PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: November 14, 2016
ACCEPTED: February 12, 2017
PUBLISHED: February 22, 2017

A geometrical approach to degenerate
scalar-tensor theories

Javier Chagoya and Gianmassimo Tasinato

Department of Physics, Swansea University,
Singleton Park, Swansea, SA2 8PP, U.K.

E-mail: j.f.chagoyasaldana@swansea.ac.uk, g.tasinato@swansea.ac.uk

ABSTRACT: Degenerate scalar-tensor theories are recently proposed covariant theories of
gravity coupled with a scalar field. Despite being characterised by higher order equations of
motion, they do not propagate more than three degrees of freedom, thanks to the existence
of constraints. We discuss a geometrical approach to degenerate scalar-tensor systems,
and analyse its consequences. We show that some of these theories emerge as a certain
limit of DBI Galileons. In absence of dynamical gravity, these systems correspond to
scalar theories enjoying a symmetry which is different from Galileon invariance. The scalar
theories have however problems concerning the propagation of fluctuations around a time
dependent background. These issues can be tamed by breaking the symmetry by hand, or
by minimally coupling the scalar with dynamical gravity in a way that leads to degenerate
scalar-tensor systems. We show that distinct theories can be connected by a relation which
generalizes Galileon duality, in certain cases also when gravity is dynamical. We discuss
some implications of our results in concrete examples. Our findings can be helpful for
assessing stability properties and understanding the non-perturbative structure of systems
based on degenerate scalar-tensor systems.

KEYWORDS: Classical Theories of Gravity, Gauge Symmetry, Space-Time Symmetries

ARX1v EPRINT: 1610.07980

OPEN AccCESS, (© The Authors.

Article funded by SCOAP. doi:10.1007/JHEP02(2017)113


mailto:j.f.chagoyasaldana@swansea.ac.uk
mailto:g.tasinato@swansea.ac.uk
https://arxiv.org/abs/1610.07980
http://dx.doi.org/10.1007/JHEP02(2017)113

Contents

6

Introduction

Symmetries and dualities for Galileon Lagrangians
2.1 The Galileon system
2.2 The duality

Symmetries and dualities for DBI Galileons

3.1 Some motivations

3.2 Poincaré DBI Galileons
3.2.1 Geometrical interpretation, and underlying symmetry
3.2.2  The duality

3.3 DBI Galileons in a maximally symmetric extra dimensional space

An extreme relativistic limit
4.1 The scalar theory in the extreme relativistic limit
4.1.1 An explicit example: part I
4.2 A generalization
4.3 Extreme relativistic limit of DBI Galileons in AdS space

Minimal coupling with gravity: degenerate scalar-tensor theories
5.1 From DBI Galileons to beyond Horndeski theories
5.2 The duality
5.3 The symmetry
5.3.1 An explicit example: part 11
5.4 The relation with a broader class of EST theories

Discussion

A de Sitter case

B Existence of a primary constraint

oo

10
12
14

16
17
19
21
22

22
22
24
26
27
29

30

31

33

1

Introduction

Galileons are a class of scalar theories with derivative self interactions, characterised by

equations of motion (EOMs) of second order, and satisfying a symmetry transformation
¢ = ¢+a+byxt [1]. They have several features motivating their study: their structure is
stable under loop corrections thanks to non-renormalization theorems [2, 3] and is closed

under a duality [4]. Their S-matrix has special, distinctive properties [5—7]. They exhibit



superluminal behaviour around certain sources, possibly providing consistent theoretical
set-ups to study such phenomenon. When coupled with gravity, Galileon symmetry is
normally broken; on the other hand, it is possible to covariantize Galileons in such a way
that they maintain second order EOMs [8, 9]. Covariant Galileons are especially interesting
for their cosmological applications: they can lead to self accelerating cosmologies, and at
the same time ‘hide’ the presence of a scalar fifth force against local measurements of
gravitational interactions, through an efficient Vainshtein screening mechanism. See [10, 11]
for reviews. Galileons and their covariantized versions have a geometrical interpretation,
arising as certain limits of the so called DBI Galileons, which describe the features of probe
branes embedded in an extra dimensional set-up [12-15].

The fact that Galilean symmetry is normally broken when coupling Galileons with
gravity does not necessarily mean that the structure of the resulting actions is not protected:
in certain situations, gravitational interactions can break Galilean symmetries in a soft way,
yet preserving some of the desired features of Galileons. See e.g. [16-18] for examples on
this respect. When coupled with gravity demanding second order EOMs, Galileons admit
as maximal extension the theories of Horndeski [19, 20|, which are the most general scalar-
tensor theories characterised by second order EOMs.

Interestingly, it has been recently realized that Horndeski theories are not the most
general covariant scalar-tensor theories with at most three degrees of freedom (that is,
theories that do not propagate additional ghostly modes). Other possibilities arise, when
considering degenerate scalar-tensor set-ups. The existence of primary constraints prevents
the propagation of additional degrees of freedom, even for theories characterised by equa-
tions of motion of order higher than two. Examples are the theories of beyond Horndeski
(bH) [21-23]. Such systems have been recently further generalised to the so called Extended
Scalar Tensor/(Degenerate Higher Order Scalar Tensor) theories, EST/(DHOST) in [24-
26], using methods and tools developed in seminal papers by Langlois and Noui [24, 27].
Some of bH (or more generally EST) theories are known to be related with standard Horn-
deski Lagrangians through conformal or disformal transformations; others, instead, seem
to lie at isolated points in the space of scalar-tensor theories [25, 28, 29]. The study of these
theories is still in its infancy, but by now we know that they can have consequences for
cosmology and screening mechanisms: they lead to a breaking of the Vainshtein mechanism
inside matter, modifying the internal structure of non relativistic stars [30-34].

