposed tests to see whether adaptive strategies in quantum
metrology are robust against phase noise116.

Achieving the Heisenberg limit is state dependent. How-
ever, the probe state chosen should be tailored to achieve the
best practical precision for a specific parameter. For exam-
ple, squeezed light is routinely used for phase estimations117.
A natural question to ask is what is the optimal probe state
that maximises the qfi for a parameter estimation protocol?
This was answered by Braunstein, Caves and Milburn30 and
Giovannetti, Lloyd and Maccone62 in the context of unitary
evolutions exp(−iθG). The optimal probe state is an equal
superposition of eigenstates corresponding the minimum and
maximum eigenvalues of the generator G. These states are
generally difficult to prepare.

Only very few experiments have reported a Heisenberg limit
scaling for parameter estimates118,119. This is generally due
to two factors. First, achieving the sql is already practically
difficult since it requires eliminating all non-intrinsic system
noises. Second, state entanglement of multipartite systems
is challenging to realise due to their increasing susceptibil-
ity to environmental losses with increasing particle number.
For example, the path-entangled noon states in Eq. (115) can
be shown to achieve the Heisenberg limit resolution scaling
for phase measurements in optical interferometers24, but for
larger photon number the loss of a single photon becomes in-
creasingly likely, and this completely destroys the capability
of measuring the parameter θ.
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Even modest Markovian noise reduces the Heisenberg limit
scaling achievable by highly entangled states to scalings pro-
portional to the sql7,35,120. Common decoherences include
depolarisation, dephasing and amplitude damping. Owing to
the difficulty and stabilisation of highly entangled states, alter-
native approaches to achieve quantum enhancedmeasurements
have been investigated105. These methods rely on the use of
quantum correlations and identical particles such as photons.

I. Numerical approaches

As has been shown so far, if the qfi is known, the fundamental
precision bound is known and the optimal measurement strat-
egy can be determined. Often however, it is not possible to
find the qfi analytically, for example when probe states with a
large rank are used. In those cases a numerical approach may
be better suited.

Saturating the qcrb requires a suitable choice of estimator,
which can be found numerically. Unfortunately, the numeri-
cal method required to determine a well-behaved and efficient
estimator depends on the estimation problem, since the proce-
dure will generally depend on how the parameters are encoded
in the state. However, a common procedure used is maximum
likelihood estimation, which given its simplicity, has found
widespread use in estimation theory. The maximum likeli-
hood procedure attempts to find the values of the parameters θ
that maximise the log likelihood function ln[p(x |θ)]. In some
circumstances this may be as simple as taking the derivative of
the likelihood function and equating it to zero to find the max-
imum. However, this is not always a straightforward operation
and alternative methods for obtaining the maximum likelihood
estimator must be used.

Numerically, the maximum likelihood estimator may be im-
plemented via an iterative scoring algorithm2. Defining the
kth iteration of the estimator by θ̌(k), the scoring algorithm
proceeds according to the iterative equation

θ̌
(k+1)
(x) = θ̌(k)(x) + I−1

Q

[
θ̌
(k)] ∂ ln [p(x|θ)]

∂θ

���
θ=θ̌

(k) . (121)

Based on any information on the system, by taking an ini-
tial guess of the parameters θ̌(0), successive iterations of the
scoring algorithm generate estimates that more closely approx-
imates the true value. For open quantum systems the Markov
chain Monte Carlo integration and Metropolis Hastings algo-
rithm are better suited than the scoring algorithm121.

V. MULTI-PARAMETER QUANTUM ESTIMATION

In this section, we review enhanced quantum parameter esti-
mation of multiple parameters simultaneously. Many practical
high-precision estimation protocols require a multi-parameter
estimation approach. This includes the estimation of mul-
tiple phases100,122–124, characterisation of multidimensional
fields99,125,126, and Hamiltonian tomography127,128.
Multi-parameter quantum metrology raises two important

questions. First, what is the attainability of the multi-

parameter qcrb. If the slds for each parameter are mutually
compatible—that is they commute with each other—then a
simultaneous, optimal estimate for all of the parameters can
be made in their common eigenbasis. If the optimal measure-
ments corresponding to the different slds for each parameter
do not commute, a compromise between the estimation pre-
cision for each parameter must be addressed. Second, what
is the tradeoff between estimation precision enhancement and
the physical resources used to attain it129? Specifically, is it
better to estimate a tuple of parameters simultaneously or se-
quentially? Addressing these questions will help in the design
of novel estimation schemes that propel precisions closer to
the Heisenberg limit.
In this section we will first derive the qfi matrix for multi-

ple parameters, and construct the corresponding Cramér-Rao
bound. We consider alternatives to the qfi, based on the right
logarithmic derivative, as well as the Kubo-Mori information
and the Wigner-Yanase skew information. We conclude this
section with a discussion of the Holevo bound and the general
attainability of the qcrb.

A. The quantum Fisher information matrix

The qfi in section IV produces a real positive number associ-
ated with a single parameter θ that can be written as an inner
product

IQ(θ) = Tr
[
∂θ ρLρ(∂θ ρ)

]
. (122)

For multiple parameters θ = (θ1, . . . , θD) the qfi becomes a
matrix, since the generalisation to the D-dimensional param-
eter space creates a natural two-form40

[IQ(θ)]jk = Tr
[
∂j ρLρ(∂k ρ)

]
, (123)

where j, k = {1, 2, . . . ,D}. If we furthermore associate a new
sld Lj = Lρ(∂j ρ) with each parameter θ j :

∂j ρ =
1
2

(
Lj ρ + ρLj

)
, (124)

where ∂j ≡ ∂/∂θ j , then in terms of the slds the qfi matrix
becomes

[IQ(θ)]jk =
1
2

Tr
[
ρ{Lj, Lk}

]
. (125)

The anti-commutator appears due to the possibility of a
nonzero commutator between Lj and Lk . Since the optimal
estimator for θ j is given by the projectors along the eigenvec-
tors of Lj , it is clear that in general non-commuting Lj and Lk

will cause trouble for the simultaneous estimation of θ j and
θk . Nevertheless, the qfi matrix is well-defined, and we can
write for the matrix elements

[IQ(θ)]lm =
∑
jk

2
pj + pk

〈 j |(∂lρ)|k〉〈k |(∂mρ)| j〉 , (126)

which again is hard to calculate in general, and does not include
pure states.
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When ρ = |ψ〉 〈ψ | is a pure state and the evolution of the
parameters is given by exp(−iθ jG j) with G j the self-adjoint
generators of θ j , the state |ψ〉 obeys the Schrödinger-like equa-
tions

i ∂j |ψ〉 = G j |ψ〉 . (127)

The sld Lj can then be written as

Lj = 2∂j ρ = 2 (|∂jψ〉 〈ψ | + |ψ〉 〈∂jψ |) , (128)

with |∂jψ〉 = ∂j |ψ〉. By substituting the sld into Eq. (125),
we obtain

[IQ(θ)]jk = 4Re
(
〈∂jψ |∂kψ〉 − 〈∂jψ |ψ〉〈ψ |∂kψ〉

)
. (129)

This is the multi-parameter quantum Fisher information for
pure states and simple unitary evolution. We obtain a particu-
larly useful form for IQ(ψ, θ)when we relate the derivatives of
|ψ〉 to the generatorsG j associated with θ j . Eq. (125) becomes

[IQ(θ)]jk = 4
(
〈ψ |

1
2
{G j,Gk}|ψ〉 − 〈ψ |G j |ψ〉〈ψ |Gk |ψ〉

)
≡ 4 CovS(G)jk ,

(130)

where we defined G = (G1, . . . ,GD), and

CovS(G)jk = 〈ψ |
1
2
{G j,Gk}|ψ〉 − 〈ψ |G j |ψ〉〈ψ |Gk |ψ〉

(131)

is the symmetrised covariance matrix for G. This can also
be written in terms of a non-symmetrised covariance matrix
Cov(G) according to

CovS(G)jk =
1
2

[
Cov(G)jk + Cov(G)k j

]
, (132)

where Cov(G)jk = 〈ψ |G jGk |ψ〉 − 〈ψ |G j |ψ〉〈ψ |Gk |ψ〉. An
alternative form for IQ(θ) is then

[IQ(θ)]jk = 4Re Cov(G)jk . (133)

When all G j commute with each other, the covariance matrix
Cov(G) is real. The expressions in Eqs. (130) and (133) are
the multi-parameter generalisations of Eq. (99). The multi-
parameter qfi is a manifestly symmetric positive semi-definite
matrix, and like the classical Fisher informationmatrix it trans-
forms as a tensor under re-parameterisation. Defining again a
new set of variables ϑ through some invertible transformation
Jacobian matrix, J, such that ϑ = Jθ, then the qfim for the
new parameters may be written

IQ(ϑ) = J>IQ(θ)J, with Jkl =
∂θk
∂ϑl

. (134)

We can bound the qfi for general mixed states by the covari-
ance matrix, just as we did for a single parameter in Eq. (98).

We start with the general definition in Eq. (125) and note that
we can modify the derivative of ρ according to

∂j ρ = −i[G j, ρ] = −i[G j − 〈G j〉, ρ] ≡ −i[∆G j, ρ] , (135)

where we defined 〈G j〉 = Tr[ρG j]. Using ∆G ≡ G − 〈G〉, the
sld for θk is then

Lρ(∂k ρ) = −2i
∑
lm

[∆Gk, ρ]lm
pl + pm

|l〉 〈m|

= 2i
∑
lm

pl − pm
pl + pm

〈l |∆Gk |m〉 |l〉 〈m| . (136)

Similarly, we find

∂j ρ = −i
∑
n

pn
(
∆G j |n〉 〈n| − |n〉 〈n| ∆G j

)
. (137)

Putting this together in Eq. (126), we obtain

[IQ(θ)]jk = 2
∑
lm

(pl + pm)
(

pl − pm
pl + pm

)2
〈l |∆Gk |m〉〈m|∆G j |l〉 .

(138)

Writing this in symmetric form and noting that(
pl − pm
pl + pm

)2
≤ 1 and

∑
lm

(pl + pm)Alm = 2
∑
lm

pl Alm ,

(139)

for any symmetric matrix A and probabilities 0 ≤ pm ≤ 1, we
infer that

[IQ(θ)]jk ≤ 4Tr
[
ρ

1
2
{∆G j,∆Gk}

]
. (140)

When ρ is a pure state, the trace reduces to the matrix element
CovS(G)jk in Eq. (131). We can therefore define a more gen-
eral symmetrized covariancematrix for the generators of trans-
lation CovS(G)jk = Tr[ρ 1

2 {∆G j,∆Gk}]. Similarly it is easy
to show that we can cast the qfi matrix in non-symmetric form
using the real part of a suitably generalised non-symmetric
covariance matrix for the generators.
Returning for the moment again to the qfi matrix for pure

states, another useful form for IQ(θ) in Eq. (129) is130

[IQ(θ)]jk = 4∂(1)j ∂
(2)
k

log|〈ψ(θ(1))|ψ(θ(2))〉|
���
θ(1)=θ(2)=θ

.

(141)

This can be easily shown by explicitly evaluating the deriva-
tives. The expression then reduces to Eq. (129).

In Lyapunov form, the qfi for multiple parameters becomes

[IQ(θ)]jk = 2
∫ ∞

0
ds Tr

[
(∂j ρ)e−ρs(∂k ρ)e−ρs

]
. (142)

We can use this form to construct an analytic expression for
the qfi without having to evaluate the integral131. It makes use
of the concept of vectorisation of matrices, denoted by vec A
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of a matrix A, where the columns of a matrix are put below
each other in a single column:

[IQ(θ)]jk = 2 vec(∂j ρ)† (ρ∗ ⊗ I + I ⊗ ρ)−1 vec(∂k ρ) . (143)

Similarly, we can construct the sld:

vec Lj = 2 (ρ∗ ⊗ I + I ⊗ ρ)−1 vec(∂j ρ) . (144)

These expressions are valid for finite-dimensional systems, and
can be calculated directly based on matrix forms of the density
matrix ρ and its derivatives ∂j ρ. When ρ is pure, the inverse
(ρ∗ ⊗ I + I ⊗ ρ)−1 does not exist. However, we can circumvent
this problem by using instead the density matrix

ρε = (1 − ε)ρ + ε
I

d
, (145)

where d is the dimension of the Hilbert space of ρ. Calculating
the qfi and sld based on ρε , and taking the limit of ε → 0
then retrieves the forms of the qfi and sld for pure states131.

B. The quantum Cramér-Rao bound

Now that we have the qfi matrix in terms of the slds Lj

associated with θ j , as given in Eq. (136), we can derive the
multi-parameter quantum Cramér-Rao bound. This inequality
was originally first derived byHelstrom13,48 and is occasionally
referred to as the Helstrom bound. We start with the following
identity for unbiased estimators

Tr
[
(∂j ρ)(Mk − θk)

]
= δjk , (146)

where Mk is the estimator for θk and δjk is the Kronecker delta.
Using the sld, this can be written as

δjk =
1
2

Tr
[
(ρLj + Lj ρ)(Mk − θk)

]
. (147)

Next, we introduce two real-valued vectors y and z such that∑
k

zk yk =
1
2

∑
jk

Tr
[
zj(ρLj + Lj ρ)(Mk − θk)yk

]
= Re Tr

[
ρ

(∑
j

zjLj

) (∑
k

yk(Mk − θk)

)]
.

