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A GEOMETRIC PROOF OF A RESULT OF TAKEUCHI
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Abstract. In 1984 Masaru Takeuchi showed that every real form of a hermitian sym-
metric space of compact type is a symmetric R-space and vice-versa. In this note we present a
geometric proof of this result.

1. Introduction. Symmetric R-spaces can be described in several ways. An early
definition of symmetric R-spaces by Takeuchi [19] has a slightly algebraic flavour: Symmetric
R-spaces are compact Riemannian symmetric spaces that are also R-spaces (generalized flag
manifolds), that is they can also be written as quotients of non-compact connected center-free
semi-simple Lie groups by parabolic subgroups. Symmetric R-spaces are closely related to
certain gradings of semi-simple Lie algebras of the form g = g−1 ⊕ g0 ⊕ g1, sometimes
called symmetric graded Lie algebras (see [13, 19] and [20]). The (local) classification of
indecomposable symmetric R-spaces is due to Kobayashi and Nagano [12, 13] (see also [1,
p. 310f]).

There is also a more geometric description of symmetric R-spaces; they are s-orbits of
extrinsically symmetric elements (see [18, 11, 14, 9, 10] and Section 2). In this realization
symmetric R-spaces are extrinsically symmetric submanifolds (see [4] and [6, p. 82]). Ferus
has shown that this property characterizes symmetric R-spaces (see [5, 6, 2]): Symmetric R-
spaces are precisely the compact extrinsically symmetric submanifolds of Euclidean spaces.

The indecomposable symmetric R-spaces divide into two different types:
(i) irreducible hermitian symmetric spaces of compact type;

(ii) indecomposable symmetric R-spaces of non-hermitian type.
In this note we give a geometric proof of Takeuchi’s result:

THEOREM 1.1 (Takeuchi [20]). Every symmetric R-space can be realized as a real
form of a hermitian symmetric space of compact type. Vice-versa every real form of a hermit-
ian symmetric space of compact type is a symmetric R-space.

While Takeuchi’s proof in [20] uses the algebraic description of symmetric R-spaces in
terms of symmetric graded Lie algebras, our proof is rather based on the geometric realiza-
tion of symmetric R-spaces as s-orbits of extrinsically symmetric elements, or equivalently,
as compact extrinsically symmetric spaces of Euclidean spaces. The main tool in our proof
is a geometric property of standardly embedded hermitian symmetric spaces of compact type
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proved in [3]. Every isometry of a standardly embedded hermitian symmetric space of com-
pact type is the restriction of a linear isometry of the ambient space. We shall proof en passant
(see Remark 3.1 and Proposition 3.2) a precised version of Takeuchi’s theorem, namely:

THEOREM 1.2 (Specified version of Takeuchi’s theorem). Every indecomposable non-
hermitian symmetric R-space is a real form of an irreducible hermitian symmetric space of
compact type and vice versa.

Theorem 1.2 can also be verified by comparing case-by-case Leung’s classification of
real forms of irreducible hermitian symmetric spaces in [15, Theorem 3.4] with the classifi-
cation of indecomposable non-hermitian symmetric R-space (see e.g. [1, p. 311]).

We learned from the referee that yet another proof of the implication in Takeuchi’s theo-
rem we discuss in Paragraph 3.2 can be found in the recent article [21, proof of Theorem 4.3].
The proof given there uses a perspective on symmetric R-spaces rather similar to ours, but it
is still slightly different.

2. Preliminaries.
2.1. Symmetric R-space as s-orbits. The classical facts about symmetric spaces

used below can be found in the standard literature like Helgason’s famous monograph [7]
or Wolf’s book [22, Part IV].

Every symmetric R-space arises in the following way (see [18, 11, 14, 9, 10, 4] and also
[1, pp. 70–72]): Let S be a symmetric space of compact type (we always assume symmetric
spaces to be connected) and let L be the identity component of the isometry group of S. The
geodesic symmetry so of S at a chosen base point o ∈ S gives rise to an involutive Lie group
automorphism

σ : L → L, l �→ so ◦ l ◦ so .

The differential σ∗ of σ at the identity is therefore an involutive automorphism of the Lie
algebra l of L, called the Cartan involution of (S, o). We denote by h the fixed point set of σ∗
and by s its (−1)-eigenspace. The decomposition

l = h ⊕ s ,

called Cartan decomposition of l corresponding to (S, o), is orthogonal w.r.t. the Cartan-
Killing form Bl of l. This decomposition satisfies the Cartan relations, namely

[h, h] ⊂ h , [h, s] ⊂ s and [s, s] ⊂ h .