The aim of this work is to address the following questions:

- Is there some relation between bH or EST actions and other known scalar-tensor
theories with a well understood extra dimensional origin? In particular, are there
any connections with extra dimensional models as Dirac-Born-Infeld (DBI) and Dvali-
Gabadadze-Porrati (DGP) set-ups? Addressing this question would allow one to set
these theories in a broader context, and to apply to them results and geometrical
techniques developed when studying other systems.

- Is the structure of bH or EST theories protected by some symmetry, at least in
certain cases? And is this structure closed under a duality, as it happens for Galileon
Lagrangians? This information can be important to examine the stability of these



theories under loop corrections, and to understand whether their distinctive non
linear properties can be connected through dualities to features of simpler systems.

We do some preliminary steps towards answering the previous points. It has been noticed
already in [22] that a particular choice of the free functions characterising bH Lagrangians
give theories which, in absence of dynamical gravity, reduce to quartic and quintic Galileons.
This implies that a naive covariantization of standard quartic and quintic Galileons (when
expressed in the specific form Lial’l and Lgal’l , using the nomenclature of [35]) is ghost-
free. In absence of gravity, these bH theories acquire standard Galileon invariance. See
also [36] for a geometrical derivation of degenerate scalar-tensor theories in the context of
mimetic gravity theories [37].

Motivated by a construction in terms of a probe brane in an extra dimensional set-up,
we show here that other examples of theories belonging to the bH class provide set-ups
which, with no dynamical gravity, respect a symmetry different from Galileon symmetry.
Namely

om =mwho,m, (1.1)

with w” a constant vector. Moreover, special cases of bH Lagrangians at different orders
are connected by a duality transformation, which generalizes the standard Galileon duality.

We organise our work in successive steps, to build up the tools necessary to discuss
our results:

e We start in section 2 with a review of a determinantal approach to standard Galileon
Lagrangians, pointing out that it is particularly convenient to make manifest how
Galileon dualities connect different Galileon actions.

e We then discuss in section 3 a novel perspective to DBI Galileons based on a de-
terminantal approach to these systems. This is different with respect to the usual
approach which obtains DBI Galileons starting from specific curvature invariants that
form the action for a brane probing extra dimensional space. Our point of view is
convenient for discussing dualities among DBI Galileon Lagrangians, and for making
contact with degenerate scalar-tensor theories when coupling with gravity.

e Section 4 studies a novel, particular limit of DBI Galileons which we dub extreme
relativistic. In order for the limit to be well defined, we have to consider extra
dimensional space times with different signatures, depending on whether the vector
normal to the probe brane is time like or space like. The extreme relativistic limit is
opposite to the non relativistic limit of DBI Galileon actions, which provides standard
Galileons. The resulting scalar theories have peculiar features which we point out,
and are characterised by the field dependent symmetry of eq. (1.1). Moreover, scalar
theories of different orders are again connected by dualities. The scalar theories
have problems since fluctuations around interesting backgrounds do not have proper
kinetic terms: this issue can be tamed by weakly breaking the symmetry.

e Section 5 shows that a minimal covariantization of the DBI Galileons in the extreme
relativistic limit gives consistent scalar-tensor theories of gravity, despite being char-



acterized by equations of motion of order higher than two. Indeed, the resulting
system corresponds to a particular case of beyond Horndeski Lagrangians. We also
discuss how to further generalise our results to include extended scalar-tensor theo-
ries. This construction provides a geometrical perspective to degenerate scalar-tensor
theories. The strong coupling problems we met in section 4 are automatically solved
when the scalar theories are coupled with gravity. On the other hand, the scalar sym-
metry gets usually broken, although for certain cases some of its properties can be
preserved. Moreover, we show that in certain cases different classes of such theories
can be connected by dualities, also when dynamical gravity is turned on. Our results
can be helpful for assessing stability properties or understanding the non-perturbative
structure of degenerate scalar-tensor systems.

We conclude in section 6 discussing possible follow ups for our work, while two appendixes
contain further technical details.

2 Symmetries and dualities for Galileon Lagrangians

To set the stage, in this section we succinctly review basic properties of Galileon scalar
theories in four dimensional flat space, in absence of gravity, adopting a method that will
be useful for what comes next. The use of an approach based on the Levi Civita symbol,
discussed for example in [38], is particularly suitable for studying dualities among the
actions we consider, as well as for investigating their symmetries.

2.1 The Galileon system

Galileon theories are described by scalar actions which lead to equations of motion of
second order, and satisfy a Galileon symmetry. There are several ways to express Galileon
actions (see for example the reviews [35, 38]). Here, we adopt a determinantal form whose
basic building block is the scalar action

S=N / d*z (Om)? det [1 + cIT], (2.1)

with A an overall normalization, ¢ a dimensionful constant, 1 the unit matrix in four
dimensions, and IT the 4 x 4 symmetric matrix whose components are

H:HZ:c?uf)”ﬂ'.

