A Geometric Preferential Attachment Model of Networks II

Abraham D. Flaxman, Microsoft Research

Alan M. Frieze, Carnegie Mellon University

Juan Vera University of Waterloo

December 11, 2007

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Preferential Attachment and its relatives

Model

Geometric Preferential Attachment I Geometric Preferential Attachment II

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results Theorems Proof techniques

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► Build a graph dynamically. At time t have G_t = (V_t, E_t).

- ► Build a graph dynamically. At time t have G_t = (V_t, E_t).
- At time t, add vertex v_t, and connect it randomly to m neighbors

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- ► Build a graph dynamically. At time t have G_t = (V_t, E_t).
- At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by:

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Preferential Attachment Graph

- ► Build a graph dynamically. At time t have G_t = (V_t, E_t).
- At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by:

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w).$$

• • • • • • • • • • • •

Powerlaw degree distribution

PA graph has a "scale-free" degree distribution:

Powerlaw degree distribution

PA graph has a "scale-free" degree distribution:

・ロット (雪) (日) (日)

э

PA graph has a "scale-free" degree distribution:

・ロット (雪) (日) (日)

э

Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

New concept or mechanism	Limits of y	Reference		
Linear growth, linear pref. attachment	γ=3	Barabási and Albert, 1999		
Nonlinear preferential attachment $\Pi(k_i) \sim k_i^a$	no scaling for $\alpha \neq 1$	Krapivsky, Redner, and Leyvraz, 2000		
Asymptotically linear pref. attachment $\Pi(k_i){\sim}a_{*}k_i \text{ as } k_i{\rightarrow}\infty$	$\gamma \rightarrow 2$ if $a_{\infty} \rightarrow \infty$ $\gamma \rightarrow \infty$ if $a_{\infty} \rightarrow 0$	Krapivsky, Redner, and Leyvraz, 2000		
Initial attractiveness $\Pi(k_i) \sim A + k_i$	$\begin{array}{l} \gamma {=} 2 \ \text{if} \ A {=} 0 \\ \gamma {\rightarrow} {\infty} \ \text{if} \ A {\rightarrow} {\infty} \end{array}$	Dorogovtsev, Mendes, and Samukhin, 2000a, 2000b		
Accelerating growth $\langle k \rangle \sim t^{\theta}$ constant initial attractiveness	$\gamma=1.5$ if $\theta \rightarrow 1$ $\gamma \rightarrow 2$ if $\theta \rightarrow 0$	Dorogovtsev and Mendes, 2001a		
Accelerating growth $\langle k \rangle = at + 2b$	$\gamma=1.5$ for $k \ll k_c(t)$ $\gamma=3$ for $k \gg k_c(t)$	Barabási et al., 2001 Dorogovtsev and Mendes, 2001c		
Internal edges with probab. \boldsymbol{p}	$\gamma=2$ if $q=\frac{1-p+m}{1+2m}$			
Rewiring of edges with probab. q	$\gamma \rightarrow \infty$ if $p,q,m \rightarrow 0$	Albert and Barabási, 2000		
c internal edges or removal of c edges	$\gamma \rightarrow 2$ if $c \rightarrow \infty$ $\gamma \rightarrow \infty$ if $c \rightarrow -1$	Dorogovtsev and Mendes, 2000c		
Gradual aging $\Pi(k_i) \sim k_i (t-t_i)^{-\nu}$	$\gamma \rightarrow 2$ if $\nu \rightarrow -\infty$ $\gamma \rightarrow \infty$ if $\nu \rightarrow 1$	Dorogovtsev and Mendes, 2000b		
Multiplicative node fitness	$P(k) \sim \frac{k^{-1-C}}{\ln(k)}$			
$\Pi_i \sim \eta_i k_i$		Bianconi and Barabási, 2001a		
Additive-multiplicative fitness	$P(k) \sim \frac{k^{-1-m}}{\ln(k)}$			
$\Pi_i \sim \eta_i (k_i - 1) + \zeta_i$	$1 \le m \le 2$	Ergün and Rodgers, 2001		
Edge inheritance	$P(k_{in}) = \frac{d}{k_{in}^{\sqrt{2}}} \ln(ak_{in})$	Dorogovtsev, Mendes, and Samukhin, 2000c		
Copying with probab. p	$\gamma = (2-p)/(1-p)$	Kumar et al., 2000a, 2000b		
Redirection with probab. r	$\gamma = 1 + 1/r$	Krapivsky and Redner, 2001		
Walking with probab. p	$\gamma=2$ for $p > p_c$	Vázquez, 2000		
Attaching to edges	γ=3	Dorogovtsev, Mendes, and Samukhin, 2001a		
p directed internal edges $\Pi(k_i, k_j) \propto (k_i^{loc} + \lambda)(k_j^{out} + \mu)$	$\gamma_{in} = 2 + p\lambda$ $\gamma_{out} = 1 + (1-p)^{-1} + \mu p/(1-p)$	Krapivsky, Rodgers, and Redner, 2001		
1-p directed internal edges Shifted linear pref. activity	$\gamma_{in} = 2 + p$ $\gamma_{out} = 2 + 3p$	Tadić, 2001a		

Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

New concept or mechanism	Limits of y	Reference		
Linear growth, linear pref. attachment	γ=3	Barabási and Albert, 1999		
Nonlinear preferential attachment $\Pi(k_i) \sim k_i^a$	no scaling for $\alpha \neq 1$	Krapivsky, Redner, and Leyvraz, 2000		
Asymptotically linear pref. attachment $\Pi(k_i) \sim a_{\infty} k_i$ as $k_i \rightarrow \infty$	$\gamma \rightarrow 2$ if $a_{=} \rightarrow \infty$ $\gamma \rightarrow \infty$ if $a_{=} \rightarrow 0$	Krapivsky, Redner, and Leyvraz, 2000		
Initial attractiveness $\Pi(k_i) \sim A + k_i$	$\begin{array}{l} \gamma {=} 2 \ \text{if} \ A {=} 0 \\ \gamma {\rightarrow} \infty \ \text{if} \ A {\rightarrow} \infty \end{array}$	Dorogovtsev, Mendes, and Samukhin, 2000a, 2000b		
Accelerating growth $\langle k \rangle \sim t^{\sigma}$ constant initial attractiveness	$\gamma=1.5$ if $\theta \rightarrow 1$ $\gamma \rightarrow 2$ if $\theta \rightarrow 0$	Dorogovtsev and Mendes, 2001a		
Accelerating growth $\langle k \rangle = at + 2b$	$\gamma = 1.5$ for $k \ll k_c(t)$ $\gamma = 3$ for $k \gg k_c(t)$	Barabási et al., 2001 Dorogovtsev and Mendes, 2001c		
Internal edges with probab. \boldsymbol{p}	$\gamma=2$ if $q=\frac{1-p+m}{1+2m}$			
Rewiring of edges with probab. q	$\gamma \rightarrow \infty$ if $p,q,m \rightarrow 0$	Albert and Barabási, 2000		
c internal edges or removal of c edges	$\gamma \rightarrow 2$ if $c \rightarrow \infty$ $\gamma \rightarrow \infty$ if $c \rightarrow -1$	Dorogovtsev and Mendes, 2000c		
Gradual aging $\Pi(k_i) \sim k_i (t-t_i)^{-\nu}$	$\gamma \rightarrow 2$ if $\nu \rightarrow -\infty$ $\gamma \rightarrow \infty$ if $\nu \rightarrow 1$	Dorogovtsev and Mendes, 2000b		
Multiplicative node fitness $\prod_i \sim n_i k_i$	$P(k) \sim \frac{k^{-1-C}}{\ln(k)}$	Discoul and Developing 2001		
$\Pi_i \sim \eta_i \kappa_i$		Bianconi and Barabási, 2001a		
Additive-multiplicative fitness	$P(k) \sim \frac{k^{-1-m}}{\ln(k)}$			
$\Pi_i \sim \eta_i (k_i - 1) + \zeta_i$	1≤m≤2	Ergün and Rodgers, 2001		
Edge inheritance	$P(k_{in}) = \frac{d}{k_{in}^{\sqrt{2}}} \ln(ak_{in})$	Dorogovtsev, Mendes, and Samukhin, 2000c		
Copying with probab. p	$\gamma = (2-p)/(1-p)$	Kumar et al., 2000a, 2000b		
Redirection with probab. r	$\gamma = 1 + 1/r$	Krapivsky and Redner, 2001		
Walking with probab. p	$\gamma = 2$ for $p > p_c$	Vázquez, 2000		
Attaching to edges	$\gamma = 3$	Dorogovtsev, Mendes, and Samukhin, 2001a		
p directed internal edges $\Pi(k_i, k_j) \propto (k_i^{in} + \lambda)(k_j^{out} + \mu)$	$\gamma_{in} = 2 + p\lambda$ $\gamma_{out} = 1 + (1-p)^{-1} + \mu p/(1-p)$	Krapivsky, Rodgers, and Redner, 2001		
1-p directed internal edges Shifted linear pref. activity	$\gamma_{in} = 2 + p$ $\gamma_{out} = 2 + 3p$	Tadić, 2001a		

[Barabási, A.-L., and R. Albert, Statistical mechanics of complex networks, Reviews of Modern Physics, Vol 74, page 47-97, 2002.]

