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Abstract. This paper sheds new light on split decomposition theory and T-theory from
the viewpoint of convex analysis and polyhedral geometry. By regarding finite metrics as
discrete concave functions, Bandelt–Dress’ split decomposition can be derived as a special
case of more general decomposition of polyhedral/discrete concave functions introduced
in this paper. It is shown that the combinatorics of splits discussed in connection with the
split decomposition corresponds to the geometric properties of a hyperplane arrangement
and a point configuration. Using our approach, the split decomposition of metrics can be
naturally extended to distance functions, which may violate the triangle inequality, using
partial split distances.

1. Introduction

Mathematical treatment of metric spaces on a finite set (finite metric spaces) has come
to be increasingly important in the area of bioinfomatics and phylogenetics; see [2] and
[24]. The central problem in phylogenetics is reconstructing phylogenetic trees from
given experimental data, e.g., DNA sequences. If the data is given as a distance matrix
expressing dissimilarity between species, the problem is to search for a tree metric
that “fits” the given distance matrix, where a metric is called a tree metric if it can be
represented as the path metric on some weighted tree.

T-theory [9], developed by Dress and coworkers, provides a beautiful mathematical
framework for this phylogenetic problem. The split decomposition, due to Bandelt and
Dress [1], is a T-theoretical phylogenetic analysis method, which is briefly summarized as
follows; see Section 4 for precise definitions. Let V be a finite set and let d: V × V → R
be a metric on V . Then the split decomposition decomposes d into the following form:

d =
∑

{A,B}: split

αd
{A,B}δ{A,B} + d ′, (1.1)
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Fig. 1. Three-dimensional example.

where a split means a bipartition of V , δ{A,B} is the split metric defined in (4.3), αd
{A,B} is

the nonnegative number called the isolation index defined in (4.4), and d ′ is a split-prime
metric.

One of the main aims of this paper is to derive the split decomposition in a natural
way as a special case of a decomposition of (discrete) convex/concave functions that we
propose in this paper. This viewpoint of convex analysis sheds new light on such important
concepts as split decomposition, tight span, isolation index, and weakly compatible splits.
Furthermore, our approach leads to a natural extension of the split decomposition for
distances, which may violate the triangle inequality.

To describe our key idea to understand the split decomposition from the viewpoint
of polyhedral geometry, let us take the following small example. Let V = {i, j, k} be a
3-point set and let d: V × V → R be a metric on V defined as

d =
i j k

i 0 4 2
j 4 0 4
k 2 4 0

. (1.2)

Consider the point set {(χi + χj , d(i, j)) | i, j ∈ V } ⊆ RV × R and the upper envelope
of its convex hull, where χi is the i th unit vector. Namely, we regard d as a function
defined on the point set 	 = {χi + χj | i, j ∈ V }. We illustrate this situation in Fig. 1.
The point set 	 consists of vertices of the simplex and midpoints of its edges, and
lies on the hyperplane {x ∈ RV | ∑i∈V x(i) = 2} (Fig. 1(a)). Hence, we can project
{(χi + χj , d(i, j)) | i, j ∈ V } to three-dimensional space (Fig. 1(b)).

We observe that the concave function of this upper envelope can be decomposed into
a sum of three simple concave functions as in Fig. 2. Then this decomposition of the

=
+ +

Fig. 2. Decomposition of the concave function associated with d.
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concave function associated with d induces the decomposition of d as

d = 2


0 1 0

1 0 1
0 1 0


+


0 1 1

1 0 0
1 0 0


+


0 0 1

0 0 1
1 1 0




= 2δ{2},{1,3} + δ{1},{2,3} + δ{3},{1,2}. (1.3)

As will be shown in this paper, this decomposition coincides with Bandelt–Dress’ split
decomposition.

The observation above motivates us to study the following type of a decomposition
of a polyhedral convex function f on Rn as

f (x) =
∑

(a,r)∈Rn×R

c f
a,r |〈a, x〉 − r | + f ′(x) (x ∈ Rn), (1.4)

where c f
a,r is the nonnegative number defined by sup{t ≥ 0 | f − t |〈a, x〉−r | is convex}

and f ′ is a polyhedral convex function satisfying c f ′
a,r ∈ {0,+∞} for all (a, r) ∈ Rn ×R.

We call function |〈a, x〉 − r | a split function corresponding to a split metric. Indeed, the
terms of the right-hand side of Fig. 2 can be regarded as the negative of split functions. We
show in Section 2 that this decomposition (1.4) is uniquely determined (Theorem 2.2).
We call this the polyhedral split decomposition.

As with the above example, this decomposition yields the decomposition of a function
defined on a finite point set X . In Section 3 we study the split decomposition for a function
defined on X (the split decomposition of discrete functions).

In Section 4 we regard a metric d as a function on	 as in Fig. 1 and apply the results
of Sections 2 and 3. We then obtain the following:

• By discretizing the polyhedral split decomposition (1.4), Bandelt–Dress’ split de-
composition (1.1) can be derived; see Proposition 4.5 and Theorems 4.6 and 4.7.

• The split decomposition of metrics can be naturally extended for distance functions,
which may possibly violate the triangle inequality, using partial split distances; see
Theorem 4.7 and equations (4.13) and (4.27). This extended split decomposition
exploits more detailed combinatorial structure of a given distance matrix than
Bandelt–Dress’ split decomposition (1.1) in the case that d violates the triangle
inequality; see Remark 4.8. For example, a distance on subtrees on a tree defined by
the shortest path length between subtrees (Fig. 3), studied by Hirai [15], is a totally
split-decomposable distance in our sense, which can be regarded as an extension of
the fact that a tree metric is a totally split-decomposable metric in Bandelt–Dress’
sense; d ′ = 0 in (1.1). So such distances can be recognized by our extended split
decomposition; see Remark 4.18.

• We show the split-hyperplane correspondence, where each split can be associated
with a certain hyperplane dividing simplex and weak compatibility of splits can
be translated into a certain geometric property of the corresponding hyperplane
arrangement and the point configuration	; see Theorem 4.14 and Proposition 4.16.

Closing this Introduction, we mention some background of the present work. Ap-
plications of convex analysis to combinatorial and discrete structures are given in the
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Fig. 3. (a) Tree metric and (b) distance between subtrees on a tree.

theory of submodular functions by Lovász [19], Frank [11], and Fujishige [12] (see also
[13]). Recently Murota [20] developed discrete convex analysis, a convex analysis for
functions defined on integer lattice points. Hirai and Murota [16] discuss the relationship
between tree metrics and discrete convexity, where they observe that d is a tree metric if
and only if the function on 	 associated with d, as in Fig. 1, is an M-concave function,
which is one of the fundamental classes of discrete convex functions. The present paper
is strongly influenced by these works.

2. Split Decomposition of Polyhedral Convex Functions

In this section we derive the polyhedral split decomposition (1.4), which is the basis for
subsequent developments in this paper.

2.1. Basic Notation

Here we introduce some basic notation about convexity and polyhedra; see [22], [21],
and [27]. Let R, R+, and R++ be the sets of real numbers, nonnegative real numbers, and
positive real numbers, respectively. Let Rn be the n-dimensional Euclidean space with
the standard inner product 〈·, ·〉. The norm ‖x‖ of x ∈ Rn is defined by

√〈x, x〉. For
x, y ∈ Rn , let [x, y] denote the closed line segment between x and y. For two subset F ,
G ⊆ Rn , F+G means the Minkowski sum of F and G defined by {x+y | x ∈ F, y ∈ G}.
A subset S ⊆ Rn is said to be convex if [x, y] ⊆ S for each x, y ∈ R, and is said to be
(convex) cone if αx + βy ∈ S for x, y ∈ S and α, β ∈ R+. For a subset X ⊆ Rn , we
denote by conv X , cone X , and aff X the convex hull (the smallest convex set containing
X ), the conical hull (the smallest convex cone containing X ), and the affine hull (the
smallest affine space containing X ), respectively, i.e.,

conv X =
{∑

y∈Y

λy y | Y ⊆ X : finite set, λ ∈ RY
+,
∑
y∈Y

λy = 1

}
, (2.1)
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cone X =
{∑

y∈Y

λy y | Y ⊆ X : finite set, λ ∈ RY
+

}
, (2.2)

aff X =
{∑

y∈Y

λy y | Y ⊆ X : finite set, λ ∈ RY ,
∑
y∈Y

λy = 0

}
. (2.3)

int X and ri X mean the set of interior points and relative interior points of X , respectively,
i.e., int X = {x ∈ X | ∃ε > 0, {x} + Bε ⊆ X} and ri X = {x ∈ X | ∃ε > 0, {x} +
aff X ∩ Bε ⊆ X}, where Bε = {x ∈ R | ‖x‖ ≤ ε}. In particular, for (a, r) ∈ Rn × R,
we define a hyperplane Ha,r by {x ∈ Rn | 〈a, x〉 = r}, closed half-spaces H−

a,r and H+
a,r

by {x ∈ Rn | 〈a, x〉 ≤ r} and {x ∈ Rn | 〈a, x〉 ≥ r}, and open half-spaces H−−
a,r and

H++
a,r by {x ∈ Rn | 〈a, x〉 < r} and {x ∈ Rn | 〈a, x〉 > r}. A subset P ⊆ Rn is a

polyhedron if P is the intersection of a finite number of closed half-spaces. A function
f : Rn → R ∪ {+∞} is said to be convex if it satisfies

λ f (x)+ (1 − λ) f (y) ≥ f (λx + (1 − λ)y) (2.4)

for all x, y ∈ Rn , λ ∈ [0, 1]. dom f = {x ∈ Rn | f (x) < +∞} is called the effective
domain of f and epi f = {(x, r) ∈ Rn × R | f (x) ≤ r} is called the epigraph of f . The
indicator function δS: Rn → R ∪ {+∞} for a subset S ⊆ Rn is defined by

δS(x) =
{

0 if x ∈ S

+∞ otherwise
(x ∈ Rn). (2.5)

A function f is called a polyhedral convex function if its epigraph epi f is polyhedral,
or, equivalently, f is represented by max{〈ai , ·〉+bi | 1 ≤ i ≤ m}+δP for {(ai , bi )}m

i=1 ⊆
Rn × R and a polyhedron P .