A determinantal form for action (2.1) is convenient once we recall the definition of
determinant of a matrix M in terms of the antisymmetric Levi Civita symbol:

1
det M = i Mﬁi Mﬁ; Mﬁj M;ﬁi €y vgugy, EFTHIHII (2.2)
This implies that

det[1+M] = 1+ [M]+ % (] = [ar%]) + é (M) — 3] [M2] + 2 [ar))



where [M] = tr M. Using this fact, our action reads

2

S=N / d*z (Om)? |1+ ¢ [ + % <[H]2 - {HZD

O (P -3 ] +» [HW] ’ 24

plus a total derivative. See also [39] for other uses of a determinantal approach for studying
conformal Galileons. Action (2.4) contains a combination of each Galileon Lagrangian
(quadratic, cubic, etc), but with fixed coefficients depending on powers of the parameter
c. We do not include the tadpole contribution. It is straightforward to prove two key
properties of Galileon actions: the corresponding equations of motion (EOMs) are second
order, and the theory enjoys a coordinate-dependent Galileon symmetry

om=wy " +s (2.5)

for constant quantities wy,, s, which is a symmetry of the action up to boundary terms.

In order to get a Galileonic system with the preferred coefficients — say d; — in front
of each Galileon Lagrangian, we can sum three copies of action (2.4) — each one depending
on a parameter ¢;, with ¢+ = 1,2, 3.

Explicitly, we write
3 3
&ngyz:NE:/d%wmﬁdau+@HL (2.6)
i=1 i=1

where each Galileon Lagrangian S; is characterized by an a priori different constant c;.
Expanding the determinant in this expression, we find

Siot = N / d*x (87r)2 [dQ + ds [I1] + % ([H]2 _ {HQD

+ 2 (e -3 m ] +2 [i7]) |, 27)
with
dy = 3N, (2.8)
ds = N(Cl + co + 03) R (2.9)
dy =N (c% + 5+ c%) , (2.10)
ds = N ( +c3+f) . (2.11)

The previous system of algebraic equations can be solved for ¢; in terms of d; by means of
Newton identities.



2.2 The duality

The structure of Galileon Lagrangians is invariant under a duality, a field transformation
which connects Galileon theories of different orders (each order defined in terms of the
number of powers of second derivatives on the scalar field). The properties and conse-
quences of Galileon duality have been introduced in [4] and studied at length in various
works: see e.g. [5, 40-46]. The duality among different Galileon Lagrangians can be an
important tool to shed light on the non-perturbative structure of Galileons, for example to
understand physical consequences of superluminality, and its connections with screening
mechanisms; see e.g. [10] for a review on these topics. In this subsection, we briefly review
this subject at a formal level, to demonstrate that a determinantal approach makes more
manifest the duality of Galileon actions.
Galileon duality in flat space is based on a field dependent map among two sets of
coordinates, z* and &'
o = gt =" + Aig(‘)“ﬂ', (2.12)
S
where Ag is a parameter with dimension of an energy scale, introduced for dimensional

reasons. For simplicity, we choose units for which
Asg=1 (2.13)

since here (and in what follows) we are more interested to exhibit symmetries and dualities,
rather than discussing their physical consequences (strong coupling scales, etc).
By taking the differential of eq. (2.12)

dat = dit = (9 + II%) da”, (2.14)

we get the Jacobian J# for this transformation

L
= Ziy (S TIE) (2.15)

We assume that such coordinate change is invertible, in the sense that a second scalar field
7 exists, which sends ## back to z* (see [46] for details)

P = ok =M — O (2.16)

We call 7 the dual field of .

The requirement of invertibility of this transformation means that applying the trans-
formations (2.12) and (2.16) in succession we go back to the original coordinates: the
duality is defined as a map which sends the derivative of the scalar 7 to the derivative of 7

oMr = i = ot (2.17)

Throughout this work, we use the symbol = for denoting the duality transformation.



So the derivative of m (and not 7) is a scalar under the duality transformation. On the
other hand, 7w and its dual transform as

r(2) = 7(F) = n(z) + 5 (On(x))? (2.18)
1 /-~ 2
(@) = m(x) = 7(¥) - 5 (97(2))" . (2.19)

The second derivative of 7 transforms non-trivially (as a ‘covariant vector’) under
duality: using a matrix notation, IT = I, we can write

0= O=[1+1"" 1. (2.20)

where the [.. .]71 denotes the inverse of a matrix. Collecting these results, it is straight-
forward to determine how the Galileon system (2.1) changes under the action of duality:

S=N /d% (0m)% det [1 + ¢TI) = N /d‘*sz (57%)2 det [1+ ¢TI,
=N /d4x det [1 + II] (97)? det [1 tet+1mt H} :
— N /d4x (0m)? det [(1+10) (14 ¢ 1 +10 7 1)
— N /d% @Om)? det[1+ (c+ 1) T =8, (2.21)

The structure of this determinantal action remains the same, but the coefficient in
front of the matrix IT within the determinant argument passes from the value ¢ to (¢4 1).
This is the only change induced by applying the duality.

We can then combine different dual actions S, to form an arbitrary combination of
Galileon Lagrangians with arbitrary coefficients (as done around eq. (2.7)). Comparing
the results before and after applying the duality transformation, we find that the overall
coefficients in front of each Galileon Lagrangian are mapped to their ‘dual’ values

dy = 3N, 2.92

[\)
[\)

(2.22)
dy = N(ci+ex+es+3), (2.23)
di =N (1 +1° + 2+ 1) + (s +1)°) (2.24)

(2.25)

ds = N ((e1 +1)° + (2 +1)° + (e3 + 1))

[\V)
[\)

2.25

where the d; are the quantities introduced in eq. (2.7) and following. Hence we have the
relations

dy = dy,

dy = dy +ds,

dy = do +2d3 + dy,

ds = dy + 3d3 + 3dy + ds .