(ロ) (同) (三) (三) (三) (○) (○)

One modification that's missing from list

One modification that's missing from list

Underlying geometry of vertices

Underlying geometry of vertices:

> A feature nodes have in many real-world networks.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Underlying geometry of vertices:

- A feature nodes have in many real-world networks.
- Often a reasonable hypothesis even when the nodes do not explicitly live in a metric space.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

How does underlying geometric structure affect preferential attachment?

Every vertex v is a uniformly random point on the surface of a 3-dimensional sphere.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Every vertex v is a uniformly random point on the surface of a 3-dimensional sphere.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

At time t, add vertex v_t, and connect it randomly to m neighbors

Every vertex v is a uniformly random point on the surface of a 3-dimensional sphere.

(ロ) (同) (三) (三) (三) (○) (○)

At time t, add vertex v_t, and connect it randomly to m neighbors, from only neighbors within critical radius r

- Every vertex v is a uniformly random point on the surface of a 3-dimensional sphere.
- At time t, add vertex v_t, and connect it randomly to m neighbors, from only neighbors within critical radius r, with probability given by:

$$\Pr[v_t \to w] = \begin{cases} \frac{1}{Z} \deg_t(w) & \text{if } \|v_t - w\| \le r; \\ 0 & \text{otherwise.} \end{cases}$$

(ロ) (同) (三) (三) (三) (○) (○)

- Every vertex v is a uniformly random point on the surface of a 3-dimensional sphere.
- At time t, add vertex v_t, and connect it randomly to m neighbors, from only neighbors within critical radius r, with probability given by:

$$\Pr[v_t \to w] = \begin{cases} \frac{1}{Z} \deg_t(w) & \text{if } \|v_t - w\| \le r; \\ 0 & \text{otherwise.} \end{cases}$$

We would like to take normalization Z to be

$$T_t(v_t) = \sum_{w: \|v_t - w\| \le r} \deg_t(w).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Geometric PA I Image

Introduce affinity function $F : \mathbb{R}_+ \to \mathbb{R}_+$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduce affinity function $F \colon \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex vt, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduce affinity function $F : \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex vt, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $Z = \max \{T_t(v_t), \alpha mt\}$, with

Introduce affinity function $F : \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex vt, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

(日) (日) (日) (日) (日) (日) (日)

where $Z = \max \{T_t(v_t), \alpha mtl\}$, with $T_t(v_t) = \sum_{w \in V_t} \deg_t(w) F(||v_t - w||),$

Introduce affinity function $F : \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex vt, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

(日) (日) (日) (日) (日) (日) (日)

where $Z = \max \{T_t(v_t), \alpha mtl\}$, with

 $T_t(v_t) = \sum_{w \in V_t} \deg_t(w) F(||v_t - w||),$

•
$$I = \int_{S^2} F(||w - v_t||) dw$$

Introduce affinity function $F : \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex vt, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

(日) (日) (日) (日) (日) (日) (日)

where $Z = \max \{T_t(v_t), \alpha mtl\}$, with

 $T_t(v_t) = \sum_{w \in V_t} \deg_t(w) F(||v_t - w||),$

$$I = \int_{S^2} F(\|w - v_t\|) dw,$$

• α is bias towards self loops.

Introduce affinity function $F : \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex vt, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

where $Z = \max \{T_t(v_t), \alpha mtl\}$, with

 $T_t(v_t) = \sum_{w \in V_t} \deg_t(w) F(||v_t - w||),$

$$\bullet \ I = \int_{S^2} F(\|w - v_t\|) dw,$$

• α is bias towards self loops.

Restrictions on *F*: *I* must exist, $0 < I < \infty$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

ロト・「聞ト・ヨト・ヨー」の文で、

In the Geo-PA-II model, what do you think happens to:

In the Geo-PA-II model, what do you think happens to:

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

The degree distribution?

In the Geo-PA-II model, what do you think happens to:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- The degree distribution?
- The conductance/sparsest cut?

In the Geo-PA-II model, what do you think happens to:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- The degree distribution?
- The conductance/sparsest cut?
- The diameter?

Theorem

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Theorem For $\alpha > 2$ and

$$\int_0^{\pi} F(x)^2 \sin x \, dx = \mathcal{O}\left(t^{1-\epsilon} t^2\right),$$

Theorem For $\alpha > 2$ and

$$\int_0^{\pi} F(x)^2 \sin x dx = \mathcal{O}\left(t^{1-\epsilon} l^2\right),$$

we have

$$\mathsf{E}\left[\#\{w: \deg_t(w) = k\}\right] = C_k(m, \alpha) \left(\frac{m}{k}\right)^{1+\alpha} t + \mathcal{O}(t^{1-\delta}),$$

Theorem For $\alpha > 2$ and

$$\int_0^{\pi} F(x)^2 \sin x dx = \mathcal{O}\left(t^{1-\epsilon} l^2\right),$$

we have

$$\mathsf{E}\left[\#\{w: \deg_t(w) = k\}\right] = C_k(m, \alpha) \left(\frac{m}{k}\right)^{1+\alpha} t + \mathcal{O}(t^{1-\delta}),$$

where

$$C_k(m, \alpha) \rightarrow C_{\infty}(m, \alpha)$$
 as $k \rightarrow \infty$.