A nonempty subset F of a polyhedron P is called a face of P if F = P or F can be
represented as H ∩ P for some hyperplane H with P ⊆ H+.

A polyhedral complex C is a finite collection of polyhedra such that (1) if P ∈ C, all
the faces of P are also in C, and (2) the nonempty intersection P ∩ Q of two polyhedra
P, Q ∈ C is a face of P and Q. The underlying set of C is the point set |C| = ⋃

P∈C P .
A polyhedral subdivision of a polyhedron P is a polyhedral complex C with |C| = P .

For a polyhedral convex function f , let T ( f ) be the polyhedral subdivision of dom f
induced by the projection of lower faces epi f , which is represented as

T ( f ) = {F ⊆ Rn | F is the set of minimizers of f (·)− 〈p, ·〉 for some p ∈ Rn}.
(2.6)

Such subdivisions are said to be regular; see Chapter 5 of [27]. Note that on each
F ∈ T ( f ), f is an affine function.

For two polyhedral subdivisions C1 and C2, the common refinement C1 ∧ C2 is defined
by C1 ∧ C2 = {F ∩ G | F ∈ C1,G ∈ C2, F ∩ G �= ∅}. Note that C1 ∧ C2 is a
polyhedral subdivision of |C1| ∩ |C2|. In particular, for a set of hyperplanesH, we define
the polyhedral subdivision A(H) of Rn as

A(H) =
∧

H∈H
{H, H+, H−}. (2.7)
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Namely,A(H) is the partition of Rn by hyperplanesH. We give a fundamental relation-
ship between T ( f + g) and T ( f ) ∧ T (g).

Lemma 2.1. Let f and g be polyhedral convex functions with dom f ∩ dom g �= ∅.
Then we have

T ( f + g) = T ( f ) ∧ T (g). (2.8)

Proof. Both sides of (2.8) are polyhedral subdivisions of dom f ∩ dom g. Hence it
is sufficient to show the inclusion (⊇). Let F ∈ T ( f ) and G ∈ T (g) be the sets
of minimizers of f (·) − 〈p, ·〉 and g(·) − 〈q, ·〉 for some p, q ∈ Rn , respectively. If
F ∩ G �= ∅, then F ∩ G is the set of minimizers of ( f + g)(·) − 〈p + q, ·〉. Hence
F ∩ G ∈ T ( f + g).

2.2. Polyhedral Split Decomposition

Here we derive the split decomposition of polyhedral convex functions, which is our
guiding principle in deriving the split decomposition of metrics and related concepts in
terms of convex analysis and polyhedral geometry. Furthermore, our derivation leads
to an algorithm for the discrete version of polyhedral split decomposition in the next
section.

First we define a split function, which is a correspondence of a split metric. For a
hyperplane H = Ha,b with ‖a‖ = 1, the split function lH : Rn → R associated with H
is defined as

lH (x) = |〈a, x〉 − b|/2 (x ∈ Rn). (2.9)

For a polyhedral convex function f and a hyperplane H , we define the nonnegative
number cH ( f ) ∈ R+ ∪ {+∞} as

cH ( f ) = sup{t ∈ R+ | f − tlH is convex} (2.10)

and define the set of hyperplaneH( f ) as

H( f ) = {H : hyperplane | 0 < cH ( f ) < +∞}. (2.11)

Note that cH ( f ) = +∞ if and only if dom f ⊆ H+ or dom f ⊆ H−. The main aim
here is to prove the following.

Theorem 2.2. A polyhedral convex function f : Rn → R∪{+∞} with dim dom f = n
can be decomposed as

f =
∑

H∈H( f )

cH ( f )lH + f ′, (2.12)

where f ′ is a polyhedral convex function with cH ( f ′) ∈ {0,+∞} for each hyperplane
H . Moreover, this representation is unique in the following sense. If f is represented as

f =
∑
H∈H

αHlH + g (2.13)
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for some set of hyperplanesH, each of whose elements meets int dom f , positive numbers
{αH }H∈H, and a polyhedral convex function g with cH (g) ∈ {0,+∞} for any hyperplane
H , then we have

H = H( f ), αH = cH ( f ) (H ∈ H), f ′ = g. (2.14)

The proof needs three lemmas (Lemmas 2.3–2.5). The first is a convexity condition
of a function f − tlH . The second is a condition of 0 < cH ( f ) < +∞ for f and H .
The third is a behavior of cH ′( f − tlH ).

The proof uses the structure of the subdivision T ( f ) defined by (2.6). In particular,
a full dimensional polyhedron of T ( f ) is called a linearity domain of f . Note that such
members exist since dom f is full dimensional. A function g: Rn → R ∪ {+∞} is
called a T ( f )-piecewise-linear function if dom g = dom f , g is continuous on dom g,
and is an affine function on each linearity domain of f . We shall discuss the convexity
condition for T ( f )-piecewise-linear function g. On each linearity domain F , g can be
uniquely represented as

g(x) = 〈pg
F , x〉 − bg

F (x ∈ F) (2.15)

for some (pg
F , bg

F ) ∈ Rn × R. A pair of linearity domains F and G is said to be adjacent
if dim F ∩ G = n − 1. In particular, we denote the hyperplane aff F ∩ G by HF,G and
assume F ⊆ H+

F,G and G ⊆ H−
F,G . For two adjacent linearity domains F,G ∈ T ( f ),

we define a function gF,G as

gF,G(x) =
{〈pg

F , x〉 − bg
F if x ∈ H+

F,G

〈pg
G, x〉 − bg

G if x ∈ H−
F,G

(x ∈ Rn). (2.16)

In particular, g coincides with gF,G on F ∪ G. By continuity of g, gF,G can also be
represented by

gF,G =
{

max{〈pg
F , ·〉 − bg

F , 〈pg
G, ·〉 − bg

G} if gF,G is convex,

min{〈pg
F , ·〉 − bg

F , 〈pg
G, ·〉 − bg

G} if gF,G is concave,
(2.17)

=
{‖pg

F − pg
G‖lHF,G + affine function if gF,G is convex,

−‖pg
F − pg

G‖lHF,G + affine function if gF,G is concave.
(2.18)

Note that if pg
F �= pg

G , then HF,G = Hpg
F −pg

G ,b
g
F −bg

G
.

Lemma 2.3. A T ( f )-piecewise-linear function g is convex if and only if gF,G is convex
for each pair of adjacent linearity domains F and G of f .

Proof. The only-if part is obvious by g = gF,G on F ∪ G. We show the if part.
For sufficiently generic points x, y ∈ dom g, the line segment [x, y] meets only n or
(n − 1)-dimensional members of T ( f ). By condition, g is convex on [x, y], i.e., g
satisfies (2.4) for x, y and 0 ≤ λ ≤ 1. Hence, by continuity of g, g satisfies (2.4) for any
x, y ∈ dom f .

Lemma 2.4. For a hyperplane H = Ha,b for ‖a‖ = 1, we have 0 < cH ( f ) < +∞ if
and only if H ∩ int dom f �= ∅ and F ⊆ H+ or F ⊆ H− for each F ∈ T ( f ).
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Proof. The only-if part is easily observed. Indeed, if there exists F ∈ T ( f ) such that
both F ∩ H++ and F ∩ H−− are nonempty, then f −tlH is not convex on F for any t > 0.
We show the if part. By the condition, f − tlH is a T ( f )-piecewise-linear function. By
Lemma 2.3, f − tlH is convex if and only if ( f − tlH )F,G is convex for each pair of
adjacent linearity domains F,G of f . If F,G ⊆ H+ or F,G ⊆ H−, then we have

( f − tlH )F,G = fF,G + affine function (2.19)

and ( f − tlH )F,G is convex for t ≥ 0. If F ⊆ H+ and G ⊆ H−, then we have
aff F ∩ G = HF,G = Ha,b and p f

F − p f
G = ±‖p f

F − p f
G‖a. Hence we have

( f − tlH )F,G = (‖p f
F − p f

G‖ − t)lH + affine function. (2.20)

Hence we have

cH ( f ) = min{‖p f
F − p f

G‖ | F,G are linearity domains with aff F ∩ G = H}. (2.21)

By definition of linearity domain, we have p f
F �= p f

G and ‖p f
F − p f

G‖ > 0. By polyhe-
drality of f , pairs of adjacent linearity domains are finite. Hence we have 0 < cH <

+∞.

Lemma 2.5. For H, H ′ ∈ H( f ) and t ∈ [0, cH ( f )], we have

cH ′( f − tlH ) =
{

cH ( f )− t if H ′ = H,
cH ′( f ) otherwise.

(2.22)

Proof. For distinct H, H ′ ∈ H( f ), two subsets

{{F,G}: a pair of linearity domains of f with aff F ∩ G = H}, (2.23)

{{F,G}: a pair of linearity domains of f with aff F ∩ G = H ′} (2.24)

are disjoint. Hence, (2.22) follows from (2.19), (2.20), and (2.21) in the proof of
Lemma 2.4.