We checked that these results are in agreement with [4].2 Note in passing that (2.21)
provides a simple expression for the dual of free fields, once we select ¢; = 0.

3 Symmetries and dualities for DBI Galileons

3.1 Some motivations

One motivation for introducing Galileons is to find a ‘ghost-free’ version of a system de-
scribing the physics of the DGP brane-world [47]. It is then natural to ask whether Galileon
actions have a geometrical description in terms of a brane embedded in higher dimensional
space. This was achieved in [12], and generalised in [13, 14], introducing a class of theories
called DBI Galileons. They enjoy symmetries generalising Galileon transformations (in
absence of dynamical gravity). In this work we show that the same approach can be used
to find a relation between DBI Galileons and a subclass of beyond Horndeski and EST
theories. First of all, however, to pave the way we need to reconsider DBI Galileons from
a perspective which is slightly different from the one of [12].

The approach of [12] starts from the fact that brane actions can be built by means
of gravitational Lovelock and Gibbons-Hawking terms, which describe derivative self-
interactions for a scalar controlling the position of the probe brane in the higher dimensional
bulk. The resulting scalar actions are automatically ghost free, since they are built in terms
of specific combinations (DBI, Lovelock, Gibbons-Hawking) of the brane induced metric,
ensuring that the scalar equations of motion are at most second order. In addition, this
scalar action enjoys symmetries inherited from isometries of the higher dimensional space.
These symmetries, associated with the properties of the extra dimensional geometry, can
reduce to Galileon symmetries in appropriate, ‘small first derivative’ limits.

On the other hand, recently it has been realised that degenerate scalar-tensor theories
exist, which although characterized by higher order EOMs, are nevertheless consistent
thanks to the existence of primary constraints. These are the theories of beyond Horndeski,
or more in general EST/DHOST [24-26]. It is natural to ask whether these theories admit
some sort of geometrical interpretation. This is one of the purposes of our work, and we
start in this section to examine scalar theories which will be related to degenerate scalar-
tensor theories, once coupled to dynamical gravity. In particular, in this section we build
on the results of [12-14], but we discuss convenient, determinantal expressions for DBI
Galileons. This allows us to express such actions in a more compact form, and to exhibit
symmetries and dualities among them. Our method for expressing the DBI Galileon system
does not directly rely on using Lovelock or Gibbons-Hawking combinations: on the other
hand, it provides consistent theories in absence of dynamical gravity. Our approach will
then be used in section 5 to make manifest the connection between DBI Galileons and
beyond Horndeski/EST theories, once the system is minimally coupled with dynamical

gravity.
2The dictionary between the notation of [4] and ours is as follows: do = —6ba,d3 = 3b3,ds = —4bs,ds =
15b5,ds = —6p2,J3 = —3p3,J4 = —4p4,cZ5 = —15ps, where we renamed their ¢;’s to b;’s. These rela-

tions take care of differences in the definitions of the Galileon Lagrangians — total derivatives and global
coefficients — as well as of a sign difference in the definition of the dual field.



We start discussing Poincaré DBI Galileons — so called since they correspond to scalar
actions associated with a brane embedded in a 5d bulk with Poincaré symmetry — to then
continue analysing AdS DBI Galileons.

3.2 Poincaré DBI Galileons

Poincaré DBI Galileons [12, 48, 49] are scalar theories with second order EOMs, enjoying
a symmetry that generalises Galileon invariance. We call such symmetry Poincaré induced
symmetry, being inherited from a global Poincaré symmetry in five dimensions. Namely,
their action and the symmetry they satisfy are inherited from a five dimensional description
in terms of a probe brane in a 5d flat space. The system can also be described using
a determinantal approach, which generalises the one applied in the previous section to
standard Galileons.
The action we are interested in reads

1
S:J\/’/d%fydet[5Z+07(HZ—728ﬂW8AWHK>}, (3.1)
with 1
= —_— (3.2)
VKEE+ X

N , ¢, ko are constants, and
X = (0m)?. (3.3)

The motivation for considering this action will be clearer in what follows. When expanding
the determinant, one finds a sum of four actions, weighted by different powers of the
constant parameter ¢, from zero to three. A direct calculation shows that each of them
reproduces the structure of the DBI Galileon Lagrangians presented in [12], once selecting
ko = 1. Hence, action (3.1) succinctly contain all DBI Galileons in flat space. More
explicitly, using eq. (2.3), we expand the determinant and get

02 2
S=N / d4w,1y(1+cv([ﬂ]—72[‘1>]) + 55 ([ = [112) + 29[97) — 22()[11))
4 SO 42— SIY] + 312 (2102 — 2067 — @112+ [9]12)]) (3.9
where we use the notation [®"] = tr (9n 1" Or). The coefficient of each power of ¢ cor-

responds to one of the Lagrangians for DBI Galileons, when choosing kg = 1. A linear
combination of these actions is able to provide DBI Galileons with arbitrary coefficients
(as described in the previous section for the standard Galileon case). Working within a
determinantal approach allows us to make more transparent dualities and symmetries for
DBI Galileons.

