A GEOMETRIC PROOF OF RYLL-NARDZEWSKI'S FIXED POINT THEOREM

BY I. NAMIOKA AND E. ASPLUND

Communicated by Victor Klee, January 23, 1967

In [4], Ryll-Nardzewski gave what he called an 'old-fashioned' proof of his famous fixed point theorem. The purpose of the present note is to give an even more old-fashioned proof of the fixed point theorem. In fact, our proof uses nothing more than a category argument and the classical Krein-Milman theorem. Our terminology and notation shall be those of Kelley, Namioka et al. [2]. The following geometric lemma is essential to our proof of Ryll-Nardzewski's fixed point theorem. In case the space E and the pseudo-norm p in the lemma are a Banach space and its norm respectively, the lemma is an easy consequence of Lindenstrauss' work [3].¹

LEMMA. Let (E, 5) be a locally convex Hausdorff linear topological space, let K be a nonempty 5-separable, weakly compact, convex subset of E, and let p be a continuous pseudo-norm on E. Then for each $\epsilon > 0$, there is a closed convex subset C of K such that $C \neq K$ and p-diam $(K \sim C) \leq \epsilon$, where, for any subset X of E, p-diam $(X) = \sup \{p(x-y): x, y \in X\}$.

PROOF. Let $S = \{x: p(x) \leq \epsilon/4\}$; then S is a weakly closed convex body. Let D be the weak closure of the set of all extreme points of K. Since K is 3-separable, a countable number of translates of S cover K and hence D. Since D is weakly compact, it is of the second category in itself with respect to the relative weak topology. Therefore there are a point k of K and a weakly open subset W of E such that $(S+k) \cap D \supset W \cap D \neq \emptyset$. Let K_1 be the closed convex hull of $D \sim W$, and let K_2 be the closed convex hull of $D \cap W$. Then, by the Krein-Milman theorem and the compactness of K_1 and K_2 , K is the convex hull of $K_1 \cup K_2$. Furthermore $K_1 \neq K$. For, otherwise, by Theorem 15.2 of [2], $D \sim W$ would contain all the extreme points of K, contradicting the fact that $W \cap D \neq \emptyset$. Obviously p-diam $(K_2) \leq \epsilon/2$. Now let r be a real number in (0, 1] and let f_r be the map $K_1 \times K_2 \times [r, 1] \rightarrow K$ defined by $f_r(x_1, x_2, \lambda) = \lambda x_1 + (1-\lambda)x_2$. Then clearly the image C_r of f_r is weakly closed, and it is easy to check that

¹ After the draft of the present note was completed we learned that Professor J. L. Kelley knew independently that a lemma of this sort was needed for a proof of Ryll-Nardzewski's fixed point theorem. Thus he was able to give a short proof of the fixed point theorem for Banach spaces using Lindenstrauss' result.

 C_r is convex. Moreover $C_r \neq K$. For, if $C_r = K$, then each extreme point z of K is of the form $z = \lambda x_1 + (1 - \lambda) x_2$, $x_i \in K_i$, $\lambda \in [r, 1]$. This would imply that each extreme point of K is in K_1 or $K = K_1$, contradicting $K_1 \neq K$. Finally, if $y \in K \sim C_r$, then y is of the form $y = \lambda x_1$ $+(1-\lambda)x_2$, $x_i \in K_i$, $\lambda \in [0, r)$. It follows that $p(y-x_2) = \lambda p(x_1-x_2)$ $\leq rd$, where d = p-diam $(K) < \infty$. Since p-diam $(K_2) \leq \epsilon/2$, we have p-diam $(K \sim C_r) \leq \epsilon/2 + 2rd$. Therefore if we let $C = C_r$ for $r = \epsilon/4d$, the proof of the lemma is complete.

Let Q be a subset of a locally convex space E and let S be a semigroup of transformations of Q into Q. The semigroup S is called *non*contracting if 0 does not belong to the closure of $\{Tx-Ty: T\in S\}$ whenever $x \neq y$ and x, $y\in Q$. Clearly S is noncontracting if and only if, for x, $y\in Q$ with $x\neq y$, there is a continuous pseudo-norm p (depending on x and y) on E such that inf $\{p(Tx-Ty): T\in S\} > 0$.

THEOREM (RYLL-NARDZEWSKI). Let Q be a nonempty, weakly compact, convex subset of a locally convex Hausdorff linear topological space E, and let S be a noncontracting semigroup of weakly continuous affine maps of Q into itself. Then there is a common fixed point of S in Q.

(The following proof is not the most direct one. However it establishes an additional interesting fact concerning fixed points, also due to Ryll-Nardzewski [4]: When S is finitely generated, the problem of finding a common fixed point of S can be reduced to that of a single operator.)

PROOF. By a familiar compactness argument, it is sufficient to prove that each finite subset of S has a common fixed point in Q. Therefore we may assume that S is generated by T_1, T_2, \dots, T_r . Let $T_0 = (T_1 + T_2 + \dots + T_r)/r$. Then T_0 is a weakly continuous affine map of Q into itself; hence there is a fixed point x_0 of T_0 in Q (see, for example, Théorème 1, Appendice of [1]). We will show that $T_i x_0 = x_0$ for $i=1, \dots, r$. Assume that this is not the case. Then by throwing out those T_i 's for which $T_i x_0 = x_0$, we may assume that $T_i x_0 \neq x_0$ for $i=1, 2, \dots, r$.² Since S is noncontracting there is a continuous pseudo-norm p on E and $\epsilon > 0$ such that

(*) $p(TT_ix_0 - Tx_0) > \epsilon$ for all T in \mathcal{S} and $i = 1, \cdots, r$.

Let K be the closed convex hull of $\{Tx_0: T \in S\}$. Then K is a weakly compact, convex, separable subset of E. Hence, by the lemma, there is a closed convex subset C of K such that $C \neq K$ and

² Indeed if $T_i x_0 \neq x_0$ for $i \leq m$ and $T_i x_0 = x_0$ for i > m, then substitute $T_0' = (T_1 + \cdots + T_m)/m$ and the subsemigroup S' of S generated by T_1, \cdots, T_m for T_0 and S respectively. Note that $T_0' x_0 = x_0$.

p-diam $(K \sim C) \leq \epsilon$. Since $C \neq K$, there is an element S in S such that $Sx_0 \in K \sim C$. From $T_0x_0 = x_0$, we see that

$$Sx_0 = (ST_1x_0 + ST_2x_0 + \cdots + ST_rx_0)/r.$$

Hence $ST_ix_0 \in K \sim C$ for at least one *i*, since otherwise $Sx_0 \in C$. It follows that $p(ST_ix_0 - Sx_0) \leq p$ -diam $(K \sim C) \leq \epsilon$, contradicting inequality (*). The proof of the theorem is therefore complete.

REMARK. In the proof above T_0 could have been any convex combination $\sum_{i=1}^{r} \lambda_i T_i$ with $\lambda_i > 0$.

References

1. N. Bourbaki *Espaces vectoriels topologiques*, Chapitres I-II, Hermann Paris, 1953.

2. J. L. Kelley, I. Namioka, et al., *Linear topological spaces*, Van Nostrand, Princeton, N. J., 1963.

3. J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1. No. 3 (1963), 139-148.

4. C. Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, (to appear).

UNIVERSITY OF WASHINGTON