The Proof of Theorem 2.2. First note that H( f ) is necessarily finite since H is repre-
sented by aff F∩G for some adjacent linearity domains F and G of f and the set of linear-
ity domains are finite by polyhedrality of f . By Lemma 2.5, f ′ = f −∑H∈H( f ) cH ( f )lH

is convex and cH ( f ′) ∈ {0,+∞} for any hyperplane H . Hence we obtain the first part.
We show the uniqueness part. Suppose that f can be decomposed as the form (2.13).
Then we haveH ⊆ H( f ) and αH ≤ cH ( f ) for H ∈ H. By Lemma 2.5, we have

0 = cH ′(g) = cH ′

(
f −

∑
H∈H

αHlH

)

=
{

cH ( f )− αH if H ′ = H for some H ∈ H,
cH ′( f ) otherwise

(2.25)

for H ′ ∈ H( f ). This implies (2.14).
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Remark 2.6. We observe that T (αlH ) = {H, H+, H−} for α ∈ R++. Hence, by
Lemma 2.1, corresponding to the decomposition (2.12), T ( f ) is decomposed as

T ( f ) = A(H( f )) ∧ T ( f ′). (2.26)

Then, by Lemma 2.4, there is no hyperplane H meeting int dom f such that F ⊆ H+

and F ⊆ H− for each F ∈ T ( f ′). This gives a geometric interpretation of the split-
primeness of metrics in Section 4.

Closing this subsection, we give an alternative expression of cH ( f ), which will be
used in Section 3.

Lemma 2.7. For a polyhedral convex function f : Rn → R∪{+∞} with dim dom f =
n and a hyperplane H , we have

cH ( f ) = 1
2 inf


 f (x)− f (w)

lH (x)
+ f (y)− f (w)

lH (y)

∣∣∣ x ∈ dom f ∩ H++

y ∈ dom f ∩ H−−

{w} = [x, y] ∩ H


 . (2.27)

In particular, if cH ( f ) = 0, then there exists some linearity domain F of f such that both
F ∩ H++ and F ∩ H−− are nonempty and any x ∈ F ∩ H++ and y ∈ F ∩ H−− attain
the infimum of the right-hand side of (2.27). If 0 < cH ( f ) < +∞, then there exists an
adjacent pair of linearity domain F ⊆ H+, G ⊆ H− of f such that aff(F ∩ G) = H
and any x ∈ F ∩ H++ and y ∈ G ∩ H−− attain the infimum of the right-hand side
of (2.27).

Proof. First we show cH ( f ) ≤ RHS of (2.27). Indeed, since f − cH ( f )lH is convex,
f − cH ( f )lH satisfies (2.4) for x ∈ H++, y ∈ H−−, and λ = lH (y)/(lH (x)+ lH (y)) as

λ( f −cH ( f )lH )(x)+(1−λ)( f −cH ( f )lH )(y) ≤ ( f −cH ( f ))(λx +(1−λ)y). (2.28)

Put w = λx + (1 − λ)y. Then we have {w} = H ∩ [x, y] and lH (w) = 0. Hence we
obtain

cH ( f ) ≤ 1

2

{
f (x)− f (w)

lH (x)
+ f (y)− f (w)

lH (y)

}
. (2.29)

Therefore, it suffices to show the latter part. The statement for the case cH ( f ) = 0
follows from Lemma 2.4. In the case 0 < cH ( f ) < +∞, by (2.18) and (2.21), there
exists a pair of adjacent linearity domains F ⊆ H+, G ⊆ H− of f such that

fF,G = cH ( f )lH + affine function. (2.30)

Furthermore, F ∪G is a linearity domain of f −cH ( f )lH and therefore is convex. Then,
for any x ∈ F ∩ H++, y ∈ G ∩ H−−, we have {w} = [x, y] ∩ H ∈ F ∪ G and

RHS of (2.29) = 1

2

{
fF,G(x)− fF,G(w)

lH (x)
+ fF,G(y)− fF,G(w)

lH (y)

}
= cH ( f ). (2.31)
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2.3. Dual View of Theorem 2.2

In this subsection we discuss the dual view of Theorem 2.2. In particular, we discuss the
relationship between Theorem 2.2 and the maximum zonotopic summand of a polyhe-
dron. For this, we focus on the case that f is positively homogeneous, or, equivalently, is
the support function of some polyhedron. Recall the relationship between positively ho-
mogeneous convex functions and the support functions of a polyhedron; see Section 1.7
of [22] and Section 19 of [21].

For a polyhedron P , the support function fP is defined as

fP(x) = sup{〈x, p〉 | p ∈ P} (x ∈ Rn). (2.32)

Then fP is polyhedral convex and positively homogeneous, i.e., f satisfies

f (λx) = λ f (x), λ ∈ R+, x ∈ Rn. (2.33)

Conversely, if f is positively homogeneous polyhedral convex, then f is the support
function of the polyhedron

Pf = {p ∈ Rn | 〈p, x〉 ≤ f (x) (x ∈ Rn)}. (2.34)

This correspondence is one to one and satisfies

Pf +g = Pf + Pg, fP+Q = fP + fQ (2.35)

for two positively homogeneous polyhedral convex functions f and g and two polyhedra
P and Q. Note that the split function lH for a linear hyperplane H = Ha,0 with ‖a‖ = 1
is the support function of the line segment 1

2 [−a, a].
In this case, T ( fP) coincides with the normal fan of P , which consists of the normal

cones of Pf . Recall the definition of the normal cone; see Chapter 7 of [27] and Section 2.4
of [22]. For a face F of Pf , the normal cone NF of F is defined as

NF = {x ∈ Rn | {q ∈ P | 〈x, q〉 = sup{〈x, p〉 | p ∈ P}} ⊆ F} (2.36)

and hence we have T ( fP) = {NF | F is a face of P}. Note that dom fP is given by
{x ∈ Rn | 〈p, x〉 ≤ 0 (p ∈ rec P)}, where rec P is the recession cone of P defined by
{v ∈ Rn | P + [0, v] = P}.

In particular, faces of Pf and T ( f ) are in polar relation as follows:

(N1) F ⊆ G if and only if NF ⊇ NG , and
(N2) the linear subspace parallel to aff F is orthogonal to aff NF ,

where F and G are faces of Pf . In addition, we see the following relation:

(N3) F is bounded if and only if NF ∩ int dom f �= ∅.

Applying Theorem 2.2 to the support function of a polyhedron P , we have the fol-
lowing, which can be understood as an unbounded refinement of theorem of Bolker [4,
p. 341] that every polytope (bounded polyhedron) has the maximum zonotopic sum-
mand, where a polyhedron Q is called a Minkowski summand of a polyhedron P if there
exists a polyhedron P ′ such that P = Q + P ′, and P is said to be pointed if P has a
vertex.
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Corollary 2.8. A pointed polyhedron P is uniquely decomposed as

P =
∑
v∈V

[−v/2, v/2] + P ′ (2.37)

for a finite set of vectors V ⊆ Rn\ ± rec P and a polyhedron P ′ which does not contain
[−u/2, u/2] as a Minkowski summand for each u ∈ Rn\ ± rec P .

Proof. Let fP be the support function of P . Note that dom fP is full dimensional since P
is pointed. SinceT ( f ) consists of polyhedral cones,H( f ) consists of linear hyperplanes.
From dom fP = {x ∈ Rn | 〈p, x〉 ≤ 0 (p ∈ rec P)}, we have dom fP ⊆ H+

a,0 or
dom fP ⊆ H−

a,0 if and only if a ∈ rec P or −a ∈ rec P . Applying Theorem 2.2 to fP

and (2.35), we obtain the desired result.

A finite (Minkowski) sum of line segments is called a zonotope. The zonotope Z(P) =∑
v∈V [−v/2, v/2] of (2.37) is called the maximum zonotopic summand of P . As will be

seen in Section 4, the split decomposition of metrics can be understood as the extraction
of the maximum zonotopic summand from some polyhedron associated with a given
metric; see Remark 4.10.

The structure of the union of the bounded faces of Pf expresses the nonlinearity of f
over dom f . For example, f is linear on dom f if and only if the union of the bounded
faces of Pf is a single point. As will be shown in Section 4, the following proposition
gives an interpretation and another proof to the result of Dress [7] that a metric is a tree
metric if and only if its tight span is a tree.

Proposition 2.9. For a positively homogeneous polyhedral convex function f : Rn →
R ∪ {+∞} with dim dom f = n, the following conditions are equivalent:

(1) The dimension of the union of bounded faces of Pf is (less than or) equal to 1.
(2) The union of bounded faces of Pf is a tree.
(3) If f is decomposed as (2.12), then f ′ is linear over dom f and H1 ∩ H2 ∩

int dom f = ∅ for each pair H1, H2 ∈ H( f ).

Proof. The equivalence (1) ⇔ (2) follows from the general fact that the union of
bounded faces of a polyhedron is contractible, i.e., it is homotopy equivalent to a point
(see the Appendix of [15] for a proof). We show (3) ⇒ (1). By condition, each member
of T ( f )meeting int dom f has the dimension n or n − 1. By (N2), we have (1). Finally
we show (2) ⇒ (3). Let E be a one-dimensional bounded face of Pf . Then F is a
line segment. By (N2), NE is an (n − 1)-dimensional member of T ( f ). We claim that
aff NE ∩ dom fP = NE . Indeed, this follows from the fact that every proper face of
NE is contained in the boundary of dom f by (N2). By Lemma 2.4, we conclude that
(linear) hyperplanes {aff NE | E is a bounded edge of P} = H( f ) and do not intersect
in int dom f each other. Moreover, NE can be uniquely represented by F ∩ G for two
adjacent linearity domains F and G. Then F∪G is a linearity domain of f −cHlH . Repeat
this process to f −cH ( f )lH , then dom f is a linearity domain of f −∑H∈H( f ) cH ( f )lH .
This implies that f −∑

H∈H( f ) cH ( f )lH is linear over dom f .
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3. Split Decomposition of Discrete Functions

In this section we describe a discrete version of the polyhedral split decomposition,
which is a certain kind of decomposition of a function f defined on a finite set X of
points of Rn . The basic idea is to associate f to some polyhedral convex function f as
in Fig. 1 in the Introduction and apply Theorem 2.2.

3.1. Discrete Functions and Convex-Extension

Let X be a finite point set of Rn.We assume that X is contained by some affine hyperplane
K not containing the origin of Rn . If necessary, we consider X̃ = {(y, 1) | y ∈ X} ⊆
Rn+1 instead of X ; in this case K = {(x, 1) | x ∈ Rn} ⊆ Rn+1. For a function f : X → R,
we consider the following polyhedral convex function:

f (x) = inf

{∑
y∈X

λy f (y) |
∑
y∈X

λy y = x, λy ≥ 0 (y ∈ X)

}
, (3.1)

which is called the homogeneous convex extension of f . Then, by linear programming
duality, f is the support function of the polyhedron

Q( f ) = {p ∈ Rn | 〈p, y〉 ≤ f (y) (y ∈ X)} (3.2)

and, therefore, positively homogeneous. dom f is given by cone X . Then T ( f ) is the
normal fan of Q( f ). Let T X ( f ) denote the subdivision of conv X which is defined
by {F ∩ K | F ∈ T ( f )}. Note that the restriction of f to K is the function of the
lower envelope of the convex hull of {(y, f (y)) | y ∈ X} ⊆ K × R and T X ( f ) is the
projection of lower faces of conv{(y, f (y)) | y ∈ X}; recall Fig. 1 in the Introduction.
For a function g: Rn → R ∪ {+∞}, we denote the restriction of g to X by gX . f is said

to be convex-extensible if it satisfies f
X = f . The set of convex-extensible functions is

recognized as a fundamental class of the discrete convex functions (see [20]).
We give some fundamental properties of discrete functions and homogeneous convex-

extensions, which will be used in the proof of Theorem 3.4 and Proposition 3.6 in the
next subsection.

Lemma 3.1. Let f, g: X → R be a function.

(1) c f + 〈q, ·〉 = c f +〈q, ·〉+δcone X (c ∈ R+, q ∈ Rn), where δcone X is the indicator
function of cone X ; see (2.5).

(2) F ∈ T ( f ) is represented as cone{y | y ∈ X, 〈q, y〉 = f (y)} for some q ∈ Q( f ).
Furthermore f (x) = f F∩X (x) for x ∈ F . In particular, f (y) = f (y) if y ∈ X
is a vertex of T X ( f ).

Proof. (1) By (3.2), we have

c f + 〈q, ·〉(x) = sup{〈x, p〉 | p ∈ Rn, 〈p, y〉 ≤ c f (y)+ 〈q, y〉 (y ∈ X)}. (3.3)
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If c > 0, substitute p′ = (p − q)/c to the right-hand side of (3.3). Then we have the
desired result. If c = 0, then it is immediate from definition (3.1).

(2) The first statement follows from the fact that a normal cone of Q( f ) can be
represented as the conical combination of the normal vectors of facets of Q( f ) containing
some q ∈ Q( f ). Next we show f (x) = f F∩X (x) for x ∈ F . Indeed, the coefficient λ
of conical combination x = ∑

y∈X,〈q,y〉= f (y) λy y and q satisfies the feasibility and the
complementary slackness condition for the dual pairs of linear programs corresponding
to f (x) and f F∩X (x). Hence we obtain f (x) = f F∩X (x) = ∑

y∈X,〈q,y〉= f (y) λy f (y);
see [23] for linear programming.

3.2. Split Decomposition of Discrete Functions

Here, we present the discrete version of Theorem 2.2. As shown in the next section, this
turns out to coincide with (an extension of) Bandelt–Dress’ split decomposition in the
case of X = 	. Furthermore, some interesting properties of weakly compatible splits
are also generalized. Arguments in this subsection have their own significance in the
theory of regular subdivision; see Remark 3.8. Note that since T ( f ) for f : X → R
is the normal fan of Q( f ), each hyperplane H ∈ T ( f ) is linear, i.e., H = Ha,0 for
some a ∈ Rn . We assume that aff X = K , which guarantees the full dimensionality of
dom f = cone X for f ∈ RX . The discrete version of Theorem 2.2 is as follows.

Theorem 3.2. A discrete function f : X → R can be decomposed as

f =
∑

H∈H( f )

cH ( f )l X
H + γ, (3.4)

where γ : X → R satisfies cH ′(γ ) ∈ {0,+∞} for any linear hyperplane H ′. Moreover,
we have

f =
∑

H∈H( f )

cH ( f )lH + γ , (3.5)

or, equivalently,

Q( f ) =
∑

H∈H( f )

cH ( f )[−nH/2, nH/2] + Q(γ ), (3.6)

where nH is the unit normal vector of hyperplane H . If, in addition, f is convex-
extensible, then γ is also convex-extensible.

Proof. We can apply Theorem 2.2 to f by dim f = dim cone X = n. It suffices to
show f = tlH + ( f − tl X

H ), or, equivalently,

Q( f ) = t[nH/2,−nH/2] + Q( f − tl X
H ) (3.7)

for H ∈ H( f ), and t ∈ [0, cH ( f )]. We show (3.7). The inclusion (⊇) follows from

〈p + snH/2, y〉 ≤ f (y)− t |〈nH , y〉|/2 + s〈nH , y〉/2 ≤ f (y) (y ∈ X) (3.8)
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Fig. 4. The split decomposition of f .

for s ∈ [−t, t] and p ∈ Q( f − tl X
H ). We next show (⊆). By f = tlH + ( f − tlH ) and

(2.35), we have

Q( f ) = Pf = t[nH/2,−nH/2] + Pf −tlH
. (3.9)

By the definition of Q(·) (3.2), (2.34), and f
X ≤ f , we have

Pf −tlH
⊆ Q(( f − tlH )

X ) ⊆ Q( f − tl X
H ). (3.10)

Hence, we obtain (⊆). If f is convex-extensible, then f
X = f . By restricting both sides

of (3.10) to X , we have γ = γ X . Hence γ is convex-extensible.

Figure 4 is an example of the split decomposition (3.4) of a function f : X → R
for X ⊆ R3 in terms of subdivisions induced by each term in (3.4), where this figure
illustrates the restriction to two-dimensional space K = aff X , each black point denotes
a point of X , and the number near each black point denotes corresponding value of f .
The property (3.5) (or (3.6)) means that (3.4) decomposes f to the sum of functions each
of which induces the subdivision coarser than T X ( f ). This property corresponds to the
coherence property of additive decomposition of metrics; see Section 4.

From Fig. 4 we observe that possible hyperplanes appearing in H(·) are limited by
the point set X . Motivated by this observation, we define a certain geometric condition
of hyperplane arrangements, which is determined solely by X , as follows. A set of linear
hyperplaneH is X-admissible ifH satisfies

(A0) H ∩ ri conv X �= ∅ for each H ∈ H, and
(A1) conv(F ∩ X) = F ∩ conv X for each F ∈ A(H).

In particular, condition (A1) can be rephrased as

{vertices of (A(H) ∧ {faces of conv X})} ⊆ X. (3.11)

Namely, whenH cuts conv X , newly appeared vertices are contained in X .

Lemma 3.3. For f : X → R, the set of hyperplanesH( f ) is X-admissible.

Proof. Condition (A0) is clearly satisfied. We show (A1). The inclusion (⊆) is obvious.
We show (⊇). By (2.26) and Lemma 3.1(2), we have

F ∩ conv X =
⋃

{G ∈ T X ( f ) | G ⊆ F}
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H1

H2

H3

H4

H5

H6

H7

(a) (b) (c) (d) (e)

Fig. 5. X -admissibility of hyperplanes.

=
⋃

{conv(G ∩ X) | G ∈ T X ( f ),G ⊆ F}

⊆ conv
(

X ∩
⋃

{G ∈ T X ( f
)

| G ⊆ F})
= conv(X ∩ F). (3.12)

Figure 5 illustrates examples of X -admissible and non-X -admissible sets of hyperplanes,
where black points are X , and hyperplanes of (a)–(c) are X -admissible, and (d) and (e)
are not since there are vertices, indicated by the arrow, not contained by X . Note that if
H is X -admissible, then any subset of H is also X -admissible. So we define the set of
linear hyperplanesHX as

HX = {H : linear hyperplane | {H} is X -admissible}. (3.13)

By (A0), (A1), and (3.11), we see that H ∈ HX if and only if H satisfies

(a0) there exists x, y ∈ X such that x ∈ H++ and y ∈ H−−, and
(a1) for each edge [x, y] of conv X with x ∈ H++, y ∈ H−−, we have [x, y]∩H ∈ X .

Note thatHX is a finite set since H ∈ HX is represented as the linear space spanned by
some Y ⊆ X . An X -admissible set of hyperplanes is a subset ofHX . The next theorem
implies that the discrete split decomposition (3.4) can be carried out without explicit
construction of convex-extensions; cH ( f ) can be calculated discretely.