(148)

We can square both sides of the equation, and note that
(Re u)2 ≤ |u|2, with equality if and only if Im u = 0:

(z>y)2 ≤

�����Tr

[
ρ

(∑
j

zjLj

) (∑
k

yk(Mk − θk)

)]�����2 , (149)

where z>y is the standard dot product between two real-valued
vectors. Using the Schwarz inequality for traces in Eq. (92),
we can write Eq. (149) as

(z>y)2 ≤ Tr
ρ

(∑
j

zjLj

)2Tr
ρ

(∑
k

yk(Mk − θk)

)2
≡ (z>IQz)(y> Cov(θ) y) ,

(150)

where we identified the qfi matrix and defined the covariance
matrix

Cov(θ)jk = Tr
[
ρ(Mj − θ j)(Mk − θk)

]
. (151)

For the choice of z = I−1
Q y, we obtain the inequality

y> Cov(θ) y ≥ y>I−1
Q y . (152)

This bound is valid for any real vector y, and therefore simpli-
fies to

Cov(θ) ≥ I−1
Q , (153)

where the matrix inequality A ≥ B means that A − B is a pos-
itive semi-definite matrix. This is the famous multi-parameter
quantum Cramér-Rao bound. Given that the qfi elements
transform as a metric tensor, the qfi for the vector of param-
eters ϑ can be written in terms of the qfi for θ, and the qcrb
becomes

Cov(ϑ̌) ≥ IQ(ϑ)−1 = J−1IQ(θ̌)−1[J>]−1. (154)

where J is the transformation Jacobian with matrix elements
Jkl = ∂θk/∂ϑl .
We can immediately infer the mse of a parameter θ j as

Var θ j ≥ [I−1
Q ]j j , (155)

since the variances are the diagonal elements of the covariance
matrix. Note that [I−1

Q ]j j ≥ [IQ]
−1
j j , since the qfi is a positive

definite matrix. Given a covariance matrix and a positive-
definite risk matrix R, we can balance the precision of the
various parameters. This leads to the inequality

C ≡ Tr[R Cov(θ)] ≥ Tr
[
RI−1

Q

]
≡ CQ . (156)

The qcrb for a single parameter can in principle be achieved
asymptotically by a suitable measurement. The question is
whether themulti-parameter qcrb can be attained. We explore
this in the next subsection.

C. Saturating the quantum Cramér-Rao bound

The the optimal unbiased quantum estimators that saturate the
qcrb takes the form

Mj(θ) = θ j1 + [IQ(θ)
−1 · L]j, (157)

which form a set of self-adjoint operators51. They are lin-
ear combinations of the slds L = (L1, . . . , LD). Determining
the measurement Mj(θ) is typically a difficult task, since it
depends on θ. To overcome this difficulty, adaptive measure-
ments have been suggested109,110. An important caveat to the
multi-parameter qcrb is that the qcrb for multiple parame-
ters is generally not saturable, since the optimal observables
in Eq. (157) may not be compatible. It is easy to see that this
may occur when the slds associated with the parameters do
not commute. However, there is a bit more to it than that.
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To explore the attainability of the multi-parameter qcrb, we
consider a more general bound derived by Holevo32,132.

C ≥ min
{Mj }

(
Tr[R Re J] +




√R (Im J)
√

R




1

)
≡ CH , (158)

where R denotes a positive definite weight matrix, and Jjk =
Tr[MjMk ρ(θ)] and ‖·‖1 is the trace norm133. The bound in
Eq. (158) is the Holevo Cramér Rao bound (hcrb) and defines
a scalar lower bound on the weighted mean square error and
represents the best precision attainable with global measure-
ments on an asymptotically large number of identical copies
of a quantum state134–137.
Despite its importance for practical metrology, the hcrb

has seen limited use in multi-parameter quantum metrology.
This is due to the non-trivial optimisation over a set of ob-
servables and the implementation of global measurements is a
difficult task. However, few results that use the hcrb do exist
for qubit state estimation138, two-parameter estimation with
pure states1 and two-parameter displacement estimation with
two-mode Gaussian states139,140. A recent study by Albarelli
et al. investigated the numerical tractability of calculating the
hcrb for multi-parameter estimation problems141, and an al-
gorithm for finding a closed analytic form for the hcrb for two
parameters was presented by Sidhu et al.142.
The inequality in Eq. (158) follows32 from the lemma that

given the identity
∫
Ω

f (ω)M(dω) = F we have∫
Ω

| f (ω)|2M(dω) ≥ FF† , (159)

where M is an observable with outcomes in Ω, f (ω) a
complex function on Ω, and F an operator. We choose
f (θ̌) =

∑
j ξj(θ̌ j − θ j) and F =

∑
j ξjMj , substitute them

into Eq. (159) and take the expectation value with respect to
ρ. Taking into account a risk matrix R and optimising over all
Mj we obtain Eq. (158).
The Holevo form of the qcrb can be attained when the

statistical model involves the broad class of Gaussian state
shifts where the parameters are encoded in shifts of the first
moment132,135,136,143. When we choose the measurements Mj

derived from the slds in Eq. (157) and substitute them into
CH , we find that the first term becomes the standard qcrb:
min{Mj } Tr[R Re J] → Tr[R I−1

Q ], and the second term be-
comes ‖R Im I−1

Q ‖1. Since I−1
Q is a real positive definite ma-

trix, this term vanishes, and CH reduces to the qcrb based
on the slds. The significance of Eq. (158) is that for non-
commuting slds there may be a different set of observables
that outperform the Mj in Eq. (157).

Next, we note that Im J can be written in terms of the
commutator

Im Jjk =
1
2

Tr[ρ[Mj, Mk]] . (160)

Assuming R and IQ strictly positive matrices, and noting that
Tr[ρ[Mj, Mk]] = 0 implies that Tr[ρ[Lj, Lk]] = 0, a neces-
sary and sufficient condition for the saturability of the multi-
parameter qcrb is then122,124,133,138,144–147

Tr
[
ρ[Lj, Lk]

]
= 0 . (161)

This is of course a weaker condition than requiring that the
slds commute directly. The condition in Eq. (161) is nec-
essary and sufficient for unitary evolutions on pure states144,
which is equivalent to requiring the existence of commuting
generators that generate the evolution of the probe. For mixed
states, the demands to realise optimal simultaneous estimation
are more involved. Specifically, we require the existence of a
single probe state that maximises the qfi for all values of θ, a
compatible measurement that ensures saturability of the qcrb,
and a diagonal qfim, which would allow independent estima-
tions of each parameter133. Alternative methods to provide
better precision bounds may involve collective measurements
over many independent copies of the system, which is experi-
mentally challenging. Recently, further conditions for optimal
measurements to saturate the multi-parameter qcrb with sepa-
rable or collective measurements on a small number of copies
of the state have been explored by Yang et al.148.
From the above discussion we see that the sld operator

plays a pivotal role in quantum estimation theory. For a multi-
parameter estimation problem, finding the sld for each pa-
rameter in θ is sufficient to inform whether a simultaneous,
efficient estimation can be performed. It also prescribes the
optimal estimator that saturates the qcrb; the fundamental
limit to estimation precisions allowed by quantum mechanics.
We therefore turn our attention to find a functional form for
the sld.

D. Simultaneous versus sequential estimation

Multi-parameter quantum estimation is important for mod-
elling a wider class of physical systems. For example, it may
be necessary to infer the value of a parameter by estimating
a set of related but different parameters. Also, there are ex-
amples where knowledge of multiple parameters are required,
such as for microscopy, optical, electromagnetic, and gravi-
tational field imaging. One approach for the estimation of
multiple parameters is to prepare individual optimal probe and
measurements schemes for each parameter. However, this is
generally challenging to implement experimentally. It would
also be unsuitable for sensing dynamically evolving probes.
Instead, a natural approach would be to simultaneously es-
timate each parameter at the same time. The qcrb matrix
bounds the precision of simultaneous multi-parameter esti-
mates, and it could in principle be faster to implement the
measurements simultaneously with fewer resources. For ex-
ample, in the case of estimating D phases, Humphreys et al.100
have demonstrated that simultaneous estimation provides an
intrinsic O(D) precision improvement over the best quantum
scheme for individual measurements devised by Lee, Kok, and
Dowling64 using noon states. A similar advantage has been
demonstrated by Baumgratz and Datta for multi-field estima-
tion99. Within the literature, simultaneous strategies are also
referred to as parallel estimation strategies. Even for large
photon losses in phase imaging applications, simultaneous es-
timation schemes can provide a constant factor advantage over
individual schemes. This has seen a surge of recent work
focused on yielding quantum enhanced sensing from simulta-
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neous estimation of multiple parameters122,126,145,149–151.
The principal difficulty of simultaneous multi-parameter

estimation arises from the non-attainability of the precision
bounds when the infinitesimal generators associated with the
parameters do not mutually commute152–154. This can lead to
the requirement of non-Hermitian measurements to saturate
precision bounds155, which would be difficult to realise. We
also saw in the previous section that the necessary condition
to saturate the qcrb asymptotically is a zero expectation value
of the commutator of the slds, as shown in Eq. (161). If this
condition holds, there exists a common optimal measurement
basis for simultaneous estimates. This case is well studiedwith
general results derived for the optimal estimation of multiple
phases. For example, Macchiavello calculates the cost associ-
ated with the estimation and finds it increases with increasing
number of phase measurements156. Ballester demonstrated
that entanglement in the probe states and measurements pro-
vides no advantage for estimating multiple phases157. If how-
ever, Eq. (161) does not hold, there is no simultaneous eigenba-
sis for the optimal simultaneous estimation of all parameters.
One option to counter this would be to search for alternative
informative bounds. However, this depends strongly on the
specific estimation problem. For example, Genoni et al. find
that for the estimation of complex parameters, the so-called
right logarithmic derivative is more informative150 (see sec-
tion VE). We have already seen alternative bounds based on
the sld and the Holevo bound.

Several studies have illuminated progress towards simul-
taneous estimation of parameters with non-commuting slds.
Even when the condition in Eq. (161) is not satisfied, a pre-
cision advantage may still be granted when estimating all of
the parameters simultaneously133. For non-commuting uni-
tary operations, it has been shown that entanglement in both
the probe states and measurements can attain the Heisenberg
limit129,158. Constructing the optimal simultaneous projective
measurements requires knowledge of the povms that saturate
the qcrb. Knowledge of this provides an instructive guide
for the design of multi-parameter estimation experiments and
has been heavily investigated. For single parameter estima-
tion, finding an optimal measurement for which the equality
I(θ) = IQ(θ) holds is always possible22,30. Unfortunately, this
does not trivially extend to multi-parameter, where few ana-
lytic results are known for specific physical systems. The first
is the estimation of single qubit mixed states135,159. Simul-
taneous optimal estimation has also been considered for the
class of pure states. Determining the attainability of the qcrb
for pure states was considered by Matsumoto. Specifically, if

Im [〈∂lψθ |∂mψθ〉] = 0 ∀ l,m (162)

and the qfim is invertible, then a measurement scheme ex-
ists for which the classical Fisher information saturates the
qfim144. This is weaker constraint than the requirement of
commuting Hamiltonians for each parameter [Hj,Hk] = 0 for
all j, k used for the estimation of multi-dimensional fields99.
Further conditions on projective measurements for optimal
phase-like estimation schemes using pure states has been dis-
cussed by Pezze et al.160. First, assuming we have a pure
probe state |ψθ〉 evolving under unitary dynamics and satisfy-

ing Eq. (162), then the projectors {|Γk〉 〈Γk |} constructed from
the probe state and from vectors on the orthogonal subspace al-
ways saturates the qcrb, which can be experimentally realised.
Pezze et al. also demonstrate that there always exists a set of
projectors nonorthogonal to the probe such that 〈Γk |ψφ〉 = 0
for all k that saturates I(θ) = IQ(θ) if and only if160

