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A Geometric-Process Maintenance Model for a
Deteriorating System Under a Random Environment

Yeh Lam and Yuan Lin Zhang

Abstract—This paper studies a geometric-process main-
tenance-model for a deteriorating system under a random
environment. Assume that the number of random shocks, up to
time , produced by the random environment forms a counting
process. Whenever a random shock arrives, the system operating
time is reduced. The successive reductions in the system operating
time are statistically independent and identically distributed
random variables. Assume that the consecutive repair times of
the system after failures, form an increasing geometric process;
under the condition that the system suffers no random shock, the
successive operating times of the system after repairs constitute a
decreasing geometric process. A replacement policy , by which
the system is replaced at the time of the failure , is adopted. An
explicit expression for the average cost rate (long-run average cost
per unit time) is derived. Then, an optimal replacement policy is
determined analytically. As a particular case, a compound Poisson
process model is also studied.

Index Terms—Compound Poisson process, geometric process,
random shocks, renewal process, replacement policy.

ACRONYMS1

ACR average cost rate: long-run average cost per unit time
Cdf cumulative distribution function
CPPM compound Poisson process model
GP geometric process
GPMM GP maintenance model
iid -independent and identically distributed
pdf probability density function
RP renewal process
RS random shock(s)
rv random variable
- implies: statistical(ly).

NOTATION

constant: , ratio of a decreasing GP
constant: , ratio of an increasing GP
system repair-cost rate
system replacement-cost
ACR with RS under replacement policy
pdf[ ]
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1The singular and plural of an acronym are always spelled the same.

Cdf[ ]
pdf[ ]
Cdf[ ]
pdf[ ]
Cdf[ ]
number of system-failures
an optimal for minimizing
system reward rate
reduction in the system operating time after #
system operating time after repair # , as-
suming that there is no random shock
the real system operating time after repair #
system repair time after failure #
system replacement time
E[ ]
E[ ]
E[ ].

I. INTRODUCTION

A T THE initial stage of research in maintenance problems
of a repairable system, a common assumption is “repair is

perfect:” a repairable system after repair is “as good as new.”
Obviously, this assumption is not always true. In practice, most
repairable systems are deteriorating because of the aging effect
and accumulated wear. Thus, [4] introduced a minimal-repair
model in which a system after repair has the same failure rate
and the same effective age as at the time of failure. Reference [6]
suggests an imperfect repair model, in which a repair is perfect
with probability , and a minimal repair with probability .

An alternate approach is to introduce a monotone process
model. For a deteriorating system, it is reasonable to assume
that the successive operating times of the system after repairs
are stochastically decreasing and the consecutive repair times
of the system after failures are stochastically increasing. Ac-
cording to this idea, [12], [13] introduced GP model. This is
a simple monotone process model but a good approximation to
a more general monotone process model.

Definition 1: Given 2 r.v. and , is stochastically
greater than ( is stochastically less than) if

for all real

or

A stochastic process , is stochasti-
cally increasing (decreasing) if for all

[29].
As a special monotone stochastic process, the GP was first

introduced in [12], [13].
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Definition 2: A stochastic process is a
GP, if there exists , such that
forms a RP; is the ratio of GP.

For a GP, let the Cdf[ ] ; then Cdf[ ] with
; and

Therefore, , E[ ], and Var[ ] are 3 important parameters for
the GP.

On the other hand, if , then is
stochastically decreasing:

If , then is stochastically in-
creasing:

If , then the GP is a RP.
Although, in many cases, the deterioration of a system is due

to an internal cause such as aging and accumulated wear of
the system, an external cause such as an environmental factor
might be another reason for system deterioration. In practice, a
precision instrument and meter installed in a power workshop
might be affected by some RS due to the operation of other in-
struments, such as lathes or electrical machines: the operating
time of the instrument and meter might be shorter. On the other
hand, if an instrument and meter system are installed in a naval
vessel, then the high temperature and humidity of the operating
environment might reduce the operating time of the system. If a
computer is invaded by some virus or attacked with a raider, the
operating time of the computer is diminished, or the computer
can break down. These examples show that the system is deteri-
orating due to an external cause. The effect of an internal cause
on the system operating time can be a continuous process; while
the effect of an external cause (such as a RS) might form a jump
process. Therefore, in studying a maintenance problem for a re-
pairable system, one should not only consider the internal cause
but consider the effect of an RS (produced by the environment)
against the system. As a result, one should study a maintenance
model with RS that is also an important model in reliability
theory. References [5], [7], [8] study the Poisson shock model.
Later, [28] presented a generalized Poisson shock model; and
[30] extended Poisson shock model to a general shock model.
For the case where forms a semi-Markov process, [9], [33]
determine the optimal replacement policy. For more references,
see [1], [10], [11], [25].