The Lie subalgebra h ⊂ g is the Lie algebra of the identity component H of the isotropy
group of o in G. Moreover, s can be identified with the tangent space ToS by the restriction of
the differential at the identity of the projection of the principal bundle L → S, l �→ l.o. Here
l.o denotes the action of the isometry l of S on the point o ∈ S. Using the above identification
s ∼= ToS, the linear isotropy action of H on ToS, also known as s-representation, becomes
the restriction of the adjoint action:

H × s → s , (h,X) �→ AdL(h)X .
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A non-zero element ξ ∈ s is called extrinsically symmetric (or minuscule coweight), if

adl(ξ)3 = −adl(ξ) ,

or equivalently, if the eigenvalue spectrum of ad(ξ) equals {−i, 0, i}. We may assume w.r.g.
that no projection of ξ onto a simple factor of l vanishes.

A symmetric R-space is an isotropy orbit (s-orbit)

M := AdL(H)ξ ⊂ s ,

of S where ξ ∈ s is an extrinsically symmetric element. Ferus has shown that M is an
extrinsically symmetric submanifold of the Euclidean space s (see [4] and [6, p. 82]). We
call M indecomposable if S is an irreducible symmetric space of compact type. If S is an
irreducible symmetric space of compact type, but not a compact simple Lie group, M is
an indecomposable symmetric R-space of non-hermitian type (see e.g. [1, p. 310f.]). For a
description of extrinsically symmetric elements in terms of roots we refer to [17, Lemma 2.1]
and also to [12, Section 6].

2.2. Hermitian symmetric spaces of compact type as R-spaces. If S = G is a com-
pact connected semi-simple center-free Lie group, then L is isomorphic to G × G, and the
linear isotropy representation on the tangent space TeG is equivalent to the adjoint represen-
tation of G on g (see e.g. [7, §6 of Chapter IV]).

Let ξ ∈ g be extrinsically symmetric. It is well-known that P := Ad(G)ξ ⊂ g endowed
with the Riemannian metric induced by the scalar product −Bg on g is a hermitian symmetric
space of compact type (see [8]). Let X ∈ P, then Ad (exp (π/2 · X)) and ad(X) coincide on
TXP ⊂ g and they define a Kähler structure JX of P at the point X, that is

(1) JX = Ad (exp (π/2 · X)) |TXP = ad(X)|TXP ,

which turns P into a hermitian symmetric space.
The geodesic symmetry sX of P at the point X extends to the reflection ρX of g along

the normal space NXP = {Y ∈ g; ad(X)Y = 0} given by the involutive automorphism

(2) ρX := Ad(exp(πX))

of g. Finally, if we assume that all projections of ξ onto simple factors of g are non-zero, G

can be identified with the identity component of the isometry group of P.

Conversely every hermitian symmetric space P of compact type can be realized as such
an orbit in the Lie algebra of its infinitesimal isometries (see [16, pp. 165 ff.] and [8]). If we
endow this Lie algebra with a scalar product that coincides on each irreducible factor with the
Cartan-Killing form up to a suitable negative constant, this embedding is isometric. We call
this the standard embedding of a hermitian symmetric space of compact type.

2.3. Real forms of hermitian symmetric spaces. Following Takeuchi [20], a real
form of a hermitian symmetric space P is a connected component of the fixed point set of
some involutive and anti-holomorphic isometry f of P. Real forms are totally geodesic half-
dimensional real submanifolds of P.
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3. The proof. In this section we present a geometric proof of Takeuchi’s result, The-
orem 1.1 (see [20]). We show both implications in Takeuchi’s theorem separately.

3.1. The proof of the first implication. The arguments given in this paragraph are
classical and straightforward. They may also be adapted to more general situations.

Let S be a symmetric space of compact type, o ∈ S a base point, σ∗ the corresponding
Cartan involution and l = h ⊕ s the induced Cartan decomposition of the semi-simple Lie
algebra l of infinitesimal isometries of S. Let ξ ∈ s be an extrinsically symmetric element and
M := AdL(H)ξ a symmetric R-space. We may again assume that no projection of ξ onto a
simple factor of l is zero. The inclusion H ↪→ L of the identity component H of the isotropy
group of o into the identity component L of the full isometry group of S provides a natural
inclusion

s ⊃ M = AdL(H)ξ ↪−→ AdL(L)ξ =: P ⊂ l

of the symmetric R-space M into the hermitian symmetric space P.