Im [〈∂lψθ |Γk〉 〈Γk |ψθ〉] = |〈ψθ |Γk〉|2 Im [〈∂lψθ |ψθ〉] . (163)

for all l = 1, 2, . . . ,D and all k , 1. Finally, any general
projective measurement for pure probe states under unitary
dynamics is optimal if

lim
φ→θ

Im
[〈
∂lψφ

��Γk〉 〈
Γk

��ψφ〉]��〈Γk ��ψφ〉�� = 0, (164)

for all indices l, m and all k for which 〈Γk |ψφ〉 = 0 and
if Eq. (163) is fulfilled for all indices l and all k for which
〈Γk |ψφ〉 , 0. These conditions are necessary and sufficient
for saturating the multi-parameter qcrb provided the qfim is
invertible. Further conditions forwhen the information content
from simultaneous estimation of multiple parameters matches
or exceeds that from separablemeasurements for general probe
states was analysed by Ragy et al.133.
Generally, the conditions for optimal simultaneous mea-

surements may be hard to realise. This makes it difficult or
impossible to saturate the qcrb matrix, and several tradeoffs
are considered. The first deals with the probe states, since the
optimal probe is generally different for each of the D parame-
ters161,162. The second tradeoff deals with the choice of mea-
surements for each parameter, as the optimal measurements
for different parameters are usually incompatible163. To im-
pose meaningful quantifiers of these tradeoffs, a cost function
is introduced to assign a figure of merit. A general cost func-
tion, based on the Fisher information for a particular choice of
probe state and measurement strategy is

CΠ(IQ) = Tr
[
IQ(θ)I(θ)−1], (165)

where I(θ)−1 is the inverse of the classical Fisher information
for a given povm, Π. This quantifier enables optimisation
over probe states and measurement strategies to address gen-
eral tradeoffs inmulti-parameter estimation schemes with non-
commuting slds. Although any positive definite matrix can
be used as the weight matrix in the cost function in Eq. (165),
the qfim is a natural choice for state estimation since it max-
imises the average fidelity between the estimated state and the
actual state159. Notice that the cost function is lower bounded
by CΠ(IQ) ≥ D, with equality applicable for measurements
that are simultaneously optimal for all parameters. This cost
function has been used to determine general bounds for ther-
mometry of distant black bodies164.
Using this strategy, a tradeoff between how well different

parameters may be estimated is often considered. This ap-
proach has been explored by Crowley et al. for the estimation
of phase φ and loss η in optical interferometry, where saturating
the qcrb for both parameters simultaneously is impossible124.
However, in many instances there is a single measurement
observable for both φ and η that saturates the Holevo crb141.
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For a general two-mode pure probe state with definite pho-
ton number N , Demkowicz-Dobrzanski et al. show that in
lossy interferometers the density matrix for the evolved state
can be written as the direct sum4 ρ(θ) = ⊕N

j=0pj

��ψj

〉 〈
ψj

��.
An intuition behind the origin for the tradeoff between preci-
sions in phase and loss estimation can be understood by noting
that the derivatives ∂φ |ψj〉 and ∂η |ψj〉 are the same up to an
imaginary constant124. Hence, estimating θ = (φ, η)> corre-
sponds tomeasuring along the axes given by |ψj〉 ± ∂φ |ψj〉 and
|ψj〉 ± i∂φ |ψj〉

154. Using a similar quantifier as in Eq. (165),
the qfi for phase measurements can be saturated at the cost of
the following diminished information on the loss parameter124

I(η) =
[
IQ(θ)

]
ηη
−

1
4η2

[
IQ(θ)

]
φφ
. (166)

For the same probe state, a similar estimation trade-off has
been explored for the estimation of phase and phase diffusion
for different levels of noise162.
Besides optimising over probe states and measurement

strategies, a further optimisation over multi-parameter encod-
ing channels has been considered in the literature. The two
channel schemes that examine this optimisation is parallel and
sequential estimation schemes. An important question then
is which scheme is better suited for different quantum in-
formation tasks. In quantum estimation, based on general
precision bounds for single parameters in the presence of
noise, parallel schemes perform better than sequential feed-
back schemes35,59. For Hamiltonian parameter estimation on
D-dimensional systems, sequential feedback has been demon-
strated to provide an order of O(D + 1) improvement over
parallel schemes161. In quantum channel discrimination, the
comparison of these two strategies has drawn a lot of atten-
tion165–167. In this scenario, sequential feedback schemes out-
perform parallel schemes, where the use of ancillary systems
was necessary168,169. However, the use of ancillary systems or
entanglement was relaxed in a separate protocol by Duan et al.,
who developed the optimal sequential scheme to discriminate
between different quantum channels170.

E. The Right Logarithmic Derivative

The classical Fisher information is the unique Riemannian
metric on the space of classical probability distributions that
has the property of contraction under coarse graining. How-
ever, in the quantum-mechanical case the possibility of non-
commuting operators breaks this uniqueness, and instead we
obtain a family of metrics171. It is therefore interesting to
explore some alternative quantum extensions of the Fisher in-
formation.

The qfi and the sld are derived from the symmetrised cor-
relation 1

2 〈{A, B}〉 between two observables A and B (see
Eq. (55)). This correlation can be interpreted as an instance of
an inner product in the space of linear operators

(A, B)ρ ≡
1
2

Tr
[
ρ
(
BA† + A†B

)]
, (167)

which also applies to operators A and B that are not self-
adjoint. As shown in section IV, this inner product defines
the metric operator Lρ that is used to construct the sld and
the qfi. Our choice of the inner product was motivated by
the possible non-commutativity of A and B. The qfi matrix
elements are defined in terms of this inner product as

[IQ]jk = (Lj, Lk)ρ , (168)

with the usual definition for the slds.
However, there are also other definitions for the inner prod-

uct we could use. For example, we could define the inner
product as39,155

〈〈A, B〉〉ρ ≡ Tr
[
ρBA†

]
. (169)

This leads to a different metric, and correspondingly to a dif-
ferent logarithmic derivative. Following the same procedure
as in section IV, the inner product leads to a raising operator
R(R)ρ (B) = ρB. Since the lowering operator is defined as the
inverse of the raising operator, we find

L (R)
ρ (ρB) = B . (170)

When we let the lowering operator act on the derivative ∂j ρ,
we obtain the so-called Right Logarithmic Derivative152,153,155
(rld)

Rj ≡ L (R)
ρ (∂j ρ) , (171)

which from Eq. (170) can be written as

∂j ρ = ρRj = R†j ρ . (172)

The information matrix corresponding to these rlds is given
by

[IR]jk =
〈〈

Rj, Rk

〉〉
ρ
= Tr

[
R†j ρRk

]
. (173)

This inner product is a different way to define a metric in
the space of linear operators, leading to an alternative way of
measuring the distance between density matrices along curves
parametrised by θ. The question is when and how this is useful
for metrology.
We can derive a bound on the covariance matrix for θ anal-

ogous to the qcrb, but instead based on the rld. Unbiased
estimators Mj for θ j obey Tr[ρMj] = θ j , and we find

Tr
[
(∂k ρ)(Mj − θ j)

]
= Tr

[
ρ(Mj − θ j)R

†

k

]
= δjk . (174)

The fact that the rld involves a simple product of operators
Rj and ρ means that we can left- and right-multiply Eq. (174)
by two complex vectors y = (y1, . . . , yD) and z = (z1, . . . , zD),
respectively:∑

jk

Tr
[
y∗j ρ(Mj − θ j)R

†

k
zk

]
=

∑
j

y∗j zj . (175)
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We separate the trace into a product of operators
√
ρ
∑
j

y∗j (Mj − θ j) and
√
ρ
∑
k

z∗j Rj , (176)

and use the Schwarz inequality for the trace to obtain the
following inequality:

��y†z��2 ≤ ©­«
∑
jk

z∗jTr
[
ρRjR

†

k

]
zk

ª®¬ ©­«
∑
jk

y∗j Cov(θ)jk yk
ª®¬ . (177)

We can choose y and z any way we want. Using [IR]jk =
Tr[ρRjR

†

k
] and setting z = I−1

R y, the resulting inequality is

y† Cov(θ) y ≥ y†I−1
R y . (178)

Again, since this must be true for any complex-valued vector
y, we obtain the inequality

Cov(θ) ≥ I−1
R . (179)

Clearly, thematrix IR plays a role similar to the qfi IQ, but now
using the rld. Expressed using a cost matrix R, the bound
based on the rld becomes

Tr[R Cov(θ)] ≥ Tr
[
RI−1

R

]
≡ CR . (180)

There are instances in which the this bound is tighter (i.e.,
more informative) that the qcrb, or CR > CQ.

For a single parameter the qcrb based on the sld is always
higher than the bound based on the rld29. To show this, we
write the rld in the diagonal basis of the density operator.
First, we use the definitions

∂θ ρ =
∑
mn

(∂θ ρ)mn |m〉 〈n| . (181)

and

Rθ =
∑
jk

Rjk | j〉 〈k | . (182)

The rld can then be written as

Rθ =
∑
jk

(∂θ ρ)jk

pj
| j〉 〈k | . (183)

From this it follows that

IR = Tr[(∂θ ρ)Rθ ]

=
∑
jk

|〈 j |(∂θ ρ)|k〉|2

pj
=

∑
jk

|〈 j |(∂θ ρ)|k〉|2

pk

=
1
2

∑
jk

(
1
pj
+

1
pk

)
|〈 j |(∂θ ρ)|k〉|2 . (184)

We can now compare this with the qfi for a single parameter
as in Eq. (88), and note that

2
pj + pk

≤
1
2

(
1
pj
+

1
pk

)
. (185)

Thismeans that for single parameter estimation problems IQ ≤
IR (when Rθ exists), and the qcrb based on the sld is never
less than the rld-based bound. Therefore, the rld bound is
interesting only when we consider multiple parameters.
Another constraint is that the rld does not exist for pure

states. Nevertheless, a meaningful bound may still be con-
structed39, relying on the fact that the non-existence of Rj for
pure states does not imply the non-existence of I−1

R . Fujiwara
gives two examples. First, I−1

R for the quadrature measure-
ments (q, p) of a pure coherent state |α〉 with complex ampli-
tude α and frequency ω is given by

I−1
R =

1
2

(
ω i
−i ω−1

)
. (186)

The information in Eq. (186) is interesting, since the associated
bound in Eq. (180) takes the form of the additive uncertainty
relation172 for the rescaled position and momentum

∆q̃2 + ∆p̃2 ≥ 1 , (187)

where q̃ = q/
√
ω and p̃ =

√
ω p. This is in contrast to the

qcrb using the qfi for the evolution U = exp(−iq̃p̃) with p̃ the
momentum operator, which recovers the standard form of the
uncertainty relation ∆q̃∆p̃ ≥ 1

2 .
Second, for a measurement of a rotation R(θ, φ) of a spin- j

system in a state | j〉 oriented along the z-axis the information
I−1
R becomes

I−1
R =

1
sin2 θ

(
sin2 θ −i sin θ
i sin θ 1

)
, (188)

where θ and φ are the usual spherical coordinates. Again,
this information translates via Eq. (180) into an additive un-
certainty relation for the two rotation angles

∆θ2 + sin2 θ ∆φ2 ≥ 1 . (189)

Both these examples outperform the standard qcrb, and pro-
vide themost informative bounds32,132,155,172. Suzuki provides
an explicit formula for the bound on two-parameter estimation
using qubits138.
Finally, the rld is generally not Hermitian. Consequently,

the optimal estimator derived from these two quantities may
not correspond to a physical povm. Despite this, the use of
non-self adjoint operators have been demonstrated to saturate
the multi-parameter qcrb1,155.

It is interesting to consider how the rld bound relates to the
Holevo form of the qcrb in Eq. (158). Nagaoka32 defines the
rld bound in Eq. (180) as

CR = Tr
[
R Re I−1

R

]
+




√R (Im I−1
R )
√

R




1
, (190)

which takes the form of Eq. (158) when the observables Mj

are chosen such that J = I−1
R . These are generally not the same

obervables found through minimisation, and we therefore find

CH ≥ max{CQ,CR} , (191)

and the Holevo form is the most informative bound on the
covariance matrix of θ.
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F. Kubo-Mori information

When the quantum system under consideration is in a thermal
state, a more natural crb can be found based on so-called
Kubo-Mori information. The density operator of a thermal
state can be written in exponential form as

ρ = e−βH−θA , (192)

where β = 1/kBT , with kB Boltzmann’s constant, T the tem-
perature, H the Hamiltonian, and we absorbed the partition
function in H. The term θA corresponds to a force on the
system generated by A.