Notice that we are discussing a slight generalisation of the actions of [12], which includes
a free constant parameter kg in the definition of the v factor.® We do so because once

3The generalisation we consider is a particular case of the actions discussed in [13, 14]. It is simple to
see that this additional free parameter can be obtained from the standard DBI Galileon case, by a rescaling
T — T/Ko.



coupled with gravity, appropriate choices of this parameter kg make manifest the connection
between these actions and degenerate scalar-tensor theories. This will be discussed in
section 5.

Action (3.1) leads to second order equations of motion for the scalar field, thanks to
the properties of the determinant. Additionally, this action is invariant (up to boundary

terms) under a scalar symmetry (here w* is an arbitrary constant vector)
6T = Kgwy, T + TWh O, T, (3.5)
and under a duality, as we discuss in the next two subsections.

3.2.1 Geometrical interpretation, and underlying symmetry

As we mentioned, the scalar Lagrangian (3.1) is invariant under the scalar transforma-
tion (3.5), up to boundary terms (an additional, shift symmetry 7 — w+const is also
satisfied, but we do not consider it here). This can be proved by a direct computation. In
the limit of small field derivatives, this transformation reduces to Galileon symmetry, at
least when ko # 0 (more on this later).

Alternatively, this symmetry can be understood ‘geometrically’ in terms of an action
for a probe brane embedded in a higher dimensional bulk, using arguments similar to [12]
— further developed in [13, 14] — that we briefly review here, and accommodate to our
discussion.

The transformation (3.5) is associated with a symmetry for a probe brane in 5d flat
space, inherited from a global isometry in five dimensions. In particular, eq. (3.5) is
associated with boosts in five dimensions. To see this fact more explicitly, we consider a
5d bulk with flat metric

gy AXMAXN = k2, AXPAXY + dy? (3.6)

where X° = y. We introduce a constant parameter x2 in front of the 4d slices in the 5d
metric. Still, the 5d metric is flat, and have the same number of isometries of Minkowski
space. As we will discuss in section 4, the parameter xg is associated with the ‘maximal
speed’ allowed by causality for motion along the extra dimension.

A 4d brane embedded in the 5d bulk is characterised by a brane embedding, XM (2*),
which maps the four brane dimensions into the five bulk dimensions. We foliate the bulk
in terms of slices y =const; the brane embedding is chosen as

XH =zt
y = 7(x), (3.7)
and fixes the gauge associated with the freedom to reparameterise the foliation. The scalar
field 7 is a modulus which geometrically corresponds to the position of the brane along the
fifth bulk coordinate. See figure 1.

The brane induced geometry can be deduced from the information we provided. The
induced brane metric is

OXMoxN (5
Juv = W Oz 95\4)]\/ = /fgmw + @ﬂr@lﬂr . (38)

~10 -



Figure 1. Brane geometry with respect to a bulk foliation y = const.

The matrix inverse of the induced brane metric is

1
g = ) (77“” - 726'“7r8”7r) , (3.9)
0

where recall that v = (k2 + X)~1/2. Tt satisfies the relation

9" gaw = 0L (3.10)
The square root of the metric determinant is
Ko
o

V=g = (3.11)

Another tensorial quantity of interest is proportional to the ‘brane extrinsic curvature’, a
tensor defining intrinsic properties of the brane geometry which can be computed using
standard definitions [50]. In this case, it results

K= —vkoll,, . (3.12)

An interesting property of the quantities g,,, K, is that they transform as tensors with
respect to the transformation (3.5), which we rewrite here

6T = Kgwy o + Twh 9, T (3.13)
Namely, when applying the scalar transformation (3.13), these quantities transform as

gul/ - ‘ga aag,ul/ + 8;L§a Jav + 61/5& gozp ) (314)

(and analogously for K,,,) with
¢ =mw?, (3.15)

and w® being the constant vector of eq. (3.13).

The scalar symmetry (3.13) can be interpreted as geometrically associated with isome-
tries of the embedding 5d geometry: this viewpoint has been developed in a comprehensive
way in [13, 14]. Suppose we have a bulk isometry associated with a Killing vector VYA
the probe brane action should enjoy this symmetry as well, in the form of a symmetry
transformation for the scalar field w. On the other hand, we have to take into account
that by choosing the embedding (3.7) we are selecting a specific gauge, associated with our
freedom of choosing the brane coordinates. As explained in [13, 14], we need to include a

- 11 -



‘compensating’ gauge transformation to the field 7, for ensuring that the brane action is
invariant under bulk isometry. In total, the scalar transformation inherited from the bulk
isometry, which is a symmetry of the brane action, reads

om = V2 (x, ) — ko VFO, T, (3.16)

where the second term in the right hand side is associated with the compensating gauge
transformation. Applying these arguments to our case, we find the scalar symmetry (3.13).

A consequence of the symmetry is that any action which is a scalar built in terms of
the tensors g,,, K, is invariant under the transformation (3.5). Among the symmetry
preserving actions, we find the determinantal action (3.1) we considered in the previous
subsection, which can be expressed as

S = A—g /d4m V—g det [08 — kocg" “Kaol, (3.17)
ko
g 1 2 A
:./\//d x;det{éﬁ—i—cv(ﬂﬁ—’y 6“7ra>\7rﬂl,)}. (3.18)

Action (3.18) coincides with eq. (3.1). Hence it is a scalar action in flat 4d space, built
with the tensors g,,,,, K,,,; and it is invariant under symmetry (3.5) up to boundary terms:
calling K = ¢g"“K,,, expanding the determinant we find combinations of traces trK,
trK?2, ..., and their powers, Remarkably, as stated previously, we get all the four combina-
tions that correspond to DBI Galileons. The determinantal action, additionally, is useful
for exhibiting a duality for DBI galileons as we discuss in the next subsection.