Theorem For $\alpha > 2$ and

$$\int_0^{\pi} F(x)^2 \sin x dx = \mathcal{O}\left(t^{1-\epsilon} l^2\right),$$

we have

$$\mathsf{E}\left[\#\{w: \deg_t(w) = k\}\right] = C_k(m, \alpha) \left(\frac{m}{k}\right)^{1+\alpha} t + \mathcal{O}(t^{1-\delta}),$$

where

$$C_k(m,\alpha) \to C_\infty(m,\alpha)$$
 as $k \to \infty$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(We also have a concentration result.)

Theorem

For $\alpha > 0$ and *m* a sufficiently large constant, if there exist ϕ and η with

$$\frac{1}{n} \ll \phi \ll 1$$
 and $\eta \ll 1$

such that

$$\frac{1}{2}\int_{\eta}^{\pi}F(x)\sin x\,dx\leq\phi I$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

then the cut induced by a great circle of the sphere contains $O((\eta + \phi)mn)$ edges whp.

Example:

$$F(x) = \min\left\{n^{\delta\beta}, \frac{1}{x^{\beta}}\right\}.$$

Example:

$$F(x)=\min\left\{n^{\delta\beta},\frac{1}{x^{\beta}}\right\}.$$

For $\beta > 2$, get

$$e(S, \overline{S})/|S| = O\left(mn^{-\delta(\beta-1)}
ight).$$

Example:

$$F(x) = \min\left\{n^{\delta\beta}, \frac{1}{x^{\beta}}\right\}.$$

For $\beta > 2$, get

$$e(S,ar{S})/|S|=\mathcal{O}\left(mn^{-\delta(eta-1)}
ight).$$

For $\beta = 2$, get

$$e(S, \overline{S})/|S| = O\left(\frac{m\log\log n}{\log n}\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example:

$$F(x) = \min\left\{n^{\delta\beta}, \frac{1}{x^{\beta}}\right\}.$$

For $\beta > 2$, get

$$e(S,ar{S})/|S| = \mathcal{O}\left(mn^{-\delta(eta-1)}
ight).$$

For $\beta = 2$, get

$$e(S, \overline{S})/|S| = O\left(rac{m\log\log n}{\log n}
ight).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For $\beta < 2$, *G* is an expander.

Call F tame if exist constants C_1, C_2 such that

•
$$F(x) \ge C_1$$
 for $0 \le x \le \pi$,

Theorem

If $\alpha > 2$, F is tame, and $m \ge K \log n$ for sufficiently large K, then **whp**

► *G_n* has conductance bounded below by a constant.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- G_n is connected.
- G_n has diameter $\mathcal{O}(\log n / \log m)$.

We also have some results for diameter when affinity function is not tame.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Lemma For u chosen u.a.r. in S^2 and t > 0, we have

 $\mathsf{E}[T_t(u)] = 2Imt.$

Proof

$$E[T_t(u)] = E\left[\sum_{w \in V_t} \deg_t(w)F(||u - w||)\right]$$
$$= \sum_{w \in V_t} \deg_t(w) \int_{S^2} F(||u - w||)dw$$
$$= \sum_{w \in V_t} \deg_t(w)I = 2Imt.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma For any t > 0 and for u chosen u.a.r. in S^2 ,

$$\Pr\left[\left|\mathcal{T}_{t}(u)-2Imt\right|\geq mI(t^{2/\alpha}+t^{1/2}\ln t)\ln n\right]=\mathcal{O}\left(n^{-2}\right).$$

(日) (日) (日) (日) (日) (日) (日)

Proof by Azuma-Hoeffding, using a coupling argument.

Geo-PA-II: choose your own affinity function F(x).

- Degree distribution has power $1 + \alpha$.
- Expander/Sparse cuts depend on F(x).
- Diameter does as well.
- Proof uses tight concentration, coupling.

(日) (日) (日) (日) (日) (日) (日)

- Technical work:
 - *α* = 2 (i.e. remove *α*)
 - non-uniform random points
 - necess. and suff. condition on F for expansion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Modelling work: The sparse cuts are "wrong".

Future work: getting sparse cuts right

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □