# A Geometric Preferential Attachment Model of Networks II 

Abraham D. Flaxman, Microsoft Research

Alan M. Frieze,<br>Carnegie Mellon University<br>Juan Vera<br>University of Waterloo

December 11, 2007

## Outline

Introduction
Preferential Attachment and its relatives

Model
Geometric Preferential Attachment I Geometric Preferential Attachment II

## Results

Theorems
Proof techniques

Conclusion

## The Preferential Attachment Graph

- Build a graph dynamically. At time $t$ have $G_{t}=\left(V_{t}, E_{t}\right)$.


## The Preferential Attachment Graph

- Build a graph dynamically. At time $t$ have $G_{t}=\left(V_{t}, E_{t}\right)$.
- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors


## The Preferential Attachment Graph

- Build a graph dynamically. At time $t$ have $G_{t}=\left(V_{t}, E_{t}\right)$.
- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, with probability given by:

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]=\frac{1}{Z} \operatorname{deg}_{t}(w)
$$

## The Preferential Attachment Graph

- Build a graph dynamically. At time $t$ have $G_{t}=\left(V_{t}, E_{t}\right)$.
- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, with probability given by:

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]=\frac{1}{Z} \operatorname{deg}_{t}(w)
$$



## Powerlaw degree distribution

PA graph has a "scale-free" degree distribution:

## Powerlaw degree distribution

PA graph has a "scale-free" degree distribution:


## Powerlaw degree distribution

## PA graph has a "scale-free" degree distribution:



(a) Pansiot-Grad

## Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

## Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

| New concept or mechanism | Limits of $\gamma$ | Reference |
| :---: | :---: | :---: |
| Linear growth, linear pref. attachment | $\gamma=3$ | Barabási and Albert, 1999 |
| Nonlinear preferential attachment $\Pi\left(k_{i}\right) \sim k_{i}^{a}$ | no scaling for $\alpha \neq 1$ | Krapivsky, Redner, and Leyvraz, 2000 |
| Asymptotically linear pref. attachment $\Pi\left(k_{i}\right) \sim a_{x} k_{i} \text { as } k_{i} \rightarrow \infty$ | $\begin{aligned} & \gamma \rightarrow 2 \text { if } a_{\alpha} \rightarrow \infty \\ & \gamma \rightarrow \infty \text { if } a_{\infty} \rightarrow 0 \end{aligned}$ | Krapivsky, Redner, and Leyvraz, 2000 |
| Initial attractiveness $\Pi\left(k_{i}\right) \sim A+k_{i}$ | $\begin{gathered} \gamma=2 \text { if } A=0 \\ \gamma \rightarrow \infty \text { if } A \rightarrow \infty \end{gathered}$ | Dorogovtsev, Mendes, and Samukhin, 2000a, 2000b |
| Accelerating growth $\langle k\rangle \sim t^{\theta}$ constant initial attractiveness | $\begin{gathered} \gamma=1.5 \text { if } \theta \rightarrow 1 \\ \gamma \rightarrow 2 \text { if } \theta \rightarrow 0 \end{gathered}$ | Dorogovtsev and Mendes, 2001a |
| Accelerating growth $\langle k\rangle=a t+2 b$ | $\begin{gathered} \gamma=1.5 \text { for } k \geqslant k_{c}(t) \\ \gamma=3 \text { for } k \geqslant k_{c}(t) \end{gathered}$ | Barabási et al., 2001 <br> Dorogovtsev and Mendes, 2001c |
| Internal edges with probab. $p$ | $\begin{gathered} \gamma=2 \text { if } \\ q=\frac{1-p+m}{1+2 m} \end{gathered}$ |  |
| Rewiring of edges with probab. $q$ | $\gamma \rightarrow \infty$ if $p, q, m \rightarrow 0$ | Albert and Barabási, 2000 |
| $c$ internal edges or removal of $c$ edges | $\begin{gathered} \gamma \rightarrow 2 \text { if } c \rightarrow \infty \\ \gamma \rightarrow \infty \text { if } c \rightarrow-1 \end{gathered}$ | Dorogovtsev and Mendes, 2000c |
| Gradual aging $\Pi\left(k_{i}\right) \sim k_{i}\left(t-t_{i}\right)^{-p}$ | $\begin{gathered} \gamma \rightarrow 2 \text { if } \nu \rightarrow-\infty \\ \gamma \rightarrow \infty \text { if } \nu \rightarrow 1 \end{gathered}$ | Dorogovtsev and Mendes, 2000b |
| Multiplicative node fitness | $P(k) \sim \frac{k^{-1-c}}{\ln (k)}$ |  |
| $\Pi_{i} \sim \eta_{i} k_{i}$ |  | Bianconi and Barabási, 2001a |
| Additive-multiplicative fitness | $P(k) \sim \frac{k^{-1-m}}{\ln (k)}$ |  |
| $\Pi_{i} \sim \eta_{i}\left(k_{i}-1\right)+\zeta_{i}$ | $1 \leqslant m \leqslant 2$ | Ergün and Rodgers, 2001 |
| Edge inheritance | $P\left(k_{i n}\right)=\frac{d}{k_{i n}^{2 / 2}} \ln \left(a k_{i n}\right)$ | Dorogovtsev, Mendes, and Samukhin, 2000c |
| Copying with probab. $p$ | $\gamma=(2-p) /(1-p)$ | Kumar et al., 2000a, 2000b |
| Redirection with probab. $r$ | $\gamma=1+1 / r$ | Krapivsky and Redner, 2001 |
| Walking with probab. $p$ | $\gamma=2$ for $p>p_{c}$ | Vázquez, 2000 |
| Attaching to edges | $\gamma=3$ | Dorogovtsev, Mendes, and Samukhin, 2001a |
| $p$ directed internal edges $\Pi\left(k_{i}, k_{j}\right) \propto\left(k_{i}^{i n}+\lambda\right)\left(k_{j}^{\text {out }}+\mu\right)$ | $\begin{gathered} \gamma_{\text {in }}=2+p \lambda \\ \gamma_{\text {ouf }}=1+(1-p)^{-1}+\mu p /(1-p) \end{gathered}$ | Krapivsky, Rodgers, and Redner, 2001 |
| $1-p$ directed internal edges Shifted linear pref. activity | $\begin{aligned} \gamma_{\text {in }} & =2+p \\ \gamma_{\text {out }} & =2+3 p \end{aligned}$ | Tadić, 2001a |

## Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

| New concept or mechanism | Limits of $\gamma$ | Reference |
| :---: | :---: | :---: |
| Linear growth, linear pref. attachment | $\gamma=3$ | Barabási and Albert, 1999 |
| Nonlinear preferential attachment $\Pi\left(k_{i}\right) \sim k_{i}^{a}$ | no scaling for $\alpha \neq 1$ | Krapivsky, Redner, and Leyvraz, 2000 |
| Asymptotically linear pref. attachment $\Pi\left(k_{i}\right) \sim a_{\approx} k_{i} \text { as } k_{i} \rightarrow \infty$ | $\begin{aligned} & \gamma \rightarrow 2 \text { if } a_{\infty} \rightarrow \infty \\ & \gamma \rightarrow \infty \text { if } a_{\infty} \rightarrow 0 \end{aligned}$ | Krapivsky, Redner, and Leyvraz, 2000 |
| Initial attractiveness $\Pi\left(k_{i}\right) \sim A+k_{i}$ | $\begin{gathered} \gamma=2 \text { if } A=0 \\ \gamma \rightarrow \infty \text { if } A \rightarrow \infty \end{gathered}$ | Dorogovtsev, Mendes, and Samukhin, 2000a, 2000b |
| Accelerating growth $\langle k\rangle \sim t^{\theta}$ constant initial attractiveness | $\begin{gathered} \gamma=1.5 \text { if } \theta \rightarrow 1 \\ \gamma \rightarrow 2 \text { if } \theta \rightarrow 0 \end{gathered}$ | Dorogovtsev and Mendes, 2001a |
| Accelerating growth $\langle k\rangle=a t+2 b$ | $\begin{gathered} \gamma=1.5 \text { for } k \& k_{c}(t) \\ \gamma=3 \text { for } k \leqslant k_{c}(t) \end{gathered}$ | Barabási et al., 2001 <br> Dorogovtsev and Mendes, 2001c |
| Internal edges with probab. $p$ | $\begin{gathered} \gamma=2 \text { if } \\ q=\frac{1-p+m}{1+2 m} \end{gathered}$ |  |
| Rewiring of edges with probab. $q$ | $\gamma \rightarrow \infty$ if $p, q, m \rightarrow 0$ | Albert and Barabási, 2000 |
| $c$ internal edges or removal of $c$ edges | $\begin{gathered} \gamma \rightarrow 2 \text { if } c \rightarrow \infty \\ \gamma \rightarrow \infty \text { if } c \rightarrow-1 \end{gathered}$ | Dorogovtsev and Mendes, 2000c |
| Gradual aging | $\gamma \rightarrow 2$ if $\nu \rightarrow-\infty$ |  |
| $\Pi\left(k_{i}\right) \sim k_{i}\left(t-t_{i}\right)^{-x}$ | $\gamma \rightarrow \infty$ if $\nu \rightarrow 1$ | Dorogovtsev and Mendes, 2000b |
| Multiplicative node fitness | $P(k) \sim \frac{k^{-1-c}}{\ln (k)}$ |  |
| $\Pi_{i} \sim \eta_{i} k_{i}$ |  | Bianconi and Barabási, 2001a |
| Additive-multiplicative fitness | $P(k) \sim \frac{k^{-1-m}}{\ln (k)}$ |  |
| $\Pi_{i} \sim \eta_{i}\left(k_{i}-1\right)+\zeta_{i}$ | $1 \leqslant m \leqslant 2$ | Ergün and Rodgers, 2001 |
| Edge inheritance | $P\left(k_{i n}\right)=\frac{d}{k_{i n}^{2 /}} \ln \left(a k_{i n}\right)$ | Dorogovtsev, Mendes, and Samukhin, 2000c |
| Copying with probab. $p$ | $\gamma=(2-p) /(1-p)$ | Kumar et al., 2000a, 2000b |
| Redirection with probab. $r$ | $\gamma=1+1 / r$ | Krapivsky and Redner, 2001 |
| Walking with probab. $p$ | $\gamma=2$ for $p>p_{c}$ | Vázquez, 2000 |
| Attaching to edges | $\gamma=3$ | Dorogovtsev, Mendes, and Samukhin, 2001a |
| $p$ directed internal edges $\Pi\left(k_{i}, k_{j}\right) \propto\left(k_{i}^{i n}+\lambda\right)\left(k_{j}^{\text {ouf }}+\mu\right)$ | $\begin{gathered} \gamma_{\text {in }}=2+p \lambda \\ \gamma_{\text {ourf }}=1+(1-p)^{-1}+\mu p /(1-p) \end{gathered}$ | Krapivsky, Rodgers, and Redner, 2001 |
| $1-p$ directed internal edges Shifted linear pref. activity | $\begin{aligned} \gamma_{\text {in }} & =2+p \\ \gamma_{\text {out }} & =2+3 p \end{aligned}$ | Tadić, 2001a |

[Barabási, A.-L., and R. Albert, Statistical mechanics of complex networks, Reviews of Modern Physics, Vol 74, page 47-97, 2002.]

## One modification that's missing from list

## One modification that's missing from list

Underlying geometry of vertices

## One modification that's missing from list

Underlying geometry of vertices:

- A feature nodes have in many real-world networks.


## One modification that's missing from list

Underlying geometry of vertices:

- A feature nodes have in many real-world networks.
- Often a reasonable hypothesis even when the nodes do not explicitly live in a metric space.