The quantum relative entropy for two states ρ and σ is given
by173,174

D(ρ ‖ σ) = Tr[ρ log ρ] − Tr[ρ logσ] . (193)

The quantum relative entropy for two states e−βH−θA and
e−βH−θ′B then becomes

D(ρ(θ, A) ‖ ρ(θ ′, B)) = Tr[e−βH−θA(βH + θ ′B)]

− Tr[e−βH−θA(βH + θA)] . (194)

Taking the derivative of the quantum relative entropy with
respect to θ and θ ′, we obtain the relation

1
β2
∂2D(A ‖ B)
∂θ∂θ ′

= 〈A〉〈B〉 (195)

−
1
β

∫ β

0
Tr

[
e−βHexH Ae−xH B

]
dx ,

when θ ′ → θ. This motivates the Bogoliubov inner product
for thermal states:

(A, B)(B)ρ =
∫ 1

0
Tr

[
ρx A†ρ1−xB

]
dx , (196)

which can be used to construct a new logarithmic derivative175
called the Bogoliubov Logarithmic Derivative (bld)

∂θ ρ =

∫ 1

0
ρxBθ ρ1−x dx . (197)

and

Bθ =
∫ ∞

0
(x + ρ)−1(∂θ ρ) (x + ρ)−1 dx , (198)

leading to the Kubo-Mori information

IKM(θ) = (Bθ, Bθ )
(B)
ρ =

∫ 1

0
Tr

[
ρxB†θ ρ

1−xBθ
]

dx . (199)

The form of the Bogoliubov inner product in Eq. (196) origi-
nates in the theory of linear response of thermal systems using
the canonical correlation between A and B∫ 1

0
Tr

[
ρx(A − Tr[ρA])ρ1−x(B − Tr[ρB])

]
dx ,

and therefore the use of IKM(θ) in Eq. (199) can be consid-
ered more natural for statistical physics applications than the
qfi176. For further details, see chapter 4 of Kubo, Toda, and
Hashitsume177.
A Cramér-Rao-type inequality can be derived when we con-

sider the covariance of Mθ = θ̌ − θ, such that

CovB(θ) =

∫ ∞

0
Tr

[
ρxMθ ρ

1−xMθ

]
dx ≥ I−1

KM(θ) . (200)

For a single parameter θ, the Kubo-Mori information is equal
to

IKM(θ) =
∑
jk

log pj − log pk
pj + pk

|〈 j |∂θ ρ|k〉|2 . (201)

This is a more informative bound than the one based on the
rld in Eq. (184), but less informative than the qcrb based
on the sld in Eq. (88)175. The Kubo-Mori information gives
the bound for consistent superefficient estimators176, i.e., esti-
mators that outperform maximum likelihood estimation. The
Kubo-Mori information plays a central role in the construction
of uncertainty relations between energy and temperature in
quantum thermodynamics178.

G. Wigner-Yanase skew information

We have seen in Eqs. (88), (184), and (201) that we can write
IQ, IR, and IKM in terms of the matrix elements of the deriva-
tive of the density operator ∂θ ρ in the basis of ρ:

IQ(θ) =
∑
jk

2
pj + pk

|〈 j |(∂θ ρ)|k〉|2 , (202)

IR(θ) =
∑
jk

(
1

2pj
+

1
2pk

)
|〈 j |(∂θ ρ)|k〉|2 , (203)

IKM(θ) =
∑
jk

log pj − log pk
pj + pk

|〈 j |(∂θ ρ)|k〉|2 . (204)

The different types of quantum information are determined by
the functions c(pj, pk) of the eigenvalues of ρ in the above
equations. Morozova and Chentsov (and extended by Petz)
proposed these functions as a classification of monotone Rie-
mannian metrics on matrix spaces171,179, and they include
another interesting example:

IWY(θ) =
∑
jk

4(√pj +
√

pk
)2 |〈 j |(∂θ ρ)|k〉|

2 . (205)

This is the Wigner-Yanase skew information180. When the
parameter θ is generated unitarily by the self-adjoint operator
G, the form becomes

IWY (G) = −
1
2

Tr
[
[
√
ρ,G]2

]
= Tr

[
G2ρ

]
− Tr

[
Gρ

1
2 Gρ

1
2

]
, (206)
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which no longer relies on finding the spectrumof ρ. In the limit
of pure states, IWY reduces to the variance of G. For unitary
evolutions exp(−iθG), is was shown181 that IQ(θ) = 8IWY(G).
Wigner and Yanase sought to capture the sense in which

observables that commute with some conserved quantity G
are easier to measure than observables that do not180. The
skew information they propose measures the information in
ρ about not-so-easy-to-measure observables, e.g., it provides
a measure of non-commutativity between ρ and G. Their
definition ensures that IWY is convex, additive, and is non-
increasing over time for open quantum systems.

Aswithmost othermetrics in this review, theWigner-Yanase
skew information can be used to derive uncertainty relations
between observables A and B. Furuichi and Yanagi define the
correlation between observables as182

Cor(A, B) ≡ Tr[ρAB] − Tr
[√
ρA
√
ρB

]
, (207)

and prove that this is bounded by

Cor (A, B)2 ≥ IWY(A) IWY(B) . (208)

There are many other uses for the Wigner-Yanase skew infor-
mation, including as an entanglement witness183.
Another way to understand the Wigner-Yanase skew infor-

mation is as a measure of the quantum fluctuations in a state ρ
for an observable A, as opposed to the variance (∆A)2, which
measures both the classical and the quantum fluctuations:

(∆A)2 = −
1
2

Tr
[
[ρa, A][ρ1−a, A]

]
+ Tr

[
ρaδAρ1−aδA

]
,

(209)

where a ∈ [0, 1] and δA = A − 〈A〉. The first term is the
Wigner-Yanase skew information generalised by Dyson, which
reduces to IWY(A) when a = 1

2 . The second term is the
classical uncertainty in A given the state ρ. A common ap-
proach178,184,185 is to average the quantum fluctuations over
the possible values of a:

−
1
2

∫ 1

0
Tr

[
[ρa, A][ρ1−a, A]

]
da =

〈
A2〉 − (A, A)(B)ρ . (210)

This relates the average to the Bogoliubov inner product in
Eq. (196), from which the Kubo-Mori information was de-
rived. Hence the Bogoliubov inner product is intimately re-
lated to the classical fluctuations of A given the state ρ. It is
easily verified that for pure states (A, B)(B)ψ = 〈A〉〈B〉 and the
classical uncertainty vanishes.

H. Bayesian quantum estimation theory

So far we have considered Fisher estimation theory, where θ
is an unknown parameter that is not random. However, of-
ten the parameter θ can itself be a random variable. This is
handled by the Bayesian approach to probability theory. In
this case we have some probability distribution p(θ) over θ,
called the prior. Bayesian quantum metrology using prior in-
formation was considered by Demkowicz-Dobrzański186, and
Macieszczak, Fraas and Demkowicz-Dobrzański187.

Let p(x, θ) be the joint probability distribution of x and θ.
Bayes’ theorem then states that p(x, θ) = p(x|θ) p(θ). We can
change the natural expectation value to

Ex,θ [ f ] =
∫

dx dθ p(x, θ) f (x, θ) , (211)

for some integrable function f (x, θ). The Bayesian covariance
matrix becomes

Cov(θ̌) = Ex,θ

[(
θ̌ − Ex,θ

[
θ̌
] ) (

θ̌ − Ex,θ
[
θ̌
] )>]

. (212)

This no longer depends directly on θ via the probability distri-
bution p(x|θ), and it incorporates the prior information about
θ. Classically, we can switch betweenFisher andBayesian esti-
mation by simply replacing the expectation values throughout,
even though the interpretations of the resulting quantities will
be subtly different in important ways. For example, the classi-
cal mse will depend on the true value of θ, while the Bayesian
mse is averaged over θ.
The optimal estimator θ̌B that minimises the Bayesian mse

of a parameter θ is the mean of the posterior probability dis-
tribution2 p(θ |x)

θ̌B(x) =
∫

dθ θ p(θ |x) . (213)

This estimator changes as additional data x is obtained. In
addition, the choice of a prior probability distribution p(θ) is
important for a successful Bayesian parameter estimation. For
more details on Bayesian estimation in the classical domain,
see Kay (1993)2.
To derive the Bayesian form of the quantum Fisher informa-

tion we use again the density matrix of a system ρ(θ) evolved
according to a parameter θ of interest. There is now a prior
probability distribution p(θ) over θ, so that we can define a
prior-weighted density operator as:

ρ =

∫
dθ p(θ)ρ(θ) . (214)

Similarly, we can define the posterior mean operator

θρ =

∫
dθ p(θ)θρ(θ) . (215)

Just like the qfi was given by the scalar product of ∂θ ρ with
itself, IQ(θ) = (∂θ ρ, ∂θ ρ)ρ = Tr

[
∂θ ρLρ(∂θ ρ)

]
, we define

a new Bayesian information IB based on θρ using the same
inner product that originated from the symmetrised operator
correlation in Eq. (55):

IB ≡
(
θρ, θρ

)
ρ̄ = Tr

[
θρLρ̄(θρ)

]
(216)

A new symmetric logarithmic posterior mean operator Sθ ≡
Lρ̄(θρ) can be constructed from

θρ =
1
2
{ρ, Sθ } , (217)
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which plays a similar role to the sld in the ordinary quantum
Cramér-Rao bound. Using that A = 1

2 {ρ, B} has a general
solution188

B = 2
∫ ∞

0
ds e−ρsAe−ρs , (218)

we find

Sθ = 2
∫ ∞

0
ds e−ρ̄s

(
θρ

)
e−ρ̄s . (219)

The quantum Bayesian information IB then takes the form

IB = 2
∫ ∞

0
ds Tr

[ (
θρ

)
e−ρ̄s

(
θρ

)
e−ρ̄s

]
= Tr

[
ρ S2

θ

]
. (220)

Contrary to the qfi, which has units of θ−2, this information
has units of θ2.

Personick188 showed how these definitions leads to a mini-
mum mse for the situation where we have a prior distribution
p(θ) over the parameter θ. The mse for θ is obtained via a
measurement of some observable M:

CovB(M) ≡
∫

dθ p(θ)Tr
[
ρ(θ) (M − θI)2

]
(221)

= Tr
[
ρM2] − 2Tr

[(
θρ

)
M

]
+

∫
dθ p(θ) θ2,

where ρ and θρ are defined as above. When M = Mopt is the
optimal measurement that yields the minimum mse, we have
Tr

[
ρM2

opt

]
= Tr

[
θρMopt

]
, and we obtain

CovB(Mopt) = Eθ

(
θ2

)
− Tr

[(
θρ

)
Mopt

]
. (222)

For the detailed proof, see Personick188. Note that we used
the subscript “B” to emphasise this is a Bayesian covariance.
Our task is to find the optimal operator M that achieves the
minimal mse. It is given by Eq. (219), and M is Hermitian and
unique188, at least in the single-parameter case. The proof by
Personick proceeds by considering

CovB(M) ≤ CovB(M + εH) , (223)

with ε ≥ 0 and H and arbitrary Hermitian operator. Using the
definition in Eq. (221) and expanding the square then leads to
the condition that

Tr
[
H

(
ρM + Mρ − 2θρ

)]
= 0 , (224)

and from Eq. (217) the identification M = Sθ follows. The
Bayesian quantum Cramér-Rao bound then becomes

(∆θ)2B ≥ (∆θ)
2
p − IB , (225)

where (∆θ)2p is the variance of the prior distribution

(∆θ)2p =

∫
dθ p(θ)θ2, (226)

and the quantity (∆θ)2p − IB is the quantum Allan variance189.
This construction was used by Macieszczak et al. for

Bayesian quantum frequency estimation187, leading to the in-
troduction of the quantumAllan variance by Chabuda, Leroux,
and Demkowicz-Dobrzański189 and their application of the
quantum Allan variance to the precision of atomic clocks. Ru-
bio and Dunningham describe quantum metrology in the pres-
ence of limited data using this formalism190. Bernád, Sanavio
and Xuereb use the quantum Bayesian estimation technique to
estimate the nonlinear opto-mechanical coupling strength191
and the matter-field coupling strength in the dipole approx-
imation192. Rządkowski and Demkowicz-Dobrzański apply
Bayesian techniques to discrete phases193.

Themulti-parameter form of CovB for θ = (θ1, . . . , θD)with
estimator observables S = (S1, . . . , SD) is

CovB(S)jk =Eθ
(
θ jθk

)
− Tr

[
θ j ρ Sk

]
− Tr

[
θk ρ Sj

]
(227)

+
1
2

Tr
[
ρ{Sj, Sk}

]
, (228)

where j, k ∈ {1, . . . ,D}. Furthermore, we can prove that

Tr
[
θ j ρ Sk

]
+ Tr

[
θk ρ Sj

]
= Tr

[
ρ{Sj, Sk}

]
, (229)

and we can therefore introduce the quantum Bayes information
matrix

[IB(S)]jk = Tr
[
θ j ρ Lρ̄

(
θk ρ

)]
=

1
2

Tr
[
ρ {Sj, Sk}

]
. (230)

The proof of this expression for the matrix follows from the
fact that the Bayesian estimation case has the same geometric
structure as the Fisher estimation case. The multi-parameter
Bayesian minimum mse bound can then be written as

CovB(S)jk ≥ Eθ
(
θ jθk

)
− [IB(S)]jk . (231)

A similar result for the multi-parameter Bayesian mse was
independently obtained by Rubio and Dunningham194.

VI. SPECIAL CASES OF QUANTUM ESTIMATION

There are a number of special applications in quantum param-
eter estimation. First, in quantum optics we very often deal
with Gaussian states, and these admit closed forms for the qfi
and the slds. Second, we consider the case when the evolution
of the probe state does not take the form of a simple unitary
U = exp(−iθG).