It is important to emphasize again that our derivation of DBI Galileons is different
with respect to the approach of [12]. In that case, DBI Galileons are obtained starting
from combinations of curvature invariants that automatically ensure that the EOMs for
the fields involved are second order (Lovelock and Gibbons-Hawking terms); this remains
true when gravity is made dynamical (i.e. the flat metric 7,, on 4d slices y = const is
promoted to a dynamical metric g, ), and allows one to obtain covariantized versions of
Galileons [12].

In our approach, working with the determinantal action (3.18), we are not ensured that
the EOMs remain of second order, once the theory is minimally coupled with gravity by
making gravity dynamical. Indeed, when coupled with gravity, the system is characterised
by higher order EOMs. On the other hand, as we will see in section 5, when kg — 0
a primary constraint arises, which prevents the propagation of an additional degree of
freedom associated with an Ostrogradsky instability: the resulting theory belongs to the
class of beyond Horndeski theories of gravity, or more generally to EST.

3.2.2 The duality

Action (3.18) satisfies a duality which generalises the Galileon duality we reviewed in
section 2.2. Our determinantal approach to DBI Galileon makes this duality manifest,
and as far as we are aware we are the first to discuss in this particular way a duality for
Poincaré DBI galileons. (See also [40, 45].)

- 12 —



Our arguments here are very similar in spirit to the discussion of duality for standard
Galileons, as developed in section 2.2. The determinantal action (3.1) can be expressed in
several equivalent ways

S:N/d4x’1ydet[5Z+07<HZ—728M778>‘WHK)}, (3.19)
N / e i det [ 3% + ¢0, (79"7)] (3.20)
= ':g /d4l‘ V=g det[08 — kocg'? Ky, (3.21)

0

where in the last line we write the action in a ‘geometric form’, exploiting the concept
of induced metric and extrinsic curvature on a probe brane, as discussed in the previous
subsection. Recall that v~ = |/k2 + X.

We introduce a field dependent coordinate map which is at the basis of the duality

o = =t + 0T, (3.22)

(where, as for the case of Galileons, section 2.2, we choose units which set to one the
parameter Ag which is needed for dimensional reasons). We demand that there exists a
‘dual’ scalar 7, which maps through duality the tilde coordinates " back to the original
coordinates x*:

o= ol =3t — 50 F. (3.23)

Comparing eqgs (3.22) and (3.23), we find
5 OMT =y O . (3.24)
The simplest way to satisfy the previous condition (3.24) is to impose
oM = O, (3.25)

that is, the duality maps the derivative to the scalar 7 to the derivative of the dual 7.
The Jacobian associated with map (3.22) is

dxt
Jh = dzy = o+ (88 — 720" w0, TIL, (3.26)

=00 —kog" Koy - (3.27)

Eq (3.25) implies (indexes are raised/lowered with flat Minkowski metric)

Oy dit = Oyn JI da¥ = O, dat + 0, 0, (yO!'m) dx” . (3.28)

Integrating, we find a non local relation among the field = and its dual

w(z) = #(&) = n(z) + / " 4z 0y (v0°x) 9. (3.29)
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The second derivative of the scalar, on the other hand, transforms under duality by means
of the inverse Jacobian:

8, (70" T) = O (30°7) = B (v0"7) = (J 1) Ox (40" 7) - (3.30)

Notice that, using the definitions of induced brane geometrical quantities

Juv = K%nuu + auﬂ'auﬂ' (331)
ko gM* Koy = —0" (vOu7) . (3.32)
The results so far imply that
d'z = d'& = (det J) d'z, (3.33)
V=9 =vV—-3=v—9, (3.34)
GOK, = GPOK ey = (J*l)“ 9" Ko . (3.35)
p

These ingredients are sufficient for finding how our original action transforms under duality
(here Kt = g K,,)

N N N _ N
/‘T% d4a:\/—gdet[5ff—/-iocK’j]:>K—8 d4x\/—gdet[5{f—fiocK’j]

= Qg/d‘lx det J /—g det {5{,‘ — KpC (J‘l); Kf}
0
N
= H%/d‘*x V=g det [0} — ko (c+1) K}]. (3.36)

Hence the structure of the action remains the same, and the only change is a shift in the
constant ¢ = ¢+ 1 which appears within the determinant. This result generalises the
standard Galileon duality that we reviewed in section 2.2.

3.3 DBI Galileons in a maximally symmetric extra dimensional space

Some of the results we discussed in the previous subsections can be generalised to a set of
scalar actions associated with branes probing curved 5d space times, as for example AdS
or dS spaces, which maintain a four dimensional flat slicing. The new feature introduced
by such versions of DBI Galileons is an explicit dependence of the action on the field 7
(and not only on its derivatives) and a generalisation of the symmetries reviewed earlier.
These actions fall in the class of conformal Galileons, in the nomenclature of [13, 14].