Theorem 3.4. For a function f : X → R and a hyperplane H ∈ HX , let c̃H ( f ) be
defined by

1
2 min


 f (x)− f X∩H (w)

lH (x)
+ f (y)− f X∩H (w)

lH (y)

∣∣∣ x ∈ X ∩ H++

y ∈ X ∩ H−−

{w} = H ∩ [x, y]


 . (3.14)

Then we have

cH ( f ) = max(0, c̃H ( f )). (3.15)

Proof. By Lemmas 2.7 and 3.1(2), cH ( f ) can be represented as

cH ( f ) = 1
2 min


 f (y)− f (w)

lH (y)
+ f (z)− f (w)

lH (z)

∣∣∣ y ∈ X ∩ H++

z ∈ X ∩ H−−

{w} = H ∩ [x, y]


 . (3.16)
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Since f X∩H (w) ≥ f (w) holds for w ∈ H ∩ cone X , we have cH ( f ) ≥ c̃H ( f ). If
cH ( f ) > 0 holds, then, for w ∈ H ∩ cone X , there exists F ∈ T ( f ) such that w ∈ F
and F ⊆ H by Lemma 2.4. Therefore, by Lemma 3.1(2), we have f (w) = f X∩F (w) =
f X∩H (w) and cH ( f ) = c̃H ( f ).

The theorem yields an algorithm for the split decomposition of f : X → R as follows:

1. DetermineHX from the points X .
2. Calculate cH ( f ) for H ∈ HX by formulas (3.14) and (3.15).
3. Decompose f into the form of (3.4).

In Section 4 we derive Bandelt–Dress’ split decomposition from this recipe. As will
be shown in Section 4, Theorem 4.14, the X -admissibility of hyperplanes corresponds
to the weak compatibility of splits. The next proposition corresponds to Corollary 10 of
[1]. This also gives a criterion for the X -admissibility of hyperplanes.

Proposition 3.5. ForH ⊆ HX andα ∈ RH++, let f = ∑
H∈H αHl X

H . Then the following
conditions are equivalent:

(a) f = ∑
H∈H αHlH + δcone X .

(b) H = H( f ) and αH = cH ( f ) for H ∈ H.
(c) H is X-admissible.

Proof. (a)⇔ (b) follows from Theorems 2.2 and 3.2. (b)⇒ (c) follows from Lemma 3.3.
(c) ⇒ (a) Let H = {Hai ,0 | i ∈ I } with ‖ai‖ = 1 (i ∈ I ). For x ∈ cone X , there

exists F ∈ A(H) such that x ∈ F . By condition (c), x can be represented as a conical
combination

x =
∑

y∈F∩X

λy y. (3.17)

Then the coefficient λ is feasible to the corresponding linear program (3.1). On the other
hand, p defined as

p =
∑

i∈I, F⊆H+
i

(αHi /2)ai −
∑

i∈I, F⊆H−
i

(αHi /2)ai (3.18)

is also feasible to the dual linear program: max. 〈p, x〉 s.t. p ∈ Q( f ). It is easy to check
that λ and p satisfy the complementary slackness condition. This implies (a).

In particular, from the equivalence between (b) and (c) of this proposition, we see that
the decomposition into a sum of X -admissible split functions is uniquely determined.
The number of X -admissible hyperplanes is bounded by |X | − n. This fact corresponds
to Corollary 4 of [1].

Proposition 3.6. Let H ⊆ HX be an X-admissible set of hyperplanes. Then the set
of vectors {l X

H | H ∈ H} ∪ {eX
i | 1 ≤ i ≤ n} is linearly independent in RX , where

ei : Rn → R is the i th coordinate function defined by ei (x) = xi for x ∈ Rn . Therefore
|H| ≤ |X | − n.
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Proof. Suppose that it is linearly dependent. Then there exists nonzero (α, p) ∈ RH×
Rn such that ∑

H∈H, αH>0

αHl X
H + 〈p, ·〉 =

∑
H∈H, αH<0

−αHl X
H . (3.19)

By Proposition 3.5 and Lemma 3.1(1), the convex extensions of both sides of (3.19) lead
to a contradiction to the uniqueness of the polyhedral split decomposition
(Theorem 2.2).

A function f ∈ RX is said to be split-decomposable if f −∑H∈H( f ) cH ( f )l X
H is (the

restriction of) a linear function. By Proposition 3.6, the set of all split-decomposable
functions on X can be naturally regarded as a simplicial fan of RX , which is isomorphic
to the set of X -admissible sets of hyperplanes (as an abstract simplicial complex). If an
X -admissibleH has the maximal cardinality |X | − n, the cone{∑

H∈H
αHl X

H + gX | α ∈ RH+ , g: linear function on Rn

}
, (3.20)

as a subset of RX , has interior points. Therefore, for sufficiently generic f : X → R
from the cone (3.20), T ( f ) forms a simplicial fan (see Chapter 7 of [14]).

Corollary 3.7. Let H ⊆ HX be an X-admissible set of hyperplanes with maximal
cardinality |X |−n and let f = ∑

H∈H l X
H . Then T X ( f ) is a triangulation. Furthermore,

the set of vertices of T X ( f ) coincides with X .

Proof. The latter part is immediate from the fact that if y ∈ X is not a vertex of T X ( f ),
thenH is also (X\{y})-admissible.

Figure 5(b) attains the maximum number of X -admissible hyperplanes and therefore
is a triangulation having vertices X .

Remark 3.8. We discuss the significance of the arguments in this section from the
viewpoint of the theory of regular subdivisions and secondary fans; see [3] and Chap-
ter 7 of [14] for details. Consider the equivalence relation on RX so that two functions
f, g ∈ RX are defined to be equivalent if two subdivisions of X induced by f and g
coincide. Then RX is partitioned into the equivalence classes and each equivalence class
is a relatively open polyhedral cone. The closure of this equivalence class is called a
secondary cone. Let �(X) be the set of secondary cones. Then �(X) is a polyhedral
fan and is called the secondary fan of X . Let �(X) be the fan of split-decomposable
functions on X . By Propositions 3.5 and 3.6, each cone of �(X) is a simplicial subset
of some secondary cone. Therefore,�(X) is a simplicial subfan of�(X). See also p. 15
of [26] for a related discussion.

Remark 3.9. We discuss the connection between the arguments in this section and
Erdahl and Ryshkov’s theory of lattice dicing [10]. For a relatively prime integer vector
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z ∈ Zn , we define the (infinite) set of parallel hyperplanes Dz by {Hz,b | b ∈ Z}, where
Z denotes the set of integer vectors. A finite set of parallel hyperplanes (D-family)
{Dz1 , Dz2 , . . . , Dzr } is called a lattice dicing with respect to Zn if the set of vertices of
the subdivision A(

⋃r
i=1 Dzi ) coincides with Zn , i.e.,

⋃r
i=1 Dzi is Zn-admissible in our

sense. A positive definite quadratic form x! Ax yields a (infinite) polyhedral subdivision
to Rn by projecting the lower faces of the convex hull of {(x, x! Ax) | x ∈ Zn} ⊆ Rn ×R,
which is called an L-partition. Analogously to the case of secondary fans (Remark 3.8),
we define the equivalence relation on the cone of positive definite quadratic forms so
that two positive definite forms are defined to be equivalent if the corresponding L-
partitions coincide. Then the cone of positive definite quadratic forms is partitioned
into equivalence classes called L-type domains, which are known to be relatively open
polyhedral cones. The domain of lattice dicing {Dz1 , Dz2 , . . . , Dzr } is a set of positively
definite forms represented by

∑r
i=1 λi (〈di , x〉)2 for positive weights {λi }r

i=1. Erdahl
and Ryshkov [10] show that L-partition induced by

∑r
i=1 λi (〈di , x〉)2 coincides with

A(
⋃r

i=1 Dzi ), and each dicing domain is a simplicial L-type domain. So the fan of
(the closure of) dicing domains can be understood as a correspondence of the fan of
split-decomposable functions. Indeed, quadratic form (〈di , x〉)2 on {x ∈ Zn | −m ≤
〈di , x〉 ≤ m} can be represented as (the restriction of) a weighted sum of split functions
{lHdi ,k

}m−1
k=−m+1 and an affine function.

4. Metrics as Discrete Concave Functions

By regarding metrics as discrete concave functions and applying the results of Sections
2 and 3, we derive in this section Bandelt–Dress’ split decomposition of metrics and
some other important concepts of T-theory.

First we briefly review T-theory and the split decomposition of metrics. Let V be a
finite set. A function d: V × V → R is said to be a metric if it satisfies d(i, i) = 0,
d(i, j) = d( j, i) ≥ 0, and d(i, j) ≤ d(i, k) + d( j, k) for i, j, k ∈ V . A polyhedron
P(d) ⊆ RV associated with metric d is defined as

P(d) = {p ∈ RV | p(i)+ p( j) ≥ d(i, j)(i, j ∈ V )}. (4.1)

The tight span of metric d is a subset of P(d) defined as

T (d) =
{

p ∈ RV | ∀i ∈ V, p(i) = sup
j∈V
(d(i, j)− p( j))

}
, (4.2)

which has been introduced independently by Isbell [17] and Dress [7]. It is known that
T (d) coincides with the union of all bounded faces of P(d) [8, Lemma 1].

A split {A, B} is a bipartition of V , which means that A ∩ B = ∅, A ∪ B = V ,
A, B �= ∅. A split metric δ{A,B} associated with a split {A, B} is defined as

δ{A,B}(i, j) =
{

0 if i, j ∈ A or i, j ∈ B

1 otherwise
(i, j ∈ V ). (4.3)

For a metric d and a split {A, B}, the isolation index αd
{A,B} is the nonnegative number
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defined as

αd
{A,B} = 1

2 min
i, j∈A, k,l∈B


max




d(i, k)+ d( j, l)
d(i, l)+ d( j, k)
d(i, j)+ d(k, l)


− d(i, j)− d(k, l)


 . (4.4)

Let S(d) be the collection of splits defined as

S(d) = {S: split on V : αd
S > 0}. (4.5)

An additive decomposition of a metric d = d1 + d2 is said to be coherent if it satisfies
P(d) = P(d1) + P(d2). A metric d is said to be split-prime if it satisfies αd

S = 0 for
each split S The split decomposition theorem is as follows:

Theorem 4.1 [1]. A metric d can be coherently decomposed as

d =
∑

S∈S(d)
αd

SδS + d ′, (4.6)

where d ′ is a split-prime metric. Moreover, if d is coherently decomposed as

d =
∑
S∈S

λSδS + d ′′ (4.7)

for a collection of splits S, a positive weight λ ∈ RS++, and a split-prime metric d ′′, then
we have S = S(d), λS = αd

S for S ∈ S, and d ′′ = d ′.

The collection of splits S(d) is necessarily weakly compatible, that is, for any three
splits S1 = {A1, B1}, S2 = {A2, B2}, and S3 = {A3, B3} in S(d), there exist no four
points a, a1, a2, a3 ∈ V with {a, a1, a2, a3} ∩ Ai = {a, ai } for i = 1, 2, 3.

As already mentioned in the Introduction, we regard a metric as a function defined
on a finite set of points. In the following we deal with a more general object, a distance
function, rather than a metric. A distance function on V is a function d: V ×V → R such
that d(i, i) = 0 and d(i, j) = d( j, i) ≥ 0 for i, j ∈ V , where the triangle inequality is
not imposed. For each A ⊆ V , we denote by χA the characteristic vector of A defined
as χA(i) = 1 if i ∈ A and 0 otherwise. In particular, we write simply χi instead of χ{i}
for each i ∈ V . Consider the point set

	 = {χi + χj | i, j ∈ V }. (4.8)

Then a distance function d is naturally regarded as a function d: 	 → R defined by

d(χi + χj ) = d(i, j) (i, j ∈ V ). (4.9)

The following is easily observed.

Lemma 4.2. A function f : 	 → R with f (2χi ) = 0 for i ∈ V is convex-extensible if
and only if it satisfies f (χi + χj ) ≤ 0 for i, j ∈ V .
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Fig. 6. T 	((−d)) (left) and T (d) (right) of a generic 4-point metric d.

Hence it is natural to regard any distance function d: V × V → R as a discrete
concave function on	. Since aff	 coincides with K = {x ∈ RV | ∑i∈V x(i) = 2}, we
can apply the results of the previous section in a straightforward manner.

The homogeneous convex extension of −d is given by

(−d)(x) = inf

{∑
i, j∈V

λi j (−d(i, j)) |
∑

i, j∈V

λi j (χi + χj ) = x, λi j ≥ 0 (i, j ∈ V )

}

= sup{〈p, x〉 | p(i)+ p( j) ≤ −d(i, j)(i, j ∈ V )}
= sup{〈p, x〉 | −p ∈ P(d)} (x ∈ RV ), (4.10)

where for i, j ∈ V , i j denotes an unordered pair, which means that i j and j i are not
distinguished from each other. Hence −d is the support function of −P(d). Using the
notation (3.2), we have Q(−d) = −P(d). This implies that the tight span T (d) has a
dual structure of T 	(−d) (recall (N1), (N2), and (N3) in Section 2.3 and see Fig. 6).
This duality relation is also suggested by Sturmfels and Yu [26] in connection with the
triangulation of the second hypersimplex conv{χi + χj | i, j ∈ V, i �= j}.

Next we derive the split decomposition of metrics (Theorem 4.1) in a more generalized
form using the result of the present paper. For this, we begin by establishing a relationship
between splits and hyperplanes. For A, B ⊆ V with A, B �= ∅ and A ∩ B = ∅, we call
the unordered pair {A, B} a partial split. A hyperplane H{A,B} associated with partial
split {A, B} is defined as

H{A,B} = {x ∈ RV | x(A) = x(B)}, (4.11)

where we denote
∑

i∈A x(i) by x(A) for x ∈ RV and A ⊆ V .

Lemma 4.3. Let {A, B} be a partial split on V and let C = V \(A ∪ B). Then we have


	 ∩ H{A,B} = {χi + χj | i ∈ A, j ∈ B or i, j ∈ C},
	 ∩ H+

{A,B} = {χi + χj | i, j ∈ A ∪ C},
	 ∩ H−

{A,B} = {χi + χj | i, j ∈ B ∪ C},
	 ∩ H++

{A,B} = {χi + χj | i ∈ A, j ∈ A ∪ C},
	 ∩ H−−

{A,B} = {χi + χj | i ∈ B, j ∈ A ∪ C},

(4.12)

where we regard H{A,B} as HχA−χB ,0.
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Fig. 7. Examples of the split-hyperplane correspondence.

Figure 7 illustrates small examples of the correspondence between partial splits and
hyperplanes. In this figure a partial split and an element of V are represented by a line
and a point, respectively. The line corresponding to a partial split {A, B} separates points
of A and B and contains points of V \A ∪ B. The family H	 of linear hyperplanes, as
defined in (3.13) together with (a0) and (a1), can be identified in terms of partial splits
as follows.

Proposition 4.4. H	 = {H{A,B} | {A, B} is a partial split on V }.

Proof. We show that HA,B satisfies conditions (a0) and (a1). Condition (a0) is clearly
satisfied. conv	 is the simplex having edges {[2χi , 2χj ] | i, j ∈ V }. By Lemma 4.3,
2χi ∈ H++

A,B and 2χj ∈ H−−
A,B if and only if i ∈ A and j ∈ B. Therefore, we have

[2χi , 2χj ]∩ HA,B = {χi +χj } ∈ X for i ∈ A, j ∈ B. Conversely, let Ha,0 ∈ H	. Define
A = {i ∈ V | 2χi ∈ H++

a,0 } and B = {i ∈ V | 2χi ∈ H−−
a,0 }. Then {A, B} is a partial

split on V . We show Ha,0 = H{A,B}. By the definition of {A, B}, we have a(i) = 0 for
i ∈ V \(A ∪ B). For any 2χi ∈ H++

a,0 and 2χi ∈ H−−
a,0 , by	-admissibility of {Ha,0}, it is

necessary that χi + χj ∈ Ha,0 by (a1). Hence we have a(i) = −a( j) for i ∈ A, j ∈ B.
This implies Ha,0 = H{A,B}.

For a partial split {A, B}, we define a partial split distance ζ{A,B} associated with
{A, B} as

ζ{A,B}(i, j) =
{

1 if i ∈ A, j ∈ B or i ∈ B, j ∈ A
0 otherwise

(i, j ∈ V ). (4.13)

If A ∪ B �= V , then ζ{A,B} is not a metric. If A ∪ B = V , i.e., {A, B} is a split, then ζ{A,B}
coincides with the split metric δ{A,B}.

The following shows that a partial split distance ζ{A,B} associated with partial split
{A, B} is represented as split function lH{A,B} associated with hyperplane H{A,B}.
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Proposition 4.5. For a partial split {A, B}, the partial split distance ζ{A,B}: 	 → R
is represented as

ζ{A,B}(x) = −|x(A)− x(B)|/2 + x(A ∪ B)/2 (x ∈ 	). (4.14)

Moreover, we have

(−ζ{A,B})(x) = |x(A)− x(B)|/2 − x(A ∪ B)/2 + δRV
+

(x ∈ RV ), (4.15)

where δRV
+

is the indicator function for RV
+; see (2.5).

Proof. Equation (4.14) is obtained by direct calculations. Equation (4.15) follows from
	-admissibility of {H{A,B}} (Proposition 4.4), Proposition 3.5, and Lemma 3.1(1).

cH{A,B}(−d) can be explicitly calculated as follows.

Theorem 4.6. For a distance function d and a partial split {A, B}, we have

cH{A,B}((−d)) = max{0,min{ρd
A,B, σ

d
A,B, σ

d
B,A, τ

d
A,B}}

√
|A ∪ B|, (4.16)

where

ρd
A,B = 1

2 min

{
max

{
d(i, k)+ d( j, l)
d(i, l)+ d( j, k)

}
− d(i, j)− d(k, l)

∣∣∣ i, j ∈ A
k, l ∈ B

}
, (4.17)

σ d
A,B = 1

2 min

{
d(i, k)+ d(i, l)− d(k, l)− 2d(i, j)

∣∣∣ i ∈ A, k, l ∈ B
j ∈ V \(A ∪ B)

}
, (4.18)

τ d
A,B = min

{
d(i, k)+ d( j, l)− d(i, j)− d(k, l)

∣∣∣ i ∈ A, k ∈ B
j, l ∈ V \(A ∪ B)

}
, (4.19)

and we define σ d
A,B = +∞ and τ d

A,B = +∞ if A ∪ B = V .

Proof. We apply formulas (3.14) and (3.15) in Theorem 3.4. Let C = V \(A ∪ B).
Then c̃HS (−d) is the minimum of

−d(i, j)− (−d)	∩H{A,B}(w)

2lH{A,B}(χi + χj )
+ −d(k, l)− (−d)	∩H{A,B}(w)

2lH{A,B}(χk + χl)
(4.20)

over i ∈ A, j ∈ A ∪ C , k ∈ B, and l ∈ B ∪ C , where {w} = H{A,B} ∩ [χi +χj , χk +χl].

Case 1: i, j ∈ A, k, l ∈ B. Formula (4.20) is given by
√|A ∪ B|

2
{−d(i, j)− d(k, l)− 2(−d)	∩HS ((χi + χj + χk + χl)/2)}.

Furthermore, (−d)	∩H{A,B}((χi +χj +χk +χl)/2) is given by the optimal value of linear
program

min.
∑

uv∈{ik,il, jk, jl}
λuv(−d(u, v))

s.t.
∑

uv∈{ik,il, jk, jl}
λuv(χu + χv) = (χi + χj + χk + χl)/2,

λuv ≥ 0 (uv ∈ {ik, il, jk, jl}).
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By direct calculations, the optimal value of the problem is

min{−d(i, k)− d( j, l),−d(i, l)− d( j, k)}/2.
Hence we have

(4.20) =
√|A ∪ B|

2

{
−d(i, j)− d(k, l)+ max

{
d(i, k)+ d( j, l)
d(i, l)+ d( j, k)

}}
. (4.21)

Case 2: i ∈ A, j ∈ C, k, l ∈ B. Formula (4.20) is given by
√|A ∪ B|

2
{−2d(i, j)− d(k, l)− 3(−d)	∩H{A,B}((2χi + 2χj + χk + χl)/3)}.

In a similar way to Case 1, we have

(−d)	∩H{A,B}((2χi + 2χj + χk + χl)/3) = −(d(i, k)+ d(i, l))/3.

Hence we obtain

(4.20) =
√|A ∪ B|

2
{−2d(i, j)− d(k, l)+ d(i, k)+ d(i, l)} . (4.22)

Case 3: i, j ∈ A, k ∈ B, l ∈ C . It follows from Case 2 by interchanging A and B.

Case 4: i ∈ A, k ∈ B, j, l ∈ C . Formula (4.20) is given by√
|A ∪ B|{−d(i, j)− d(k, l)− 2(−d)	∩H{A,B}((χi + χj + χk + χl)/2)}.

In a similar way to Case 1, we have

(−d)	∩H{A,B}((χi + χj + χk + χl)/2) = −(d(i, k)+ d( j, l))/2.

Hence, we obtain

(4.20) =
√

|A ∪ B|{−d(i, j)− d(k, l)+ d(i, k)+ d( j, l)}. (4.23)

Combining (4.21), (4.22), and (4.23), we obtain the desired formula (4.16).

In particular, if a partial split {A, B} forms a split, then we have

cH{A,B}(−d) = αd
{A,B}

√
|V | (4.24)

(see the definitions of αd
{A,B} in (4.4) and ρd

A,B in (4.17)). Accordingly, the isolation index
can be extended for a partial split {A, B} by defining

αd
{A,B} = max{0,min{ρd

A,B, σ
d
A,B, σ

d
B,A, τ

d
A,B}}. (4.25)

Similarly, S(d) can be extended for partial splits by defining

S(d) = {S: partial split on V : αd
S > 0}. (4.26)

A distance d is said to be split-prime if αd
S = 0 for each partial split S. An additive

decomposition of a distance d = d1 +d2 is said to be coherent if P(d) = P(d1)+ P(d2).
Note that this condition is equivalent to (−d) = (−d1)+ (−d2).

As a consequence of above arguments, we obtain an extension of Bandelt–Dress’
split decomposition (Theorem 4.1).
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Theorem 4.7. A distance function d: V × V → R can be coherently decomposed as

d =
∑

S∈S(d)
αd

SζS + d ′, (4.27)

where d ′ is a split-prime distance. Moreover, if d is coherently decomposed as

d =
∑
S∈S

λSζS + d ′′ (4.28)

for a collection of partial splits S, a positive weight λ ∈ RS++ and a split-prime distance
d ′′, then we have S = S(d), λS = αd

S for S ∈ S(d), and d ′′ = d ′.

Proof. Decompose −d into the form (3.4) in Theorem 3.2 and apply Propositions 4.4
and 4.5, Theorem 4.6 and Lemma 4.2. Then we obtain (4.27). The coherency of the
decomposition (4.27) follows from Q(−d) = −P(d). We show the latter part by∑

S∈S(d) α
d
S(−ζS)+(−d ′) = ∑

S∈S λS(−ζS)+(−d ′′), Proposition 4.5, and Theorem 2.2.

We have S(d) = S, αd
S = λS , and (−d ′) = (−d ′′). By the convex-extensibility of dis-

tances (Lemma 4.2), we have −d ′ = (−d ′)
	 = (−d ′′)

	 = −d ′′.

We call (4.27) the extended split decomposition of d. The cardinality of S(d) is
bounded by |V |(|V |−1)/2 by Proposition 3.6. Therefore the decomposition (4.27) is also
obtained in polynomial time by an algorithm similar to that for the split decomposition
of a metric [1]. It is easily observed that if d satisfies the triangle inequality, τ d

{A,B} ≤ 0
holds for any proper partial split {A, B} with A ∪ B �= V . This implies that S(d)
consists of splits. Hence if d is a metric, the decomposition (4.27) coincides with the
split decomposition of metrics (4.6).

Remark 4.8. Any symmetric function f : V × V → R with f (i, j) = f ( j, i) for
i, j ∈ V can be regarded as f : 	 → R by the correspondence (4.9). Similarly, P( f ) and
T ( f ) are also definable. The arguments in this section can be adapted to any symmetric
function on V . In fact, Bandelt and Dress [1] discuss the split decomposition (4.6) for
symmetric functions. However, they [1] use only split metrics in the decomposition (4.6).
In the case that d violates triangle inequality, it is possible to achieve a more precise
decomposition of d by (4.27) since (4.27) uses also partial split distances. For example,
consider the following 4-point distance function:

d =

i j k l
i 0 3 5 1
j 3 0 1 5
k 5 1 0 2
l 1 5 2 0

. (4.29)

Note that d violates the triangle inequality. By the extended split decomposition (4.27),
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Fig. 8. An example of the extended split decomposition.

d is decomposed as

d = δ{i j,kl} + 2δ{ik, jl} + ζ{i,k} + ζ{ j,l} +

i j k l
i 0 1 1 0
j 1 0 0 1
k 1 0 0 0
l 0 1 0 0

. (4.30)

In the ordinary Bandelt–Dress’ split decomposition (4.6), only the first two term of the
right-hand side of (4.30) are exploited and the sum of the last three terms is treated as
the split-prime residue. Figure 8 illustrates this decomposition in term of the subdivision
T 	((−d)). This indicates that the extended split decomposition exploits more detailed
combinatorial structures of distances than Bandelt–Dress’ split decomposition.

Remark 4.9. It is well known that every 4-point metric is totally split-decomposable,
i.e., a split-prime residue d ′ of (4.6) vanishes. It is easily seen that every 3-point distance
function is also totally split-decomposable in our sense, i.e., d ′ = 0 in the decomposition
(4.27). However, as is seen in Remark 4.8, not every 4-point distance function is totally
split-decomposable in our sense.

Remark 4.10. By the decomposition (4.27), P(d) is decomposed as

P(d) = Z(d)+ P(d ′), (4.31)

where Z(d) is (a translation of) the maximum zonotopic summand given as

Z(d) =
∑

{A,B}∈S(d)
αd

{A,B}([χA − χB, χB − χA]/2 + χA∪B/2). (4.32)

If d ′ = 0, we have P(d) = Z(d)+ RV
+. In this case, tight span T (d) is the union of the

faces of Z(d) whose normal cone contains negative vectors.

Remark 4.11. The coherent decomposition decomposes a distance d into a sum of
distances which induce a coarser subdivision than T 	(−d). In particular, it is ob-
served from the subdivision of conv{2χi , 2χj , 2χk} induced by T 	((−d)) that d satisfies
d(i, j) ≤ d(i, k)+ d( j, k) if and only if conv{2χk, χi + χj } �∈ T 	((−d)) (see Fig. 9).
This implies that in any coherent decomposition d = d1 + d2, if d is a metric, then both
d1 and d2 are necessarily metrics.
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Fig. 9. The role of triangle inequality: d(i, j) < d(i, k)+ d( j, k) (left), d(i, j) = d(i, k)+ d( j, k) (center),
and d(i, j) > d(i, k)+ d( j, k) (right).

Remark 4.12. Koolen et al. [18] introduced the coherency index as a direct gener-
alization of the isolation index. For two metrics d ′ and d, the coherency index is the
nonnegative value αd

d ′ which has the property that d = αd ′ + (d − αd ′) is a coherent
decomposition if and only if 0 ≤ α ≤ αd

d ′ [18, Theorem 4.1]. By definition, αd
ζS

= αd
S

must hold for a partial split S. They give a formula of αd
d ′ as

αd
d ′ = min

f : vertex of P(d)
max

f ′: vertex of P(d ′)
m( f, f ′), (4.33)

where m( f, f ′) is defined as

m( f, f ′) = min
i, j∈V : f ′(i)+ f ′( j)�=d ′(i, j)

f (i)+ f ( j)− d(i, j)

f ′(i)+ f ′( j)− d ′(i, j)
. (4.34)

This formula comes from the fact that P(d) = αP(d ′)+ P(d − αd ′) if and only if each
f ∈ P(d) and f ′ ∈ P(d ′) satisfies f − α f ′ ∈ P(d − αd ′). It seems to be difficult to
derive the explicit formula (4.25) of αd

ζS
= αd

S from the coherency index (4.33). It should
be noted that our derivation of αd

S comes from the fact that P(d) = αP(d ′)+ P(d −αd ′)
if and only if (−d)− α(−d ′) is convex on RV

+.

Next we characterize the 	-admissibility of hyperplanes in terms of combinatorial
properties of the corresponding partial splits. First we observe that S(d) does not contain
the following types of partial splits (see Fig. 10):

(C1) Three partial splits {A1, B1}, {A2, B2}, {A3, B3} and four points a, a1, a2, a3 ∈
V such that {a, a1, a2, a3} ∩ Ai = {a, ai } for i = 1, 2, 3 (the violation of weak
compatibility).

(C2) Two partial splits {A1, B1}, {A2, B2} and three points a, b, c ∈ V such that
a ∈ A1, b, c ∈ B1, b ∈ A2, c ∈ B2, and a ∈ V \(A2 ∪ B2).

(C3) Two partial splits {A1, B1}, {A2, B2} and three points a, b, c ∈ V such that
b ∈ A1, c ∈ B1, a ∈ V \(A1 ∪ B1), a ∈ A2, b ∈ B2, and c ∈ V \(A2 ∪ B2).