A. Estimation using Gaussian states

The practical implementation of quantum parameter estima-
tion often involves Gaussian quantum states, due to their ubiq-
uity, relative easy of preparation, and their admittance of closed
form analytical expressions for the qfi and the sld. Of partic-
ular importance is the use of Gaussian states in the context of
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quantum optics, where coherent, squeezed, and thermal states
all form part of the Gaussian family of states195.
Consider a system comprised of n modes of a bosonic field.

The Hilbert space H = ⊗n
k=1Hk is the tensor product of the

infinite dimensional Fock space of eachmode k, that is spanned
by the number basis {|m〉k}, with m a natural number. The
creation and annihilation operators for each mode are defined
by

âk |m〉k =
√

m |m − 1〉k
â†
k
|m〉k =

√
m + 1 |m + 1〉k , (232)

obeying the commutation relation [ak, a†j ] = δjk , with all other
commutators zero. In the phase space formalism, a conven-
tional approach is to arrange these operators into a vectorial
operator â := (â1, â

†

1, . . . , ân, â
†
n)
>. The vector then satisfies

the compact commutation relation[
âi, â j

]
= Ωi j (233)

where the matrixΩ = ⊕n
j=1iσy satisfiesΩ> = −Ω = Ω−1, and

σy is the Pauli y matrix. An equivalent description of bosonic
systems can be written in terms of the dimensionless canonical
quadrature field operators:

q̂j =
1
√

2

(
âj + â†j

)
, and p̂j = −

i
√

2

(
âj − â†j

)
. (234)

These observables act similar to the position and momentum
operators of the quantum harmonic oscillator, and satisfy the
canonical commutation relations [q̂j, p̂k] = iδjk . Introducing
the vector of operators R̂ = (q̂1, p̂1, . . . , q̂n, p̂n)>, we similarly
re-write the canonical commutation relations in the compact
form [

R̂ j, R̂k

]
= iΩjk . (235)

A Gaussian n-mode quantum state ρ is a state that is com-
pletely characterised by n first moments λ and an n× n second
moment matrix Σ such that

λ = Tr[ρ â] = 〈â〉, Σ jk = Tr
[
ρ
{ ˆ̃aj, ˆ̃ak

}]
, (236)

with the zero mean operators ˆ̃aj = âj − 〈âj〉, and {A, B} =
AB + BA the anti-commutator of operators A and B. The
characteristic function of ρ is defined as

χ(ζ ) = Tr
[
ρ exp[−â>Ω ζ ]

]
, (237)

where ζ = (ζ1, ζ
∗
1 , . . . , ζn, ζ

∗
n)
> ∈ R2n. For a Gaussian den-

sity matrix with first moment λ and second moment Σ, the
corresponding characteristic function is also Gaussian:

χ(ζ ) = exp
[
1
2
ζ>(ΩΣΩ>)ζ − i(Ωλ>ζ )

]
, (238)

A Gaussian transformation is any trace preserving quantum
channel that preserves the Gaussian nature of the characteristic
function.

A common pure Gaussian state is the vacuum ρin = |0〉 〈0|,
while for mixed states it is the thermal state:

ρth =

∞∑
n=0

nn

(1 + n)1+n
|n〉 〈n| , (239)

where n = 〈n̂〉 is the expectation of the photon number n̂.
Thermal radiation exhibits a Gaussian characteristic function
with zeromean λth = 0 and covarianceΣth =

1
2 (2n + 1)1. Any

single-mode Gaussian state can be written in terms of a dis-
placed squeezed thermal state195:

ρG = SεDαρthD†αS†ε = UρthU†, (240)

where the Gaussian unitaries

Dα = exp
[
αâ† − α∗â

]
, (241)

Sε = exp
[
1
2
(ε∗â2 − ε â†2)

]
, (242)

are defined as the displacement operator and single mode
squeezing operator, respectively. The ordering of a displace-
ment and squeezing operations can be reversed according to

DαSε = SεDγ, (243)

with γ = α cosh rε − α∗ exp[iϑε ] sinh rε . States described by
Eq. (240) are readily prepared in laboratories and their unitary
evolutions realised by use of lasers, linear optical elements,
and squeezing mediums196. The multi-mode generalisation of
Eq. (240) can be found using the matrix generalisation197 of
the operators in Eq. (242).
Both the mean and second moment of a Gaussian quantum

state may depend on parameters θ that we wish to estimate.
To bound the precision of the estimation procedure, we aim
to calculate the qfi of Gaussian quantum states. This is not
always an easy task. All of the work described in the previ-
ous sections relied on knowledge of the density matrix, and
for Gaussian states this is most conveniently addressed in the
phase-space formalismbymapping transformations of the state
to transformations of the moments198.
The first work in this direction was completed by Pinel et

al.199 who derived the expression for the ultimate limit to pa-
rameter estimations using pure Gaussian states of arbitrarily
many modes. A more general approach to finding the qfi and
the sld for Gaussian states is through the mean displacement
and covariance matrix. This approach has been taken by a
number of authors. The first result in this direction was by
Monras in 2013, who derived the form of the sld for general
Gaussian states evolving under Gaussian unitaries200. By tak-
ing an sld ansatz that is quadratic in the quadrature operators,
the sld and qfi are written as an infinite series solution to
the Stein-equation. A similar approach by Jiang confirmed
Monras’ result and gave the sld for states in exponential form
in terms of the generator and its moments201. Gao and Lee
followed an alternative method to derive the sld and the qfi
for multi-mode Gaussian states. The necessity of inverting
relatively large matrices is a drawback of this method202. Ex-
pressions for the qfim for multi-mode Gaussian states were re-
ported by Šafránek, Lee, and Fuentes203. Banchi, Braunstein
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and Pirandola also derived analytical forms for the fidelity be-
tween two arbitrary Gaussian states46, which can be related to
the qfi via the quantum fidelity introduced in Eq. (81).

A unification of these results and a resolution of the prob-
lematic divergence behaviour of the qfim for pure states has
been addressed204. Specifically, by applying the regularisation
procedure R to expressions of the qfim valid for mixed Gaus-
sian states only, the qfim for Gaussian states with any num-
ber of pure modes can be immediately determined. Defining
IQ[ρG; {λ,Σ}] as the qfim for a mixed Gaussian state with
mean λ and covariance Σ, the regularisation procedure R for
some regularisation parameter ξ > 1 proceeds according to

R : lim
ξ→1

IQ
[
ρ′G; {λ, ξΣ}

]
. (244)

The resulting value is the correct qfim for any Gaussian state
and does not suffer from divergences. A similar regularisation
has been also been used to regularise the qfi for non-Gaussian
states49. Marian and Marian gave a full analysis of the qfi for
two-mode Gaussian states205,206.
Due to the structure of Gaussian states, the sld is at most

quadratic in the bosonic (or equivalently the canonical) mode
operators. Hence, for the sld of parameter θk we make the
following Ansatz:

Lk =
1
2

A(k)αβ
{ ˆ̃aα, ˆ̃aβ

}
+ B(k)α ˆ̃aα −

1
2

Tr
[
A(k)Σ

]
, (245)

for the sld for Gaussian states, where Greek indices imply
Einstein summation convention. Notice that the first term in
Eq. (245) is composed of quadratic (squared bosonic operators)
and bilinear terms (product between a creation operatorwith an
annihilation operator). The quadratic contribution describes
active devices such as squeezers and down-converters, while
the bilinear contributions to the first term corresponds to linear
unitary operations such as beam-splitters, half and quarter
wave plates, and phase-shifters. The second term in Eq. (245)
has a linear dependence on the operators. These operations
describe displacements in phase space. The coefficients A(k)

and B(k) are completely determined from the first and second
moments of the probe state and their derivatives. Finally, we
include a constant term − 1

2 Tr[A(k)Σ].
Monras200 found a closed form for these coefficients as a

solution to the Stein-equation

A(k) =
∞∑
j=0

F>j∂k(Σ
−1)F j, B(k) = 2Σ−1(∂kλ), (246)

with F = (iΣσy)
−1. Notice that the constant A(k) is defined

only for non-singular states, which excludes pure states. The
qfim then reads

[IQ]jk =
1
2

n̄2

1 + n̄2 Tr
[
(∂jΣ)Σ

−1(∂kΣ)Σ
−1] + 2(∂jλ)>Σ−1(∂kλ),

(247)

where n̄ is the average photon number of the thermal states
before symplectic transformations. The qfi in Eq. (247) is not
valid for all mixed states, but only for ‘isotropic’ or ‘isother-
mal’ states that have the same symplectic eigenvalues for all

modes, which includes the class of pure state models. An ele-
gant form for the qfim for arbitrary mixed Gaussian states was
derived by Šafránek204, from which the origin of precision
enhancements were assigned to three qualitatively different
terms: changes to the orientation and squeezing of the Gaus-
sian state, changes in purity, and changes in displacement.
Independently, Gao and Lee used phase space methods to

derive an exact form of the sld and the qfi202. Their use of a
quadratic Ansatz for the sld lead to the result

Lj =
1
2
M−1
γκ,αβ

(
∂jΣ

αβ
) ( ˆ̃aγ ˆ̃aκ − Σγκ

)
+ Σ−1

µν

(
∂jλ

ν ) ˆ̃aµ,
(248)

where M = Σ ⊗ Σ +Ω ⊗ Ω/4. The qfi for any n-mode
bosonic Gaussian system was then determined through ap-
plication of Wicks theorem for Gaussian states to yield[

IQ
]
jk
=

1
2
M−1
αβ,µν∂jΣ

αβ∂kΣ
µν + Σ−1

µν∂jλ
µ∂kλ

ν . (249)

Calculating the qfi increases exponentially in computational
time with the number of modes owing to the inversion of large
dimensional matrices. This result is limited to mixed Gaussian
states.
A closed form of the sld has recently also been derived

using the quantum fidelity between two arbitrary Gaussian
states207. The optimal measurement described by these slds
does not always correspond to Gaussian measurements208.

B. Hamiltonians with non-multiplicative factors

So far we have considered the estimation precision of a given
probe into the dynamics that imprints the parameter θ. This
is a channel estimation scheme, where an optimisation over
the possible input probe states can improve the estimation pre-
cision209. Within this regime, we have reviewed parameter
estimation schemes where the Hamiltonian is either a constant
or has multiplicative dependence on the parameter of interest
(e.g., a coupling strength). This regime is known as the phase-
shift or phase-like Hamiltonian estimation, where the parame-
ter to estimate multiplies a parameter-independent Hermitian
generator G30,210. Under the unitary evolution U = exp[−iH],
the generator of parameter translation in θ is formally defined
through

G = i (∂θU)U†. (250)

The phase-like Hamiltonian regime, where U = exp(−iθG),
has been extensively studied, and these single parameter phase-
shift Hamiltonians define the optimal probe state71 as dis-
cussed in subsection IVH. It has been applied for Hamiltonian
characterisation in the absence of noise 211–214, and frequency
measurements and atomic spectroscopy in the presence of de-
coherence7,35.

More general Hamiltonians have recently started to attract
attention215, since they permit the application of quantum
metrology to a more general class of problems such as time-
varying fields216,217 and in gradient magnetometry218. It is
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well known that a pure state parameterised by a multiplicative
Hamiltonian of the form Hj = θ jG j for a time t, the qfi is
given by30,125

IQ(θ j) = 4t2(∆G j)
2. (251)

The definition of the generator when the state is parame-
terised by a more general Hamiltonian for the form H(θ)
becomes unclear. Assuming the Hamiltonian has n unique
eigenvalues Ej with j = 1, . . . , n, degeneracy dj and cor-
responding eigenvectors |E (k)j 〉, k ∈ {1, . . . , dj} satisfying
〈E (β)α |E

(δ)
γ 〉 = δαγδβδ , then the generator of translations in θ j

can be written as125,219,220

G j(θ) =

ng∑
k=1

∂jEkPk + 2
∑
k,l

dk∑
m=1

dl∑
n=1

exp [−i(Ek − El)/2]

× sin
[

Ek − El

2

] 〈
E (n)
l

���∂jE (m)k

〉 ���E (m)k

〉 〈
E (n)
l

��� ,
(252)

where Pk =
∑

j |E
(j)
k
〉 〈E (j)

k
| is the projector onto the Ek-

eigenspace. The form of the generator in Eq. (252) implies that
the qfi can be separated into two parts. The first part is due to
the dependence of the eigenvalues on θ j , and the second due
to the dependence of the eigenstates on θ j . An upper bound
on the qfi was derived by Pang and Brun125

Imax
Q ≤ 2t2

n∑
j=1

dj(∂jEj)
2 (253)

+ 8
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〉���2 .
We observe that the qfi is finite for all time t, which is in con-
trast to the qfi for multiplicative factor in Eq. (251). Increasing
the channel qfi can be achieved by enhancing the sensitivity of
the generator through additional terms in the Hamiltonian209.
Specifically, for time evolutions with parameter independent
eigenvalues, Eq. (252) exhibits a periodic time dependence
of the channel qfi125. Generally, this alone does not saturate
the Heisenberg limit precision, but can with feedback con-
trols161,221. In sectionVII, we see how the precision achievable
in channel estimation schemes can be improved with ancilla
states.