In order to discuss these theories, we use the convenient geometrical approach intro-
duced in [13, 14]. We consider for definiteness a curved 5d space time with warped metric

dslyy = K3 £2(y) w dX"dXY + dy?. (3.37)
We examine the same brane configuration as in the previous subsection

X = b, (3.39)
y = 7w(z). (3.39)
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The associated brane induced metric results

I = f2(7r) /f% N + OO, (3.40)
with inverse
1 otm O m
o — [ ——— 3.41
g f? Kk (77 ﬁ%fZ—i-X) ( )

The brane extrinsic curvature is

/
K, = _Hoif (auayﬂ-_zj: GMT(@VW — /{g frf 77“”) . (3.42)

We construct an action with the very same geometric structure as the one of the previous
subsection (see eq. (3.18),

S = :g/d4$ \/—gdet [(5;: — CRg g“a Kal/ ) (343)
0

but with the new induced metric and brane extrinsic curvature given in eqs (3.40), (3.42).
As explained in section 3.2, and in detail in [13, 14], being a scalar built in terms of the
tensors g,,,, K, this action is invariant under any scalar symmetry associated with the
isometries of the 5d space under consideration.

As a concrete example, that turns to be relevant for what comes next, we consider a
probe Minkowski brane embedded in a 5d AdS bulk. This embedding is described by the
warp factor

NEl

flm)=e"7, (3.44)

in eq. (3.37), with ¢ the AdS radius. In the limit £ — oo we recover f = 1 and the Poincaré
DBI Galileons of subsection 3.2. Plugging (3.41), (3.42) and (3.44) in (3.43) we obtain

—3r /¢
S=N /d4:zcepy det

oM+ cyem/t (77“0‘ — 2ok Gaﬂ)
2 H% —2m /L
X 6a8,,7r+z OO, + 7 e Naw | | (3.45)

with
1

v = .
\/(K,g e—2m/t +X)

(3.46)

This action is invariant under the following transformation of the scalar field, which is a
symmetry inherited from the isometries of the AdS bulk

) 2 .2 2
om = kg wyat + Oy (2 (eQW/Z - 1) wh + % wh — % (wx) x”) . (3.47)
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When expanding the determinant, one finds a set of actions which are related to the AdS
DBI Galileons discussed in [12].* The advantage of such geometrical approach, developed
in [12-14], is that it makes more manifest the symmetries associated with the action (3.43).
For the case of AdS DBI Galileons, however, it is not clear whether a duality exists which
connects actions of different order. The case of a brane embedded in de Sitter space is
discussed in appendix A.

4 An extreme relativistic limit

We examine in this section a certain limit of the DBI Galileons in flat space, which we
dub extreme relativistic, which satisfies a symmetry different from Galileon symmetry. As
we will learn in the next section, the resulting theories are particularly interesting when
coupled with dynamical gravity, since they are related with beyond Horndeski and other
degenerate scalar-tensor theories.

When discussing Poincaré DBI Galileons, we considered a five dimensional flat metric,
characterised by a parameter kg as

ds? = k2 mudatde” + dy* . (4.1)

Physically, the parameter kg is a ‘warp factor’ controlling the maximal velocity along the
fifth dimension. The speed of light Vlyight along the extra dimension y is

Vﬁght = Ko, (4.2)

in units where on the four dimensional slices y = const the speed of light Vflicglht is Vﬁght = 1.
The dynamics of the brane in the extra dimension depends on the value of kg. Recall
that, for Poincaré DBI Galileons, we are dealing with the brane action

S:N/d‘lxidet{6Z+07(HZ—728;L7T6%HK)}, (4.3)

where v~ =/ k3 + X. The action is invariant under the scalar transformation
om = KGwy, o' + TWwh O, T (4.4)
We can distinguish three physically distinct cases:

e Standard DBI Galileons: ko = 1. The speed of light along the extra dimension is the

same as in the four dimensional slices. The scalar action can be interpreted geomet-
rically in terms of a brane probing an extra dimensional space time, as reviewed in
section 3.2. It enjoys the symmetry (4.4) for k9 = 1 which generalises the Galilean
symmetry adding a relativistic correction to it.

4One finds the Lagrangians for AdS DBI Galileons expanding the determinant of a slightly different
action, given by

(3.48)

. 622 333
S = /d4m\/—g {det [0 — crog"* Kaw] — C£2f<éo ;ESO ,

when setting ko = 1. On the other hand, both actions (3.43) and (3.48) are invariant under the scalar
symmetry (3.47) and have second order equations of motion.
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e 5d non relativistic limit: xg — oco. In this limit, the speed of light along the extra

dimension is infinite, see eq. (4.2). We expect then that there is no causal bound
on the speed along the extra dimensions. Indeed the theory that we get corresponds
to standard Galileons: the first derivatives of the brane modulus 7 are small, and
relativistic corrections are negligible. In this limit, the factor v ~ ry ' 0. To find
a meaningful action, at the same time we then select large values for the constants
N and ¢ such that N'/kg = 2N = const and ¢/kg = ¢ = const. In this limit, we then
find the following action for the system

Sroso = N / d'z (0r)? det [ + ¢ 11} (4.5)
plus a total derivative, which corresponds to the standard Galileon action of eq. (2.1).

e 5d extreme relativistic limit: kg — 0. In this limit, the speed of light along the extra

dimension y vanishes®: this is a peculiar limit, where causality forbids a motion along
the extra dimension y. The brane action results

1 oH*md,m
Seoso = N / 'z VX det [55 oo (5;; _ Xﬂ) apa,ﬂr] . 46)
In order to have a well defined square root, X > 0, and this implies that we need
to focus brane actions with space like scalar first derivatives Om. In this extreme
relativistic limit, the action has still a symmetry

om=nmwho,m, (4.7)

which corresponds to the relativistic, field dependent contributions of eq. (4.4) with
ko = 0. We will focus on this system in what follows.