The linear automorphism F := −σ∗ of l preserves the scalar product on l and maps
adjoint orbits onto adjoint orbits. Since ξ lies in s, the (−1)-eigenspace of σ∗, ξ is a fixed
point of F. Thus F leaves P invariant and f := F |P is an involutive isometry of P. Let
f∗ denote the differential of f at the fixed point ξ. To show that f is anti-holomorphic, it is
sufficient to verify that f∗(JξX) = −Jξf∗(X) for all X ∈ TξP , because the complex structure
J of P is parallel. Equation (1) implies

f∗(JξX) = F [ξ,X] = −σ∗[ξ,X] = −[σ∗ξ, σ∗X]
= [ξ, σ∗X] = −[ξ, FX] = −Jξf∗(X) .

Since TξP ⊂ l is the (−1)-eigenspace of (ad(ξ))2 and since (ad(ξ))2 commutes with F ,
we see that of TξM = {X ∈ s; (ad(ξ))2(X) = −X} = TξP ∩ s (see also e.g. [1, p. 71]).
Thus M is a connected component of the fixed point set of f. This shows that M is a real form
of P.

REMARK 3.1. If M is an indecomposable symmetric R-space, that is, if S is an irre-
ducible symmetric space of compact type, but not a compact Lie group, or equivalently, if l is
a simple compact Lie algebra, then P is an irreducible hermitian symmetric space of compact
type.

3.2. The proof of the converse implication. We now show the converse impliciation
in Takeuchi’s theorem, namely that every real form of a hermitian symmetric space P of com-
pact type is a symmetric R-space. As a major tool we use the results of Eschenburg, Tanaka
and the author on the extension of isometries of standardly embedded hermitian symmetric
spaces published in [3]. The referee kindly informed us that a proof of this implication in
Takeuchi’s theorem using slightly different arguments can be found in [21, proof of Theorem
4.3].

Since a hermitian symmetric space P of compact type is simply connected (see e.g. [7,
Theorem 4.6 in Chapter VIII]), P is a product of its irreducible de Rham factors

P = P1 × · · · × Pk ,
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where each factor is an irreducible hermitian symmetric space of compact type (see also [22,
Corollary 8.7.11]). An involutive anti-holomorphic isometry f either preserves a de Rham
factor or permutes isometric de Rham factors pairwise. Thus it is sufficient to only consider
the following two cases:

(I) P is the Riemannian product of two equal irreducible hermitian symmetric spaces
Q of compact type, that is P = Q × Q, and f permutes both factors.

(II) P is irreducible.
We start by investigating the first case. Let τ denote the isometry of P = Q × Q that

just interchanges both factors, that is τ (x, y) = (y, x) for all x, y ∈ Q. Then f has the
form f = (f1 × f2) ◦ τ, where f1 and f2 are anti-holomorphic isometries of Q. Since f is
involutive, we get f2 = f −1

1 , that is f = (f1 × f −1
1 ) ◦ τ. The fixed point set of f,

{(x, y) ∈ P ; f (x, y) = (x, y)} = {(x, f −1
1 (x)); x ∈ Q} ,

is isomorphic to Q and hence a symmetric R-space.
To treat the second case we prove the following statement:

PROPOSITION 3.2. Every real form of an irreducible hermitian symmetric space P of
compact type is an indecomposable symmetric R-space of non-hermitian type.

If P = Ad(G)ξ ⊂ g is a standardly embedded irreducible hermitian symmetric space
of compact type, then the Lie algebra g of its infinitesimal isometries is simple (see e.g. [7,
§6 in Chapter VIII]). We consider g endowed with the scalar product that coincides with the
Cartan-Killing form Bg up to a negative factor. The Cartan involution corresponding to (P, ξ)

is ρξ given in Equation (2). The induced Cartan decomposition is g = k ⊕ p, where k is the
fixed point set of ρξ .

Let f be an involutive anti-holomorphic isometry of P and let M be a non-empty con-
nected component of the fixed point set of f. Then M is a real form of P and we must show
that M is an indecomposable symmetric R-space of non-hermitian type. By the homogeneity
of P we may assume w.r.g. that ξ is a point of M and therefore f (ξ) = ξ.

The differential f∗ of f at ξ is an involutive linear automorphism of p ∼= TξP. The fixed
point set m of f∗ is canonically identified with the tangent space TξM.

Following the reasoning in [3, Section 3] we consider the Lie group automorphism

φ : G → G , g �→ f ◦ g ◦ f

of the identity component G of the full isometry group of P. Since φ leaves the stabilizer K of
ξ in G invariant, its differential φ∗ at the identity induces an automorphism of k. We conclude
(see [3, Lemma 3.1]) that

φ∗(ξ) ∈ {±ξ} .