The general result in Eq. (252) implies that for any unitary
encoding, the optimal probe states can be assigned through
the prescription described by Giovannetti et al.71. However,
this method requires that the spectrum for the Hamiltonian
is known, and this is generally difficult. This complication
can be avoided if the non-multiplicative estimation problem
can be related to an equivalent, phase-like estimation problem
through re-parameterisation of the parameters θ, since the qfi
matrix elements transforms as a metric tensor222, as we have
seen in section VA. If a nonlinear function of the parameters
can be transformed into a phase-like scheme this approachmay
simplify the calculation of the qfi. We will return to functions
of multiple parameters in section VIII B.

VII. NOISY QUANTUMMETROLOGY

We have seen that quantum resources can improve sensing ca-
pabilities over classical methods. However, very few systems
can be prepared in complete isolation from its environment
in practice. Therefore, applications of quantum metrology
must include a description of the interaction of a system with
its environment as illustrated in figure 7. Generally, the per-
formance of sensors are limited by decoherence in a familiar
fashion to most applications of quantum technologies.

A. Metrology in noisy quantum channels

Various methods to calculate parameter precision bounds in
the presence of noise have been developed. A common ap-
proach is to use the Kraus decomposition of the quantum
channel35,54,57. The completely positive, trace preserving
(cptp) channel ρ(θ) = Λ[ρ(0)](θ), satisfying Λ[ρ(0)](θ) ≥ 0
andTr[ρ(θ)] = Tr[ρ(0)], can be expanded in terms of theKraus
operators223,224

ρ(θ) = Λ [ρ(0)] =
q∑
j=1

Kj(θ)ρ(0)K†j (θ). (254)

The set of q Kraus operatorsK (θ) = {Kj(θ)} is referred to as a
q-Kraus decomposition ofΛ, satisfying

∑q
j=1 K†j (θ)Kj(θ) = 1.

This representation is not unique, since for every q-Kraus de-
composition of a channel, all the other q-Kraus decomposi-
tions can be constructed via a unitary transformation∑

k

u jk(θ)Kj(θ) ,

where ui j(θ) is a unitary matrix. The set of all q-Kraus de-
compositions of a channel is called the q-Kraus ensemble and
is noted Kq(θ). The smallest possible number q of Kraus
operators is known as the Kraus rank. It can be obtained as
the number of non-vanishing eigenvalues of the Choi-matrix
of the channel23. The generality of this representation is that
it can be used to model any system decoherence. Specifi-
cally, adding arbitrary environmental degrees of freedom to
the probe system, the probe dynamics can be written as a
unitary evolution for the combined probe-bath system. This
process is not unique since it requires the environment to be
defined; the probe evolution depends on the unitary evolution
associated with the enlarged Hilbert space. A fixed choice of
the unitary evolution and environmental degrees of freedom
corresponds to choosing a Kraus operator Kj(θ), which leads
to an upper bound for the qfi35

IQ,max
(
ρ(0); Kj(θ)

)
≥ 4

{
〈H1(θ)〉 − 〈H2(θ)〉

2} , (255)

where

H1(θ) =
∑
j

dK†j (θ)

dθ
dKj(θ)

dθ
, (256)

H2(θ) = i
∑
j

dK†j (θ)

dθ
Kj(θ) , (257)
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FIG. 7. System-bath interaction model where Hs, He, and HI are the
system, environment, and interaction Hamiltonians.

and the expectation is with respect to the initial probe state.
For unitary processes, Eq. (255) reduces to the common gen-
erator variance bound. The Kraus decomposition can be ap-
plied to ancilla assisted schemes, where the bound can be
similarly determined from the reduced density matrix of the
probe. Determining the qfi requires optimising Eq. (255) over
all Kraus operators, which is generally difficult. Alternative
methods have been introduced to determine error bounds in
noisy systems. This includes using a variational approach55, a
generalised Bures angle approach to quantum channels225, and
through the geometry of quantum channels, which has been
used to explore the effects depolarisation, dephasing, sponta-
neous emission and photon loss channels57,226.
For non-unitary probe encoding, few analytic expressions

for the qfi exist4,213,227 given that the calculation involves
complex optimisation procedures which becomes increasingly
difficult with increasing system size. In this case, it is more
informative to report on asymptotic lower bounds to the es-
timation precision for specific noise models. For the estima-
tion of some parameter θ, the error in its estimate depends
on the initial probe state. Noise generally degrades the op-
timal quadratic enhancement of precision estimates to one
that is a constant improvement over classical methods226. In
fact, it has been demonstrated that for parallel Markovian de-
phasing noise in the probe preparation, the precision scal-
ing is reduced to the classical sql ∆θ ∼ 1/

√
N scaling7,35,226,

and transverse Markovian dephasing noise reduces the scaling
bound to ∆θ ∼ 1/N5/6 if an entangled probe is used228. For
the entangled ghz probe, these scalings were generalised to
Markovian noise in nonlinear quantum metrology with many-
body open systems by Beau and del Campo229. Specifically,
for a k-dimensional Hamiltonian and p-dimensional Lindblad
operator, the variance of a Hamiltonian parameter scales as
N−[k−(p/2)], which surpasses the shot-noise limit for 2k > p+1.
The system-environment coupling parameter can be estimated
with a precision that scales as N−(p/2), while many-body deco-
herence enhances the precision to N−k in the noise-amplitude
estimation of a fluctuating k-body Hamiltonian. For non-
Markovian noise, the precision bound has a ∆θ ∼ 1/N3/4 scal-
ing56,230. Although these reduced precision scalings lower the
prospects of quantum metrology and sensing, some gain has
been demonstrated with non-Markovian dephasing and probe
readout schemes231. We also review alternative methods to
attempt to diminish the effects of noise later in this section.

Most of these established precision bounds are based on

educated guesses or numerical methods on the integrated form
of the probe dynamics. For non-unitary dynamics, where extra
terms have to be added to fully describe the dynamics of the
probe state, even the integration is not straightforward. The
specific dynamics are described by the Lindblad equation232

∂t ρ = −i[ρ,H(θ)] +
∑
j

Lj ρL†j −
1
2
{
ρ, L†jLj

}
, (258)

where Lj denotes the Lindblad operators. Eq. (258) is often re-
ferred to as theMaster Equation. Onemethod to obtain general
precision bounds from Eq. (258) is through numerical meth-
ods, which does not match the insight provided by analytical
approaches. Fortunately, this limitation has been addressed by
Sekatski et al., who developed a framework to provide ana-
lytic results for general decoherence models described through
the master equation233. This was followed by a more qualita-
tive approach that addresses the effects of arbitrary Markovian
dynamics on the precision scaling of unitary parameter esti-
mation problems. Specifically, if the generator of translations
G in θ can be written in terms of the operators234,235{

1, LHj , iL
AH
j , (L†jLj)

H, i(L†jLj)
AH

}
, (259)

where the superscript ‘H’ and ‘AH’ denote the Hermitian and
the anti-Hermitian part of an operator respectively, then for
some interrogation time T , the precision scales as at most

∆θ ≥
α
√

T
, (260)

where α is a real constant. Equivalently, the precision scales
no better than 1/

√
N with N quantifying the resources used.

This method does not depend on the integrated form of the
master equation, but only on the geometric properties on the
Lindblad operators. Furthermore, if the generator is not in the
span of the Lindblad operators then the Heisenberg scaling
can be recovered with application of quantum error correction
procedures. This was realised experimentally by Kessler et
al.236, Dür et al.237, and Sekatski et al.233. We will review this
in further detail in subsection VII C.
One approach to quantify and understand the impact of

decoherence on parameter estimates is to have access to the
environmental degrees of freedom to make estimates of both
Hamiltonian and bath-coupling parameters. Monras and Paris
showed that for Gaussian probes, this approach makes no im-
provement227 in that there is always an environment such that
observing the combined probe-environment state does not pro-
vide additional information gain when compared to simply
observing the probe itself35. For small losses, the qfi scales
with the loss parameter itself, which demonstrates a qualitative
improvement over the shot-noise limit.
The impact of loss on optical interferometry has been ex-

plored in detail in the field. We observed in subsection IVF
that the highly entangled noon state saturates the Heisenberg
limit on precision for phasemeasurements. However, this class
of states is extremely susceptible to losses, and are outper-
formed by purely classical states for moderate losses7,238–240.
Although for lossy interferometry the Heisenberg limit is not
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attainable120,241, certain quantum states have been engineered
to outperform both standard and noon states for phase mea-
surements in the presence of losses242. Note that this strat-
egy differs from quantum error correction techniques used
for quantum computing and protecting quantum memories,
where the approach is to protect the information encoded in
light243. This demonstrates that a quantum enhancement is
possible even in the presence of decoherences. Given that
a diverse range of different physical quantities can be deter-
mined through phase measurements, it is important to place
general bounds for phase estimation with lossy optical inter-
ferometers. A systematic approach to address the optimal
states with definite photon numbers for interferometry in the
presence of losses was first considered by Dorner et al.213.
This idea was later extended to find the optimal input state
for two-mode interferometry using a numerical optimisation
of the qfi4. Due to the convexity of the qfi that we observed
in subsection IVB, miniminising the estimation error is a con-
vex optimisation problem. The corresponding precision beats
classical methods and lies between the sql and the Heisenberg
limit, depending on the loss rates. It can not be improved by
considering probes with indefinite photon number and states
with photons distributed between distinguishable time bins.

Besides interferometry, further applications of noisymetrol-
ogy have been considered. For example, the effects of phase
flip and amplitude damping decoherence channels with N-
qubit ghz probes have been explored. As we observed in
subsection IVF, in the absence of noise, the Heisenberg limit
can be achieved through rotations along the Z direction. For
a phase noise channel, the qfi decreases with increasing de-
coherence rate due to information leak to the environment,
although it can exhibit revivals244. For an amplitude damping
channel, the qfi can be enhanced by adjusting the tempera-
ture of the environment. In bosonic quantum metrology, a
constant scaling improvement over the sql was observed by
Spedalieri et al., who demonstrated that correlated thermal
states outperform coherent states for the estimation of a loss
parameter245. Also, the case of simultaneous estimation of
multi-parameters in the presence of noise has been investi-
gated102,246. Since preparing noiseless probe states and en-
coding channels is experimentally challenging, efforts to view
noise as a utility to introduce correlations into the system have
been explored247–249. These correlations can lead to entangle-
ment250, which may provide precision enhancements. Hence
decoherences can be used to protect precisions against noise.
However, too much noise is detrimental. Understanding the
interplay between relaxing the noiseless criterion for ease of
experimental realisation and the amount of useful noise in the
system remains an open question.

B. Ancilla-assisted schemes and channel estimation

Assuming that noise cannot be eliminated from the system, a
natural question to ask is whether it is possible to negate its
effects. One strategy is to use ancillary systems, and allow
the probe system to arbitrarily interact with the ancilla. There
are two ways in which an ancillary state can be introduced

Λ(θ)

Π̂ j
ρ(0) ρ(θ)

FIG. 8. Ancilla assisted quantum channel extension scheme, de-
scribed by Λ(θ) ⊗ 1 and a povm measurement Πj .

to the state. In the first, the ancilla state is entangled with
the probe but does not itself participate in the estimation59.
This is known as channel extension and is illustrated in Fig. 8.
The objective is to consider how changes to the dynamics that
imprints the parameters to the probe state improves or limits
the estimation precision. Given that quantum channels are
completely positive trace preserving maps, channel extension
can be described through

Λ(θ) → Λ(θ) ⊗ A, (261)

where A is an arbitrary channel acting on an ancilla system.
The channel quantum Fisher information IQ,ch(Λ; θ) for Λ(θ)
is defined as

IQ,ch(Λ; θ) = max
ρ

IQ (Λ [ρ] ; θ) . (262)

Using the monotonicity of the qfi, it is enough to consider
extensions by the identity251. This identity channel extension
has been demonstrated to generate increased estimation preci-
sions252,253. The underlying principle is to enlarge the Hilbert
space of the probing system, such that noisy components can
be readily separated from the signal. It has been shown that for
phase estimation, the ancilla is useful for arbitrary values of the
noise parameter254,255. This has recently been demonstrated
experimentally256,257.
The second method of extending the Hilbert space of the

system through ancillary states is the Hamiltonian extension
scheme and involves adding an operator to the Hamiltonian.
This is a more fundamental approach, since the Hamiltonian
describes the probe dynamics during the parameterisation pro-
cess. It differs from channel extension since it can include an
interaction term between the probe and the ancilla. This pro-
vides a general framework for the treatment of open quantum
systems. However, it has been shown that this approach does
not improve the sensitivity of phase shift-type measurements
when considering the quantum Fisher information optimised
over input states209. Several experiments have demonstrated
the advantage of entanglement-assisted schemes in other ap-
plications including channel tomography258, and channel ca-
pacity estimation259.
The precision limit for more general parameter estimation

schemes—including adaptive protocols—can be addressed by
defining the encoding channel Λ(θ). Adaptive channel esti-
mation has been explored by Pirandola and Lupo260, Takeoka
andWilde261, and was further developed by Laurenza et al.262.
The qfi for the adaptive estimation of a noise parameter θ in
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a channel that obeys so-called joint teleportation covariance is
determined through260

IQ,ch (Λ; θ) =
8
[
1 − F

(
ρΛθ , ρΛθ+dθ

) ]
dθ2 , (263)

where teleportation covariance is given by262,263:

Λ(θ)
[
UρU†

]
= VΛ(θ)[ρ]V† . (264)

Note that V is not necessarily equal to U, and does not de-
pend on θ. Such channels include the set of thermal-loss264,
Pauli265, erasure266, and noisy amplifier channels.
It is worth noting that studies of channel estimation and

channel discrimination are inextricably linked. For the proto-
typical quantum channelΛ(θ), the former scheme corresponds
to continuous x, where the task is to estimate the unknown
parameterisation. Channel discrimination corresponds to dis-
crete θ, where it is moremeaningful to distinguish the quantum
channels. The symmetric discrimination between two arbi-
trary qudit channels was considered by Pirandola et. al using
a port-based teleportation scheme for channel simulation267.
Here, the same technique was used to derive limits to adaptive
quantum metrology262. Specifically, any adaptive protocol of
channel estimation is bounded in terms of the channel’s Choi
matrix and saturates the hl in the number of probings.
Through bounds to state discrimination, one can imme-

diately determine informative bounds for a range of other
tasks. This has been illustrated in quantum communication
and key distribution268, estimation theory269, quantum illumi-
nation tasks270, and quantum hypothesis testing261,267.

