A GEOMETRIC PROOF OF THE STRONG MAXIMAL THEOREM

BY A. CORDOBA AND R. FEFFERMAN
Communicated by Robert Bartle, May 25, 1975

In R^{n}, suppose we consider the operator M_{s} given by

$$
M_{s}(f)(x)=\sup _{R} \frac{1}{|R|} \int_{R}|f(y)| d y
$$

where f is a locally integrable function on R^{n} and the sup is taken over all rectangles with sides parallel to the axes which contain the point x. Then the strong maximal theorem may be taken as the statement that M_{s} is bounded from $L\left(\log ^{+} L+1\right)^{n-1}(Q)$ to weak $L^{1}(Q)$, i.e.

$$
m\left\{M_{s} f>\alpha\right\} \leqslant A_{n} \int \frac{|f(x)|}{\alpha} \log ^{n-1}\left(\frac{|f(x)|}{\alpha}+1\right) d x
$$

where A_{n} is some absolute constant, and Q is the unit cube in R^{n}.
Our result consists of a purely geometric argument establishing such an inequality. At the heart of the matter is a geometric proof of the following covering lemma:

Suppose $R_{1}, R_{2}, \ldots, R_{k}, \ldots$ is a sequence of rectangles contained inside the unit cube in R^{n}. Then there is a subcollection $\widetilde{R}_{1}, \widetilde{R}_{2}, \ldots$ of the R_{k} 's satisfying the following conditions:
(1) $\left|\cup \widetilde{R}_{k}\right| \geqslant c_{n}\left|\cup R_{k}\right|$ for some absolute constant $c_{n}>0$, and
(2) $\left\|\exp \left(\Sigma \chi_{\widetilde{R}_{k}}\right)^{1 /(n-1)}\right\|_{L^{1}} \leqslant C_{n} \cup R_{k} \mid$ for some absolute constant $C_{n}<\infty$.

These observations lead to further results in the theory of differentiation of the integral.

REFERENCES

1. A. Cordoba, On the Vitali covering properties of a differentiation basis (to appear).
2. B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