## Central Question in this talk

How does underlying geometric structure affect preferential attachment?

## Geometric PA I

Old setup (Geo-PA-I):

- Every vertex $v$ is a uniformly random point on the surface of a 3-dimensional sphere.


## Geometric PA I

Old setup (Geo-PA-I):

- Every vertex $v$ is a uniformly random point on the surface of a 3-dimensional sphere.
- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors


## Geometric PA I

Old setup (Geo-PA-I):

- Every vertex $v$ is a uniformly random point on the surface of a 3-dimensional sphere.
- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, from only neighbors within critical radius $r$


## Geometric PA I

Old setup (Geo-PA-I):

- Every vertex $v$ is a uniformly random point on the surface of a 3-dimensional sphere.
- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, from only neighbors within critical radius $r$, with probability given by:

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]= \begin{cases}\frac{1}{Z} \operatorname{deg}_{t}(w) & \text { if }\left\|v_{t}-w\right\| \leq r \\ 0 & \text { otherwise }\end{cases}
$$

## Geometric PA I

Old setup (Geo-PA-I):

- Every vertex $v$ is a uniformly random point on the surface of a 3-dimensional sphere.
- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, from only neighbors within critical radius $r$, with probability given by:

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]= \begin{cases}\frac{1}{Z} \operatorname{deg}_{t}(w) & \text { if }\left\|v_{t}-w\right\| \leq r \\ 0 & \text { otherwise }\end{cases}
$$

- We would like to take normalization $Z$ to be

$$
T_{t}\left(v_{t}\right)=\sum_{w:\left\|v_{t}-w\right\| \leq r} \operatorname{deg}_{t}(w)
$$

## Geometric PA I Image



## Geometric PA II

Introduce affinity function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

## Geometric PA II

Introduce affinity function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, with probability given by

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]=\frac{1}{Z} \operatorname{deg}_{t}(w) \times F\left(\left\|v_{t}-w\right\|\right)
$$

## Geometric PA II

Introduce affinity function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, with probability given by

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]=\frac{1}{Z} \operatorname{deg}_{t}(w) \times F\left(\left\|v_{t}-w\right\|\right)
$$

where $Z=\max \left\{T_{t}\left(v_{t}\right), \alpha m t /\right\}$, with

## Geometric PA II

Introduce affinity function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, with probability given by

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]=\frac{1}{Z} \operatorname{deg}_{t}(w) \times F\left(\left\|v_{t}-w\right\|\right)
$$

where $Z=\max \left\{T_{t}\left(v_{t}\right), \alpha m t /\right\}$, with

$$
T_{t}\left(v_{t}\right)=\sum_{w \in V_{t}} \operatorname{deg}_{t}(w) F\left(\left\|v_{t}-w\right\|\right)
$$

## Geometric PA II

Introduce affinity function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, with probability given by

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]=\frac{1}{Z} \operatorname{deg}_{t}(w) \times F\left(\left\|v_{t}-w\right\|\right)
$$

where $Z=\max \left\{T_{t}\left(v_{t}\right), \alpha m t /\right\}$, with

- $T_{t}\left(v_{t}\right)=\sum_{w \in V_{t}} \operatorname{deg}_{t}(w) F\left(\left\|v_{t}-w\right\|\right)$,
- $I=\int_{S^{2}} F\left(\left\|w-v_{t}\right\|\right) d w$,


## Geometric PA II

Introduce affinity function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, with probability given by

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]=\frac{1}{Z} \operatorname{deg}_{t}(w) \times F\left(\left\|v_{t}-w\right\|\right)
$$

where $Z=\max \left\{T_{t}\left(v_{t}\right), \alpha m t /\right\}$, with

- $T_{t}\left(v_{t}\right)=\sum_{w \in V_{t}} \operatorname{deg}_{t}(w) F\left(\left\|v_{t}-w\right\|\right)$,
- $I=\int_{S^{2}} F\left(\left\|w-v_{t}\right\|\right) d w$,
- $\alpha$ is bias towards self loops.


## Geometric PA II

Introduce affinity function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- At time $t$, add vertex $v_{t}$, and connect it randomly to $m$ neighbors, with probability given by

$$
\operatorname{Pr}\left[v_{t} \rightarrow w\right]=\frac{1}{Z} \operatorname{deg}_{t}(w) \times F\left(\left\|v_{t}-w\right\|\right)
$$

where $Z=\max \left\{T_{t}\left(v_{t}\right), \alpha m t /\right\}$, with

- $T_{t}\left(v_{t}\right)=\sum_{w \in V_{t}} \operatorname{deg}_{t}(w) F\left(\left\|v_{t}-w\right\|\right)$,
- $I=\int_{S^{2}} F\left(\left\|w-v_{t}\right\|\right) d w$,
- $\alpha$ is bias towards self loops.

Restrictions on $F$ : I must exist, $0<I<\infty$.

## Prototypical affinity functions:

Prototypical affinity functions:


Prototypical affinity functions:



Prototypical affinity functions:




Prototypical affinity functions:





## What happens?

In the Geo-PA-II model, what do you think happens to:

## What happens?

In the Geo-PA-II model, what do you think happens to:

- The degree distribution?


## What happens?

In the Geo-PA-II model, what do you think happens to:

- The degree distribution?
- The conductance/sparsest cut?


## What happens?

In the Geo-PA-II model, what do you think happens to:

- The degree distribution?
- The conductance/sparsest cut?
- The diameter?


## Degree distribution

Theorem

## Degree distribution

Theorem
For $\alpha>2$ and

$$
\int_{0}^{\pi} F(x)^{2} \sin x d x=\mathcal{O}\left(\left.t^{1-\epsilon}\right|^{2}\right)
$$

## Degree distribution

Theorem
For $\alpha>2$ and

$$
\int_{0}^{\pi} F(x)^{2} \sin x d x=\mathcal{O}\left(t^{1-\epsilon} I^{2}\right)
$$

we have

$$
\mathrm{E}\left[\#\left\{w: \operatorname{deg}_{t}(w)=k\right\}\right]=C_{k}(m, \alpha)\left(\frac{m}{k}\right)^{1+\alpha} t+\mathcal{O}\left(t^{1-\delta}\right)
$$

## Degree distribution

Theorem
For $\alpha>2$ and

$$
\int_{0}^{\pi} F(x)^{2} \sin x d x=\mathcal{O}\left(t^{1-\epsilon} I^{2}\right)
$$

we have

$$
\mathrm{E}\left[\#\left\{w: \operatorname{deg}_{t}(w)=k\right\}\right]=C_{k}(m, \alpha)\left(\frac{m}{k}\right)^{1+\alpha} t+\mathcal{O}\left(t^{1-\delta}\right)
$$

where

$$
C_{k}(m, \alpha) \rightarrow C_{\infty}(m, \alpha) \text { as } k \rightarrow \infty
$$

## Degree distribution

Theorem
For $\alpha>2$ and

$$
\int_{0}^{\pi} F(x)^{2} \sin x d x=\mathcal{O}\left(t^{1-\epsilon} I^{2}\right)
$$

we have

$$
\mathrm{E}\left[\#\left\{w: \operatorname{deg}_{t}(w)=k\right\}\right]=C_{k}(m, \alpha)\left(\frac{m}{k}\right)^{1+\alpha} t+\mathcal{O}\left(t^{1-\delta}\right)
$$

where

$$
C_{k}(m, \alpha) \rightarrow C_{\infty}(m, \alpha) \text { as } k \rightarrow \infty
$$

(We also have a concentration result.)

## Conductance/Sparsest cut

## Theorem

For $\alpha>0$ and $m$ a sufficiently large constant, if there exist $\phi$ and $\eta$ with

$$
\frac{1}{n} \ll \phi \ll 1 \text { and } \eta \ll 1
$$

such that

$$
\frac{1}{2} \int_{\eta}^{\pi} F(x) \sin x d x \leq \phi l
$$

then the cut induced by a great circle of the sphere contains $\mathcal{O}((\eta+\phi) m n)$ edges whp.