C. Fault-tolerant metrology

Tools from quantum error correction271 can also be used to
enhance and potentially recover estimation precisions in the
Heisenberg scaling regime for sensing under Markovian noise.
These methods are often used in conjunction with, or in ad-
dition to, ancilla-assisted schemes235–237,272 and are referred
to as fault tolerant quantum metrology. Their purpose is to
correct errors in the probe state and/or the measurement pro-
cedure against noise while permitting the signal to be encoded
on the sensor.

Quantum error correction (qec) has found widespread ap-
plication in quantum information processing and has evolved
into a selfcontained and well developed field of active re-
search273,274. However, migrating these tools to implement
fault tolerant quantum metrology is not straightforward. The
characteristic difficulty is in designing qec codes that detect
and correct the noise in the sensor, while leaving the encoded
signal intact. This constraint is uncommon in quantum com-
puting applications and consequently many existing qec codes
are not suitable for quantum sensing applications275. It is pos-
sible to identify qec codes that can be used to protect quantum
sensing protocols against noise, based on certain criteria. First,
if the signal Hamiltonian and the error operators commute, it
has been shown that the application of error correction can en-
hance the sensing precision236,237,272. Quantum sensing in this

regime has been demonstrated using nitrogen-vacancy cen-
ters236, trapped ions systems276, and has been experimentally
demonstrated for field sensing277 without the use of feedback
control methods. Second, provided the generator exists out-
side the span of the Lindblad operators and assuming access
to noiseless ancillas, there exists a quantum error correction
protocol that protects the sensor against noise233–235. This has
been extended to more realistic settings, e.g., where the signal
and noise are in the same direction278, and where noiseless
ancilla states were shown to be unnecessary when the signal
Hamiltonian and the error operators commute275.
The overheads necessary to realise fault-tolerant metrol-

ogy schemes make them unfeasible with current technology.
However, these methods are gaining increasing attention, and
the next goal is to determine realisable fault tolerant quantum
metrology protocols.

VIII. DISTRIBUTED QUANTUM SENSING

A natural extension to multi-parameter quantum estimation is
to distribute the parameters over different sensors and use mul-
tiple probe systems to interrogate the whole system. This net-
worked approach distributes sensing protocols over multiple
resources. Distributed quantum sensing has recently gained
increased attention since it provides a promising platform to
address a wider class of applications and compare existing re-
sults. For example, this framework can describe distributed
interferometric phase sensing279, estimate the properties of
a multi-dimensional field where each sensor is an ensemble
of atoms280, and calibrating continuous-variable quantum key
distribution networks281. Architectures based on a network of
sensors have also been reported to realise the quantum inter-
net282, scalable quantum computing283, and national284 and
international285 quantum cryptography. Proctor et al. devel-
oped a general framework for the treatment of photonic and
atomic sensor networks286. This approach is also important
since it helps to understand the optimal strategies that saturate
the qcrb.
In section IVF we reviewed work that demonstrated the ne-

cessity of entangled probe states to facilitate hl precision scal-
ings. However, in section IVGwe saw recentwork that demon-
strate non-entangling strategies to achieve the same scaling as
entangled probes105. Beyond a few counter examples that
have reported too much entanglement as detrimental99, little
research to date has addressed the question when and how
much entanglement is necessary as a resource in order to sat-
urate fundamental quantum precision bounds151. Distributed
quantum sensing holds the promise to demonstrate the utility of
entanglement and elucidate its contribution in providing preci-
sion enhancements. A separate question that shares a similar
dilemma is the choice between simultaneous and sequential
estimation strategies. These two strategies generate different
precision scalings with respect to the resource count287–289 and
time217,221,231. However, no clear results have been found that
determine when either strategy should be preferred. In this
section, we review efforts in distributed quantum sensing to
address these two open questions.
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FIG. 9. Networked approach to quantum sensing for a decomposition
of the parameters across 5 sensors with potentially entangled states
(dashed lines). The j th node is encoded by the parameter subset θ[j].
The dashed lines represent (quantum) correlations between the nodes.
This approach is well suited to field sensing, where each node is a
spin system.

A. Framework for distributed sensing

To formally define distributed sensing, consider a quantum
system comprised of n subsystems, labelled through an index
j = 1, 2, . . . , n, with an associated Hilbert space Hj . The
Hilbert space associated with two different subsystems are
not required to be identical. Additionally, each space is not
limited to a single field mode. The total Hilbert space is
H = ⊗n

j=1Hj . This product structure of the total system
Hilbert space describes a spatially distributed sensor network
as illustrated in figure 9. The physical system associated with
each Hilbert space Hj is referred to as a quantum sensor, and
the collection of all sensors a quantum sensing network.

Similar to single probe states, the parameters can be im-
printed on the quantum network via unitary evolutions280 and
more general dynamics290. A unitary evolution of the total
system is written as U(θ) = exp[−iH · θ] where the vector of
Hermitian operatorsH = (H1, . . . ,HD) is the systemHamilto-
nian, and each node j has dj parameters unitarily encoded such
that

∑
j dj = D. The j th Hamiltonian element Hj = hj ⊗k,j 1k

acts non-trivially on only one of the Hilbert spaces in H .
From this, the product nature of the unitary is explicit:

U(θ) =
n⊗
j=1

Uj(θ[j]) , (265)

where [ j] indicates the set of dj parameters at node j. Any
system with a tensor product structure can be reconstructed in
the language of quantum networks.

To understand how distributed sensing framework can be
used to evaluate the role of entanglement, it is necessary to
introduce local and global networked sensing strategies. For
a given decomposition of a network into different sensors, an
estimation procedure is local if103 (1) the input probe state is
separable with respect to the network of quantum sensors, and
(2) the measurement and the construction of the estimator can
be implemented with only local operations and classical com-
munication (locc), along with local (classical) computations.
A global estimation strategy is defined as a non-local estima-
tion procedure, where either a probe that is entangled over the

quantum sensors and/or a measurement requiring non-local
quantum operations is used. Note that in local strategies, each
parameter is estimated individually, while in global strategies
parameters are estimated simultaneously. Local estimation
strategies are more robust against local estimation failure than
global strategies and often involve more realistic methods of
state preparation291, measurement, and control292.
The use of correlations between different sensors in the net-

work can provide precision enhancements beyond unentangled
systems281. However, this is true only in specific scenarios.
When each quantum sensor is used to estimate a single param-
eter, entanglement between different sensors has a detrimental
impact on the estimation precision. Intuitively, when the pa-
rameters are encoded locally on each sensor, it does not make
sense to use global states or measurements that exhibit entan-
glement between the sensors for improved precisions. Hence,
under the single parameter networked sensing remit, separa-
ble state and measurements over the sensors are preferred280.
This reflects the results of simultaneous estimation in optical
multi-parameter estimation problems100–102. It is also consis-
tent with the results in99 where too much entanglement was
reported as being detrimental, and the calibration of optical
quantum gyroscopes, where the optimal level of entanglement
depends on the parameters151. If instead each sensor is used
to estimate multiple parameters, the effect of entanglement on
the estimation precision depends on properties of each of the
parameter generators280. If all the generators corresponding to
the parameters commute, then entanglement between sensors
is still detrimental to the estimation precision. In contrast, if
the generators do not all commute then entanglement between
sensors may in some cases give a small constant reduction
in the estimation uncertainty. However, this advantage di-
minishes when each sensor is coupled to an ancillary system.
Practically, this is important for examples where the resources
used must be limited to avoid damaging a sample whose prop-
erties are being probed293–295.
The original scheme for simultaneous quantum-enhanced

phase estimation byHumphreys et al.was realised using highly
entangled noon states. However, the same precision enhance-
ments exhibited by the global strategies can be obtained with
mode-separable states and local measurements alone103. This
is not surprising since in multimode optical systems with com-
muting phase generators, the crucial resource for enhanced
metrology is a large particle number variance within each
mode, which can be obtained without multimode entangle-
ment.

B. Estimating functions of parameters

So far we have considered the multi-parameter estimation of
a vector of parameters: for a well-defined decomposition of a
network of quantum sensors, different subsets θ[j] of the pa-
rameters are locally encoded onto the space of the j th sensor.
An alternative approach to estimating the vector of parameters
is to estimate a function of these elements instead. This is
better suited for many practical applications and can be more
informative than estimating the parameters. Immediate exam-
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ples of this include vectorial magnetometry for imaging using
a network of atomic sensors296,297, the realisation of a global
quantumnetwork of clocks298, and field interpolation299. Field
interpolation exemplifies the advantage of estimating a func-
tion of parameters since the the objective is to estimate the field
at a spatial region not covered by a sensor within the network.

Determining precision bounds for the estimation of func-
tions requires a strategy that minimises estimate variances of
general functions of θ. One can construct a D-dimensional
vector of parameter functions

ϑ = ( f1(θ), . . . , fD(θ)) (266)

where fj : RD → R, j ∈ {1,D} are continuously differen-
tiable functions. In section V, we observed that the qfi el-
ements transform as a metric tensor. Hence the single-shot
qcrb for an estimator of ϑ is given by Eq. (154). The attain-
ability of this bound for function estimation has a strict caveat.
Extreme care should be taken when estimating a scalar func-
tion of multiple parameters f (θ1, . . . , θD). This can not be
treated as a single-parameter estimation f , since the mapping
of many parameters to one implicitly assumes that the remain-
ing D − 1 parameters, whatever they are, are known perfectly.
This assumption is generally not satisfied and the procedure
therefore leads to unattainable bounds300. This unattainability
has been explored for a network of single qubits by Eldredge
et al., where for the specific problem of nanoscale magnetic
resonance imaging, ghz and spin-squeezed states are found to
be optimal301.

Work in this direction has to date been limited to estimating
the class of linear functions, where the vector ϑ is constructed
from linear transformations of θ through ϑ = Jθ. This class
of functions is useful for modeling optical and atomic sensing
applications, and the estimation of parameter averages. The
last application has been considered for a network of precision
clocks by Komar et al.298. To facilitate convenient compar-
isons between these works, Proctor et al. demand each row of
the transformation matrix J be a normalised vector286. In the
case of a single parameter encoded on each sensor, entangle-
ment can help to perform better estimates of linear functions.
The precise effect of entanglement depends on the explicit
choice of linear function. Denoting the first row of J with the
vector v such that ϑ1 = v · θ, then Proctor et al. find that an
entangled probe across the sensors always provides a preci-
sion enhancement compared with a separable state, unless the
function v = ‖v‖ek280. Intuitively, if v contains more than one
non-zero element, then ϑ1 describes a global process across
multiple sensors and naturally, a globally correlated state will
be most sensitive to changes in ϑ. Conversely, if only one
element is non-zero, the process is local and entanglement is
not required and can indeed be detrimental for the estimation
performance.

To conclude, the use of simultaneous estimation schemes
and entangled resources are not always necessary to achieve
quantum-enhanced sensing. In particular, the use of entangle-
ment can be detrimental and any precision enhancements de-
pend on whether the parameters of interest are local or global
properties of a set of systems. As future work, it would be
interesting to observe how these results can be extended to

the class of non-linear functions. The analogy between the
choice of appropriate weight/importance matrices in the class
of non-distributed sensing to the freedom in choice of arbitrary
functions in distributed sensing can also be explored.