This paper studies a GPMM for a system under a random en-
vironment by considering the effect of RS on the system. The re-
placement policy is adopted: a failed system is replaced if the
number of failures since the installation or the last replacement
has reached , otherwise it is repaired. Section II introduces
the model. Section III evaluates the ACR. Section IV analyti-
cally determines an optimal replacement policy,. Section V
discusses particular case, CPPM.

II. M ODEL

GPMM is studied with 6 assumptions:

Assumptions

1) A new system is installed at the beginning. It is replaced
by a new and -identical one sometime later.

2) Given that there is no random shock, then
form a GP with ratio and E[ ]

. However, no matter whether there is an or not,
constitutes a GP with ratio and

E[ ] . Let the Cdf of and be and ,
respectively; and the pdf be and , respectively

3) is the number of RS up to time produced by
the random environment. forms a counting
process having stationary and-independent increment. When-
ever a shock arrives, the system operating time is reduced.

are iid rv; is the reduction in the
system operating time after # . The successive reductions
in the system operating time are additive.

If a system fails, it is closed so that the random environment
has no effect on a failed system.

4) The processes , ,
and rv are -independent. The processes

, , and are also
-independent.
5) The replacement policy is applied.
6) The repair-cost rate of the system is, the replacement cost

is , and the reward rate of the system is.
The completion time of repair # is denoted by ; the

number of RS in produced by the environment
is

and are, respectively, the number of RS
produced in and ; the total reduction in
the operating time in is

(1)

Consequently, under the random environment, the residual time
at is

(2)

subject to . Therefore,

(3)

Lemma 1 is useful for later study; the proof is trivial.
Lemma 1:

(4)

Now, consider the assumptions of GPMM.
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Assumption 2) shows that the system is deteriorating so that
the consecutive repair times constitute an increasing GP; if
there is no RS, the successive operating times form a decreasing
GP. This is based on general knowledge and on the results in
real-data analysis. References [16], [20] apply GP model to fit 3
real data-sets by using nonparametric and parametric methods
respectively. The first data-set is the coal-mining disasters
data of the intervals in days between successive coal-mining
disasters in Great Britain [2]; the second data-set is the data of
arrival times to unscheduled maintenance actions for the USS
Halfbeak no. 3 main propulsion diesel engine [3]; the third
data-set is the data of arrival times to unscheduled maintenance
actions for the USS Grampus no. 4 main propulsion diesel
engine [3]. The last two data-sets are sequences of successive
operating times after repairs of the propulsion diesel engine.
The numerical results in [16], [20] show that all 3 data-sets
can be well fitted by the GP model. More real data-sets were
analyzed later. By comparing the GP model with 2 inhomoge-
neous Poisson process models, the Weibull process model, and
Cox–Lewis model, [23] shows that, on average, the GP model
can fit these real data-sets better than the others. Therefore, it is
reasonable to apply a decreasing GP model for the successive
operating times of a system after repairs and an increasing GP
model to formulate the consecutive repair-times of the system
after failures. Based on this understanding, [12], [13] applied
the GP model to the maintenance problem for a 1-component
system. The GP model has also been applied to reliability
analysis for 2-component series and parallel system [18], [19]
and [21], [22]. For further reference see [26], [32].

Assumption 3) means that the effect of a random environ-
ment on the system is through a sequence of RS which shorten
the operating time. In practice, many examples show that the ef-
fect of an RS is a reduction rather than a percentage-reduction
in residual operating time. In other words, assume thatacts
additively rather than multiplicatively. For example, a person
suffering from second hand smoking is very serious, the effect
is measured by a reduction in the lifetime. Similarly, a car dam-
aged by traffic accidents reduces its operating time additively.

Equation (3) shows that whenever the total reduction
in system operating time in

is greater than the residual operating time , then the
system fails: the chance that a shock produces an immediate
failure depends on the comparative distributions of
and . To see the reasonableness of this point,
consider the following examples.

In a traffic accident, all the passengers in the bus suffer the
same shock, so that the reductions in their lifetimes are more
or less the same, but the effects on different passengers might
be quite different. An older passenger is more fragile because
of having less residual lifetime than a younger passenger has;
thus the older passenger can be injured more seriously than a
younger passenger. The older passenger might even die, but the
younger passenger might only suffer a light-injury. This situa-
tion also happens in engineering. Suppose many machines are
installed in 1 workshop, all of them suffer the same shock pro-
duced by a random environment, but the effects might be dif-
ferent: an old machine could be destroyed whereas a new ma-
chine might be slightly damaged. This means that the effect of

an RS depends on the residual lifetime of a system, if the reduc-
tion in the residual lifetime is greater than the residual time, then
the system fails. Therefore (3) is realistic. These 2 examples also
show why acts additively, and if acts multiplicatively,
then system could not fail after suffering a RS.