## Conductance/Sparsest cut

Example:

$$
F(x)=\min \left\{n^{\delta \beta}, \frac{1}{x^{\beta}}\right\}
$$

## Conductance/Sparsest cut

Example:

$$
F(x)=\min \left\{n^{\delta \beta}, \frac{1}{x^{\beta}}\right\}
$$

For $\beta>2$, get

$$
e(S, \bar{S}) /|S|=\mathcal{O}\left(m n^{-\delta(\beta-1)}\right)
$$

## Conductance/Sparsest cut

Example:

$$
F(x)=\min \left\{n^{\delta \beta}, \frac{1}{x^{\beta}}\right\}
$$

For $\beta>2$, get

$$
e(S, \bar{S}) /|S|=\mathcal{O}\left(m n^{-\delta(\beta-1)}\right)
$$

For $\beta=2$, get

$$
e(S, \bar{S}) /|S|=\mathcal{O}\left(\frac{m \log \log n}{\log n}\right)
$$

## Conductance/Sparsest cut

Example:

$$
F(x)=\min \left\{n^{\delta \beta}, \frac{1}{x^{\beta}}\right\}
$$

For $\beta>2$, get

$$
e(S, \bar{S}) /|S|=\mathcal{O}\left(m n^{-\delta(\beta-1)}\right)
$$

For $\beta=2$, get

$$
e(S, \bar{S}) /|S|=\mathcal{O}\left(\frac{m \log \log n}{\log n}\right)
$$

For $\beta<2, G$ is an expander.

## Expander Criteria

Call $F$ tame if exist constants $C_{1}, C_{2}$ such that

- $F(x) \geq C_{1}$ for $0 \leq x \leq \pi$,
- $I \leq C_{2}$.

Theorem
If $\alpha>2$, $F$ is tame, and $m \geq K \log n$ for sufficiently large $K$, then whp

- $G_{n}$ has conductance bounded below by a constant.
- $G_{n}$ is connected.
- $G_{n}$ has diameter $\mathcal{O}(\log n / \log m)$.


## Diameter

We also have some results for diameter when affinity function is not tame.

## Lemma 1: a simple expectation

Lemma
For $u$ chosen u.a.r. in $S^{2}$ and $t>0$, we have

$$
\mathrm{E}\left[T_{t}(u)\right]=2 / m t
$$

## Proof

$$
\begin{aligned}
\mathrm{E}\left[T_{t}(u)\right] & =\mathrm{E}\left[\sum_{w \in V_{t}} \operatorname{deg}_{t}(w) F(\|u-w\|)\right] \\
& =\sum_{w \in V_{t}} \operatorname{deg}_{t}(w) \int_{S^{2}} F(\|u-w\|) d w \\
& =\sum_{w \in V_{t}} \operatorname{deg}_{t}(w) I=2 / m t
\end{aligned}
$$

## Lemma 2: a not-so-simple concentration inequality

Lemma
For any $t>0$ and for $u$ chosen u.a.r. in $S^{2}$,

$$
\operatorname{Pr}\left[\left|T_{t}(u)-2 / m t\right| \geq m /\left(t^{2 / \alpha}+t^{1 / 2} \ln t\right) \ln n\right]=\mathcal{O}\left(n^{-2}\right) .
$$

Proof by Azuma-Hoeffding, using a coupling argument.

## Summary

Geo-PA-II: choose your own affinity function $F(x)$.

- Degree distribution has power $1+\alpha$.
- Expander/Sparse cuts depend on $F(x)$.
- Diameter does as well.
- Proof uses tight concentration, coupling.


## Future work

- Technical work:
- $\alpha=2$ (i.e. remove $\alpha$ )
- non-uniform random points
- necess. and suff. condition on $F$ for expansion
- Modelling work: The sparse cuts are "wrong".


## Future work: getting sparse cuts right