For (C1), observe that not all three ρd
A1,B1

, ρd
A2,B2

and ρd
A3,B3

are positive. Similarly, for
(C2), observe that both ρd

A1,B1
and τ d

A2,B2
are not positive. To see (C3), observe that both

τ d
A1,B1

and τ d
A2,B2

are not positive. Of course, these can be geometrically checked by the
corresponding hyperplanes in Fig. 10; in each case there is a vertex, indicated by the
arrow, not contained by 	.
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Fig. 10. Forbidden partial splits and the corresponding hyperplanes.

A collection of partial splits free from (C1)–(C3) is said to be weakly compatible,
which is clearly an extension of the weak compatibility of splits. The following is an
extension of Theorem 3 of [1].

Theorem 4.13. Let S be a weakly compatible collection of partial splits on V . For
λ ∈ RS++, let a distance function d: V × V → R be defined as d = ∑

S∈S λSζS . Then
we have S = S(d) and λS = αd

S for each S ∈ S.

Proof. We adapt the proof of Theorem 3 of [1]. For a partial split {A, B}, let α̃d
{A,B} be

defined as

α̃d
{A,B} = min{ρd

A,B, σ
d
A,B, σ

d
B,A, τ

d
A,B}.

It suffices to show

α̃d
S ≥ λS (S ∈ S). (4.35)

By the formula of αd
S for a partial split S = {A, B}, there exists Y ⊆ V with A ∩ Y �= ∅,

B ∩ Y �= ∅, and |Y | ≤ 4 such that

α̃d
{A,B} = α̃

dY
{A∩Y,B∩Y },

where dY : Y × Y → R denotes the restriction of d to Y . Hence it is sufficient to show
(4.35) for the case |V | ≤ 4.

In the case of |V | = 2, (4.35) is obvious. In the case of |V | = 3, let V = {i, j, k}. For
simplicity of notation, we denote a partial split {{i, j}, {k}} by {i j, k}. It suffices to check
(4.35) for S = {i j, k}, and S = {i, j}. For S = {i j, k}, S does not contain {i, j} by (C2).
Hence we have α̃d

{i j,k} = ρd
i j,k = min{(d(i, k)+ d( j, k)− d(i, j))/2, d(i, k), d( j, k)} ≥

λ{i j,k}. For S = {i, j}, S does not contain { j, k}, {i, k}, and {i j, k} from (C2) and (C3).
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We have τ d
i, j = d(i, j) − d(i, k) − d( j, k) = λ{i, j}, ρd

i, j = d(i, j) ≥ λ{i, j}, σ d
i, j ≥ τ d

i, j ,
and σ d

j,i ≥ τ d
i, j . Hence we obtain α̃d

{i, j} ≥ λ{i, j}. Therefore (4.35) holds for |V | = 3.
In the case of |V | = 4, let V = {i, j, k, l}. We may assume that the minimum of α̃d

S
is attained by all different four points (otherwise it can be reduced to the case |V | ≤ 3).
It suffices to check (4.35) for S = {i j, kl}, S = {i j, k} and S = {i, j}. For S = {i j, kl},
we have

α̃d
{i j,kl} = ρd

i j,kl = {max{d(i, k)+d( j, l), d(i, l)+d( j, k)}−d(i, j)−d(k, l)}/2. (4.36)

From condition (C1), S does not contain both {ik, jl} and {il, jk} simultaneously. Sup-
pose that {ik, jl} ∈ S and {il, jk} �∈ S. By conditions (C2) and (C3), the possible
partial splits in S that contribute to the term d(i, j) + d(k, l) are only five partial
splits {i, jkl}, { j, ikl}, {k, i jl}, {l, i jk}, and {ik, jl}. The first four partial splits con-
tribute equally to d(i, k)+d( j, l), d(i, l)+d( j, k) and d(i, j)+d(k, l). Hence we have
α̃d

{i j,kl} ≥ max{λ{i j,kl}, λ{i j,kl} + λ{ik, jl}} − λ{ik, jl} = λ{i j,kl}. For S = {i j, k}, we have

α̃d
{i j,k} = σ d

k,i j = {d(i, k)+ d( j, k)− d(i, j)− 2d(k, l)}/2. (4.37)

From conditions (C2) and (C3), the possible partial splits in S that contribute to the term
d(i, j)+ 2d(k, l) are four partial splits {i, jkl}, { j, ikl}, {k, i jl}, and {ik, j}. However,
it is easily examined that these partial split distances cancel out in (4.37). Therefore we
obtain α̃d

{i j,k} ≥ λ{i j,k}. For S = {i, j}, we may assume

α̃d
{i, j} = τ d

i, j = d(i, j)+ d(k, l)− d(i, k)− d( j, l). (4.38)

From conditions (C2) and (C3), the possible partial splits in S that contribute to the
term d(i, k)+ d( j, l) are five partial splits {i, jkl}, { j, ikl}, {i, jk}, { j, il}, and {il, jk}.
However, these partial split distances cancel out in (4.38). Therefore we obtain α̃d

{i, j} ≥
λ{i, j}. Hence we conclude that (4.35) holds for |V | = 4.

By Theorem 4.13 and Proposition 3.5, the weak compatibility of a collection of
splits is also characterized by the 	-admissibility of the corresponding collection of
hyperplanes.

Theorem 4.14. For a collection of partial splits S, the following conditions are equiv-
alent:

(a) S is weakly compatible.
(b) {HS | S ∈ S} is 	-admissible.

Figure 11 illustrates all types of maximal weakly compatible partial splits on a 4-point
set and the corresponding hyperplane arrangements.

Remark 4.15. The fundamental fact [1, Corollary 4] that the number of weakly com-
patible splits is bounded by |V |(|V |−1)/2 also follows from Proposition 3.6. It is shown
that this bound is attained by the maximum circular split system, which is obtained from
a convex |V |-gon [1, Theorem 5]. By Corollary 3.7, the sum of maximum circular split
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Fig. 11. Maximal weakly compatible partial splits on a 4-point set and the corresponding hyperplanes.

metrics yields a triangulation of conv	. We point out that this construction of a triangu-
lation of conv	 is essentially equivalent to the construction of the triangulation of the
second hypersimplex conv{χi +χj | i, j ∈ V, i �= j} due to De Loera et al. [6] (see also
Chapter 9 of [25]).

A collection of splitsS is said to be compatible if for any pair of splits {A, B}, {C, D} ∈
S, at least one of four sets A ∩ C , A ∩ D, B ∩ C and B ∩ D is empty (see [5], [2], and
[24]). Compatibility of a collection of splits can also be captured as a geometric property
of the corresponding collection of hyperplanes.

Proposition 4.16. For a collection of splits S, the following conditions are equivalent:

(a) S is compatible.
(b) H1 ∩ H2 ∩ ri conv	 = ∅ holds for each pair H1, H2 ∈ {HS | S ∈ S}.

Proof. For two splits {A, B}, {C, D} ∈ S, consider two hyperplanes H{A,B} and H{C,D}.
The nonemptiness of H{A,B}∩H{C,D}∩ri conv	 is equivalent to the existence of a solution
to a linear equality, inequality system


x(A)− x(B) = 0,
x(C)− x(D) = 0,

x(i) > 0 (i ∈ V ).
(4.39)

(a) ⇒ (b) By the compatibility of splits S, we may assume A ⊂ C and D ⊂ B. By
subtracting the second of (4.39) from the first, we have x(B ∩ C) = 0 and hence (4.39)
is empty. (b) ⇒ (a) Suppose that {A, B} and {C, D} are incompatible, i.e., all four sets
A ∩ C , A ∩ D, B ∩ C , and B ∩ D are nonempty. Then x ∈ RV defined by

x(i) =




1/|A ∩ C | if i ∈ A ∩ C,
1/|A ∩ D| if i ∈ A ∩ D,
1/|B ∩ C | if i ∈ B ∩ C,
1/|B ∩ D| if i ∈ B ∩ D

(4.40)

is a solution to (4.39).
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A metric d is a tree metric if it is represented as the path metric of some weighted
tree. It is well known that d is a tree metric if and only if it is represented as

d =
∑
S∈S

αSδS (4.41)

for some compatible collection of splits S and a positive weight α ∈ RS++ (see [5], [2],
and [24]). From Propositions 2.9 and 4.16, one of the central theorems in T-theory can
be derived.

Theorem 4.17 [7]. A metric d is a tree metric if and only if T (d) is a tree.

Remark 4.18. It is natural to ask when T (d) is a tree for a distance d; Theorem 4.17
is the case that d is a metric. This question was answered by Hirai [15], who shows that
the following conditions for a distance d: V × V → R are equivalent:

(1) T (d) is a tree.
(2) d can be represented as d = ∑

S∈S αSζS for a compatible collection of partial
splits S and a positive weight α ∈ RS++, where a collection of partial splits S
is said to be compatible if each pair {A, B}, {C, D} ∈ S satisfies one of the
following four conditions:

A ⊆ C and B ⊇ D,
A ⊆ D and B ⊇ C,
A ⊇ C and B ⊆ D,
A ⊇ D and B ⊆ C.

(4.42)

(3) There exist some weighted tree T and some collection of subtrees {Ti | i ∈ V }
of T such that

d(i, j) = the shortest path length between Ti and Tj in T (i, j ∈ V ) (4.43)

(see Fig. 3 in the Introduction).

Proposition 4.16 can also be extended for a compatible collection of partial splits. In
particular, (e) and (f) in Fig. 11 are such collections of partial splits. Clearly, a compatible
partial splits is weakly compatible. So a distance between subtrees of a tree is totally
split-decomposable in our sense and therefore can be recognized by the extended split
decomposition.
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