LEMMA 3.3. We have φ∗(ξ) = −ξ.

PROOF. Assume by contradiction that φ∗(ξ) = ξ. Then the derivative of the one-
parameter family

R → G, s �→ φ(exp(s · ξ)) = f ◦ exp(s · ξ) ◦ f
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at s = 0 is φ∗(ξ) = ξ. Hence

exp(s · ξ) = f ◦ exp(s · ξ) ◦ f for all s ∈ R .

Let γ be the geodesic in M ⊂ g that satisfies γ (0) = ξ and γ̇ (0) =: X ∈ m \ {0}. Taking
s = π

2 we get

exp
(π

2
ξ
)

.γ (t) =
(
f ◦ exp

(π

2
ξ
)

◦ f
)

.γ (t) =
(
f ◦ exp

(π

2
ξ
))

.γ (t) .

The derivative at t = 0 yields(
f∗ ◦ d

(
exp

(π

2
· ξ

))
ξ

)
X = f∗

(
Ad

(
exp

(π

2
· ξ

))
X

)

= f∗(JξX) = d
(

exp
(π

2
· ξ

))
ξ
X = Ad

(
exp

(π

2
· ξ

))
X = JξX

(see Equation (1)). But the equation f∗(JξX) = JξX = Jξf∗(X) for a nonzero X ∈ m ∼=
TξM contradicts the fact that f is anti-holomorphic. �

Notice that the fact φ∗(ξ) = −ξ also plays a role in [21, proof of Theorem 4.3].
The proof of the main result in [3] shows that in our case f is the restriction to P of the

linear isometry

F := −φ∗ : g → g .

LEMMA 3.4. φ∗ = −F is an involutive automorphism of g that commutes with ρξ .

PROOF. Recall that φ∗ preserves k and therefore also p. Notice further that ρξ =
Ad(exp(πξ)) is the identity on k and −Id on p. This shows the claim. �

Thus (g, φ∗) is an orthogonal involutive Lie algebra (see e.g. [22, Chapter 8]). Let h

be the fixed point set of φ∗ and s the fixed point set of F = −φ∗. Then the orthogonal
decomposition

g = h ⊕ s

is the Cartan decomposition of some irreducible pointed symmetric space S of compact type
(see e.g. [22, Section 8.3]), which is not a compact Lie group (see e.g. [7, p. 379]).

Moreover, since φ∗ and ρξ commute, we get a common eigenspace decomposition

g = k+ ⊕ k− ⊕ p− ⊕ p+ ,

where k = k+ ⊕ k−, p = p− ⊕ p+, h = k+ ⊕ p+ and s = k− ⊕ p−. Notice that ξ ∈ k− ⊂ s

and that m = p ∩ s = p−.

We observe that M is the connected component of P ∩ s that contains ξ. Let H be the
identity component of the closed subgroup of G formed by all elements g ∈ G enjoying the
property AdG(g)s = s. Since the decomposition g = h ⊕ s is orthogonal, we get AdG(h)h =
h for all h ∈ H. One easily checks that h is the Lie algebra of H.

Since the representation AdG(H)|s is the s-representation of the irreducible symmetric
space G/H of compact type, which is not a compact Lie group, the following Lemma implies
Proposition 3.2:
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LEMMA 3.5. The real form M is the orbit M = AdG(H)ξ.

PROOF. The inclusion AdG(H)ξ ⊂ M is evident. Since both M and AdG(H)ξ are
connected compact submanifolds of P without boundary, it now suffices to show that the
dimensions of M and AdG(H)ξ coincide.

The Lie algebra of the stabilizer of ξ in H is k+ = {X ∈ h; ad(X)ξ = 0} and therefore
dim(AdG(H)ξ) = dim(p+). On the other hand we have dim(M) = dim(m) = dim(p−).

The automorphism Ad(exp(π/2 · ξ)) of g, which coincides on p with Jξ (see Equation (1)),
exchanges p− and p+. Indeed for X ∈ p± we get:

φ∗
(

Ad
(

exp
(π

2
· ξ

))
X

)
= Ad

(
exp

(π

2
· φ∗(ξ)

))
φ∗(X)

= ±Ad
(

exp
(
−π

2
· ξ

))
X

= ±Ad
(

exp
(π

2
· ξ

))
(Ad(exp(−π · ξ))X)

= ±Ad
(

exp
(π

2
· ξ

))
(Ad(exp(π · ξ))X)

= ∓Ad
(

exp
(π

2
· ξ

))
X .

In the last equality we used Equation (2). �
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