IX. CONCLUSIONS AND OUTLOOK

Without exaggeration, our ability to devise novel approaches
for high precision measurements has been one of the greatest
drivers of fundamental science and technologies. A plethora
of historical examples in optics, communication, computation,
imaging, and metrology bear substantial evidence to support
this statement. However, we are reaching various limits in
metrology, including the shot noise limit and the diffraction
limit. The latter directly impacts our ability to keep up with
Moore’s law in the manufacturing of electronics. Quantum
metrology provides a natural extension to classical methods to
continue driving performance improvements using quantum
systems.
Quantum metrology has matured into a broad field with

many active areas of theoretical and experimental research. In
this review, we provide a summary of the main techniques in
sensing and metrology. We use geometric arguments stem-
ming from information theoretic concepts to motivate the key
quantities in classical and quantum estimation theory. This is a
powerful approach that provides a method to visualise the esti-
mation process, and helps compare different sensing protocols.
It is important to understand what resources are necessary to
improve the precision of measurements. Precision bounds de-
rived using geometric arguments can also provide conceptual
connections between quantum estimation and general quan-
tum information tasks. We review methods to generate gen-
eral bounds for qubit and multi-particle systems using query
complexity arguments for the estimation procedure.
Central to information geometry is the information matrix,

which assigns a quantitative measure on the performance of
parameter estimates. We show that the quantum Fisher infor-
mation (qfim) is part of a wider family of different information
matrices that can be found via the Schwarz inequality. These
informationmatrices can be used to derive bounds for elements
of the covariance matrix. For multiple parameters, we review
the symmetric logarithmic derivative (sld) and the right log-
arithmic derivative qfim, the Kubo-Mori and Wigner-Yanase
skew information matrices. We review how they can be con-
nected via their Riemannianmetrics. Weprovide a comparison
of these bounds and discuss their attainability. Specifically, we
report that the commonly used qcrb for multiple parameters is
often not simultaneously saturable, which adds to the difficulty
that optimal measurements often depend on the true, unknown
values of the parameters. The Holevo Cramér-Rao bound is
then found to be the most informative alternative bound, al-
though it is generally difficult to determine for an arbitrary
probe. The specific case of Gaussian state estimation and non
phase-like parameters is considered. Numerical methods to
solve the qcrb have also been discussed. Although we focus
mostly on unbiased Fisher estimation schemes, we comment
on the effect that biased estimators have on the estimation
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precision. Recently, Rubio and Dunningham showed how to
construct a Bayesian analogue of the qfim. In this review,
we independently provide a geometric derivation of the Bayes
information to arrive at a consistent result. We show that
this procedure follows the same method as the Fisher estima-
tion scheme using the prior-weighted density operator and the
posterior mean operator to define a corresponding symmetric
logarithmic posterior mean operator.

The prevailing thought of entanglement as a necessary re-
source for enhanced quantum sensing has been challenged,
and several works attribute the precision enhancement instead
to quantum correlations. Further, the optimal amount of en-
tanglement in the probe state depends on the parameters and
the estimation scheme. This demonstrates that entanglement
provides limited use in certain cases. This could be seen as
welcoming news, given the difficultly to produce robust states
with high entanglement. We review efforts that explore non-
entangling strategies to saturate the qcrb.
We conclude by summarising key results in current research

efforts in noisy metrology schemes. A longstanding impedi-
ment of noisy quantum metrology is the reduction of quantum
enhancements to constant factor improvements over classical
precision bounds. This has often reduced expectations of prac-
tical applications of quantum sensing. The use of fault-tolerant
schemes to reinstate quantum scaling has renewed efforts to
explore the most general bounds in noisy quantum metrology
with error correction. This strategy introduces its own unique
difficulties: first, well-known methods in quantum error cor-
rection for quantum computing cannot be straightforwardly
implemented for use in quantum metrology since they would
also “correct” the signal we want to measure. Second, the
physical overheads required make most uses currently imprac-
tical. We review research that addresses these issues. Another
current area of intense research is distributed quantum sensing.
This field demonstrates how methods in quantum estimation
theory are often interwoven with related efforts in quantum
communication. We summarise our current understanding of
themost efficient methods to distribute resources over different
nodes in a network of sensors.

The progress of practical applications presented in this re-
view highlights quantum sensing as a frontrunner to the emer-
gence of quantum technologies. However, developing realis-
able protocols remains a non-trivial problem with many open
questions.
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kowski, Dominik Ŝafránek, Claudio Sanavio, Mankei Tsang,
Mark Wilde, and Jing Yang. JSS and PK acknowledge
EPSRC for funding via the Quantum Communications Hub
(EP/M013472/1).

REFERENCES

1M. Hayashi, Asymptotic Theory of Quantum Statistical Inference (World
Scientific Publishing, 2008).

2S. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estima-
tion Theory (v. 1), 1st ed. (Prentice Hall, United States, 1993).

3G. Tóth and D. Petz, Phys. Rev. A 87, 032324 (2013).
4R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen,
W.Wasilewski, K. Banaszek, and I. A.Walmsley, Phys. Rev. A 80, 013825
(2009).

5L. Pezzé and A. Smerzi, Proc. Int. School Phys. Enrico Fermi Course 188,
691 (2014).

6J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev.
A 54, R4649 (1996).

7S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and
J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).

8B. Luff, J. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabri-
cius, J. Lightwave Technol. 16, 583 (1998).

9C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S.
Feld, Opt. Lett. 26, 1271 (2001).

10C. C. Gerry and P. L. Knight, Introductory Quantum Optics, 1st ed. (Cam-
bridge University Press, United Kingdom, 2004).

11J. S. Sidhu,QuantumMetrology of Grid Deformations and Squeezed Light:
With applications in quantum imaging & quantum information, Doctoral
Thesis (University of Sheffield, 2018).

12D. McNeish, Struc. Eq. Model. 23, 750 (2016).
13C. W. Helstrom, Int. J. Theor. Phys. 8, 361 (1973).
14H.Cramér,MathematicalMethods of Statistics (PrincetonUniversity Press,
1999).

15S. Amari, Information Geometry and Its Applications, 1st ed., Applied
Mathematical Sciences, Vol. 194 (Springer, 2016).

16N. Ay, J. Jost, H. V. Lê, and L. Schwachhöfer, Information Geometry, 1st
ed. (Springer, 2017).

17A. W. van der Vaart, Asymptotic Statistics (Cambridge University Press,
2000).

18S. D. Gupta, Selected Papers of C. R. Rao (Wiley-Blackwell, 1995).
19L. LeCamandG. LoYang,Asymptotics in Statistics: SomeBasicConcepts,
2nd ed., Springer Series in Statistics (Springer, 2000).

20H. L. V. Trees and K. L. Bell, Bayesian Bounds for Parameter Estimation
and Nonlinear Filtering/Tracking (Wiley-Blackwell, 2007).

21W. K. Wootters, Phys. Rev. D 23, 357 (1981).
22S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
23I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Intro-
duction to Quantum Entanglement, 1st ed. (Cambridge University Press,
New York, 2008).

24P. Kok and B. W. Lovett, Introduction to Optical Quantum Information
Processing, 1st ed. (Cambridge University Press, Cambridge, UK, 2010).

25P. Facchi, R. Kulkarni, V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and
F. Ventriglia, Physics Letters A 374, 4801 (2010).

26T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
ed., Wiley Series in Telecommunications and Signal Processing (Wiley-
Blackwell, 2006).

27C. E. Shannon, The Bell System Technical Journal 27, 379 (1948).
28S. Kullback and R. A. Leibler, Ann. Math. Statist. 22, 79 (1951).
29C. W. Helstrom, Quantum Detection and Estimation Theory (Academic
Press Inc., 1976).

30S. L. Braunstein, C. Caves, and G. Milburn, Ann. Phys. 247, 135 (1995).
31J. Hilgevoord and J. Uffink, Found. Phys. 21, 323 (1991).
32H. Nagaoka, A new approach to Cramér-Rao bounds for quantum state
estimation, IT 89-42 (IEICETechnical Report, 1989) reprinted in1, Chapter
8, pages 100–112.

33G. Tóth and I. Apellaniz, J. Phys. A: Math. Theoret. 47, 424006 (2014).
34S. Yu, “Quantum Fisher Information as the Convex Roof of Variance,”
(2013), unpublished, arXiv:1302.5311.

35B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nat. Phys. 7, 406
(2011).

36A. Fujiwara and H. Imai, J. Phys. A: Math. Theoret. 41, 255304 (2008).
37M. Hübner, Phys. Lett. A 163, 239 (1992).

http://dx.doi.org/10.1103/PhysRevA.87.032324
http://dx.doi.org/ 10.1103/PhysRevA.80.013825
http://dx.doi.org/ 10.1103/PhysRevA.80.013825
http://dx.doi.org/10.3254/978-1-61499-488-0-691
http://dx.doi.org/10.3254/978-1-61499-488-0-691
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevLett.79.3865
http://dx.doi.org/ 10.1109/50.664067
http://dx.doi.org/ 10.1364/OL.26.001271
http://dx.doi.org/10.1080/10705511.2016.1186549
http://dx.doi.org/10.1007/BF00687093
http://dx.doi.org/10.1103/PhysRevD.23.357
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/ 10.1016/j.physleta.2010.10.005
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1007/BF01883638
http://dx.doi.org/10.1142/9789812563071_0009
http://dx.doi.org/10.1142/9789812563071_0009
http://dx.doi.org/10.1088/1751-8113/47/42/424006
http://arxiv.org/abs/1302.5311
http://dx.doi.org/10.1038/NPHYS1958
http://dx.doi.org/10.1038/NPHYS1958
http://dx.doi.org/10.1088/1751-8113/41/25/255304
http://dx.doi.org/10.1016/0375-9601(92)91004-B


35

38J. Jost, Riemannian Geometry and Geometric Analysis, 6th ed. (Springer,
2011).

39A. Fujiwara, METR 94-8 (1994).
40S. Amari and H. Nagaoka,Methods of Information Geometry, Translations
of Mathematical Monographs, Vol. 191 (American Mathematical Society,
Oxford University Press, 1993).

41A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
42R. Jozsa, J. Mod. Opt. 41, 2315 (1994).
43M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th ed. (Cambridge University Press, 2010).

44H. Yuan and C.-H. F. Fung, New J. Phys. 19, 113039 (2017).
45A. Chefles, Contemp. Phys. 41, 401 (2000).
46L. Banchi, S. L. Braunstein, and S. Pirandola, Phys. Rev. Lett. 115, 260501
(2015).

47C. W. Helstrom, Phys. Lett. A 25, 101 (1967).
48C. W. Helstrom, IEEE Trans. Inf. Theory 14, 234 (1968).
49D. Šafránek, Phys. Rev. A 95, 052320 (2017).
50L. Seveso, F. Albarelli, M. G. Genoni, and M. G. A. Paris, J. Phys. A:
Math. Theoret. 53, 02LT01 (2019).

51M. G. A. Paris, Int. J. Quantum Inf. 7, 125 (2009).
52E. Ercolessi and M. Schiavina, Phys. Lett. A 377, 1996 (2013).
53J. Liu, J. Chen, X.-X. Jing, and X. Wang, J. Phys. A: Math. Theoret. 49,
275302 (2016).

54M. Sarovar and G. J. Milburn, J. Phys. A: Math. Gen. 39, 8487 (2006).
55B. M. Escher, L. Davidovich, N. Zagury, and R. L. de Matos Filho, Phys.
Rev. Lett. 109, 190404 (2012).

56A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 109, 233601
(2012).

57J. Kołodyński and R. Demkowicz-Dobrzański, New J. Phys. 15, 073043
(2013).

58S. Alipour, M. Mehboudi, and A. T. Rezakhani, Phys. Rev. Lett. 112,
120405 (2014).

59R. Demkowicz-Dobrzański and L. Maccone, Phys. Rev. Lett. 113, 250801
(2014).

60O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen. 33, 4481
(2000).

61A. Fujiwara, J. Phys. A: Math. Gen. 39, 12489 (2006).
62V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401
(2006).

63A. Boto, P. Kok, D. Abrams, S. Braunstein, C. Williams, and J. Dowling,
Phys. Rev. Lett. 85, 2733 (2000).

64H. Lee, P. Kok, and J. P. Dowling, J. Mod. Opt. 49, 2325 (2002).
65P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 65, 052104 (2002).
66P. Walther, J. W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and
A. Zeilinger, Nature 429, 158 (2004).

67M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature 429, 161
(2004).

68G. J. Pryde and A. G. White, Phys. Rev. A 68, 052315 (2003).
69H. Cable and J. P. Dowling, Phys. Rev. Lett. 99, 163604 (2007).
70D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s Theorem,
Quantum Theory and Conceptions of the Universe (Springer, Dordrecht,
Dordrecht, 1989) pp. 69–72.

71V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222 (2011).
72P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek,
H. Weinfurter, L. Pezzé, and A. Smerzi, Phys. Rev. A 85, 022321 (2012).
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