The reasons why is adopted are explained. Using has
a long history [24], [27]. However in a maintenance problem,
besides , policy is also applied, wherein the affected system
is replaced by a new and-identical one at a stopping time. For
the long-run average cost, [14] and [31] show that under some
mild conditions, an optimal is at least as good as an optimal

. The same result for the total-expected discounted cost
case was proved [15], [17]. Therefore, without loss of generality,
the policy can be studied. Implementing policy is more
convenient than implementing policy. This is an additional
advantage of using policy .

III. A VERAGE COST RATE

In this model, a cycle is completed if a replacement is com-
pleted. Because a cycle is actually a time interval between two
successive replacements, then the successive cycles form a RP.
The successive cycles together with the costs incurred in each
cycle make a renewal reward process. The standard result in re-
newal reward process shows that the ACR is [29]

-Expected cost incurred in a cycle
-Expected length of a cycle

(5)

To begin, study the distribution of . For this purpose, let
of RS which occur in be .

Then for , study the conditional probability:

(6)

(7)
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and is the -fold convolution of with itself.
, and . Equation (6) is due to

lemma 1. Therefore, it follows from (7) that

(8)

. Thus

(9)

Equation (9) is due to the fact that has a sta-
tionary increment property. Therefore, by noting that

, the Cdf, , of is

(10)

By using replacement policy , it follows from (5) that the
ACR is

(11)

(12)

is the -expected real operating time after repair # .
Thus, the objective is to determine an optimal replacement

policy for minimizing the ACR: .

IV. OPTIMAL REPLACEMENT POLICY

This section determines the optimal explicitly.
First, a simple but important lemma is derived.
Lemma 2: is nonincreasing in .

forms a decreasing GP, and
Cdf[ ]; thus from (9) for all real ,

Thus Lemma 2 follows.
Second, rewrite (11) as:

(13)

Third, introduce the auxiliary function:

(14)
Lemma 3 is shown by a direct comparison of and

.
Lemma 3:

Furthermore, it is obvious that:

This implies:
Lemma 4: is nondecreasing in .
The combination of Lemmas 2–4 gives theorem 1:
Theorem 1: The optimal maintenance policy is deter-

mined by

(15)

It follows from theorem 1 that:
#1. If

then .
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#2. If , and

then .
The result of #1 is trivial. To prove #2, note that if , let

, then

Hence by noting that , then

Thus #2 is true.
Therefore,

• if , the optimal policy is to replace the system
whenever it fails;

• if , the optimal policy is to repair the system
forever.2

V. A COMPOUND POISSON-PROCESSMODEL

To demonstrate the model and methodology developed in this
paper, consider the special case: is a Poisson
process with parameter, i.e., the RS arrives according to a
Poisson process with rate. Then,

(16)
Let the successive reductions in the system operating-time, by
the RS, be . They are iid, each having the
Gamma distribution, , with pdf :

,

elsewhere.

(17)

Therefore is a Gamma rv with distribution .
Also, let have an exponential distribution with pdf:

,

elsewhere.
(18)

The Cdf is:

,

elsewhere.
(19)

Because is a Poisson process, and
are iid, then

2The system is always repaired whenever it fails.

forms a compound Poisson process. It is a very popular and
important process in application. For example, it is reasonable to
assume that the number of customers arriving a supermarket by
time form a Poisson process and the amounts of money spent
by the customers are iid, then the total amount of money spent
by the customers forms a compound Poisson process [29].

From (10),

Thus

(20)

If , then the system suffers no RS, and the model
reduces to the Lam model [12], [13]; if , then

are iid, each having an distribu-
tion. Then (20) becomes

(21)

Now, substitute (20) or (21) into (14) for an explicit expression
of . Then an optimal replacement policy can be deter-
mined by using (15) directly.

This numerical example explains how to determine. Let
, , , , , , ,

, , , .
Using (20),

Substitute the given values into (11), then the results in Table I
and Fig. 1 are obtained.

is the minimum of the long-run average
cost per unit time; i.e., : replace the system immedi-
ately following failure #45.
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TABLE I
RESULTSOBTAINED FROM (11)

Fig. 1. Average cost rate,C(N) versusN .
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