4.1 The scalar theory in the extreme relativistic limit

Action (4.6) geometrically describes a brane configuration embedded in a five dimensional
space time where the speed of light along the extra dimension, vﬁght = Kg, vanishes since
ko — 0: causality would seem to require us to select X > 0 in order to have a well defined
square root. Quantities X > 0 and X < 0 are respectively space like and time like with
respect to the four vector dm relative to the four flat dimensions at y = const.

On the other hand, at the formal level, the system allows us to also consider the case
where X < 0, that is a time like scalar derivative m. If X < 0, we can define N and ¢ to
be purely imaginary (say, N' = i N, ¢ = —i & with N, & real constants) so to compensate
for the imaginary ‘i factor’ associated with the square root, and get a real action. The

action for a time like scalar, X < 0, has the same structure as before:

- C I3
S=N / diz V=X det [55 + \/% (5;; - W) apaﬂ} : (4.8)

5This is reminiscent to what happens in a black hole geometry, where the ‘speed of light’ vanishes at

the black hole ergosurface where the coefficient g4 of the time coordinate vanishes. It would be interesting
to pursue this analogy further and reformulate the ko — 0 limit as approaching a special point on some
examples of 5d geometries.
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and enjoys the same symmetry as eq. (4.6). A possible geometrical interpretation for this
set-up can be found considering a probe brane embedded in a five dimensional space time
with two time directions. One is the usual T, the other is a time like (Wick rotated)
version of the extra dimensional coordinate y, that we dub §. The five dimensional metric
to consider is

ds? = —k2dT? + k2 dX? — dij? (4.9)

We can define — analogously as explained in section 3.2.1 — an embedding X* = z*,
g = . Calculations can be carried on straightforwardly following the very same steps as
section 3.2.1, finding that the action (3.17) leads to action (4.8), once substituting the new
expressions for induced metric and extrinsic curvature. While such geometrical derivation
of action (4.8) can be useful for determining symmetries and dualities for our system, its
physical relevance deserves further study, since the physical meaning of bulk space-times
with multiple time directions is not clear to us. On the other hand, let us point out that
theories equipped with two time directions in extra dimensions have been considered in
string/M-theory contexts, see e.g. [51] and references therein.

Expanding the determinants in eqs (4.6) and (4.8) we find four scalar Lagrangians in

flat space
L= 02X (4.10)
£2 = A (I - 19 (@1)
1 2
Ly = ([HP - [+ ¢ (97 - [<I>][H])> (4.12)
Ly = AlX<[n]3+2[n3]—3[n2][n]+§’((2[H] [@%]—2[7] - [@] [H]2+[<1>HH2])) ; (413)

which describe both the cases of X positive or negative. As before, we use the notation
[II"] = tr (II") and [®"] = tr (On II" Om). We include an energy scale A to make explicit
the dimension of each operator. Each of these four Lagrangians enjoys the scalar symmetry

1
om =mwho,m = iw“a,ﬂ# (4.14)

with w* an arbitrary constant four vector, which leaves the action invariant up to bound-
ary terms. This transformation lacks the linear ‘coordinate dependent’ part which charac-
terises Galileon symmetries (the ‘07 = w,x*’) hence the system is qualitatively different
from Galileons, and we do not reduce to Galileon actions in any ‘small derivative’ limit.
Additionally, the four actions are also connected by a duality, as discussed in section 3.2
(whose results remain valid in the ko — 0 limit).

Taken by themselves, these scalar actions are quite peculiar: there is no limit in which
the scalar has standard kinetic terms, since standard kinetic terms are not compatible
with symmetry (4.14). Some of these Lagrangians are non analytic, since they contain
the square root of X, and all of them contain powers of 1/X. On the other hand, such
scalar theories might make sense when expanded around some background which solves the
equations of motion, or by coupling to other fields like gravity. We now discuss a simple,

~ 18 —



concrete example to develop these points further, and to assess the physical relevance of
these systems.

4.1.1 An explicit example: part I

In the time-like case X < 0 these theories seem to have problematic causal properties,
which can be fixed by slightly breaking the scalar symmetry (as we are going to discuss
now), or by enlarging the system by coupling it to other fields, as dynamical gravity (as
we discuss in the next section, see in particular section 5.3.1).

We analyse a concrete example that is simple, but illustrative. We consider a linear
combination L¢ of the Lagrangians (4.10)—(4.13) with constant dimensionless coefficients

—Lo=01L1+ aslo+ agls + asly. (4.15)

We start determining some homogeneous background around which we expand our theory.
Any scalar configuration which is linear in the coordinates solves the equations of motion.
This can be checked by direct computation, or by using symmetry arguments. Denote
with 7 = ¢,2" one scalar configuration, with ¢, arbitrary vector. Applying the scalar
transformation (4.14), we obtain 7+ 7 = (1 + w”c,) ¢, a*: so a symmetry transformation
sends this configuration to an arbitrary other one with a linear profile, but with a different
vector ¢,. Then, since 7 = 0 is a solution, also any 7 = ¢,x* must be solution. In order
to preserve three dimensional spatial isotropy, we select a background configuration that
is linear in time:

7(t) = Pgt (4.16)

with Py an arbitrary constant with dimension of a mass. (We put a P§ in the previous
formula to assign the correct dimension to the scalar field.) We examine the dynamics of
fluctuations around 7 (t):

7(t, %) = 7(t) + 7 (t, 7). (4.17)

An homogeneous background 7(t) spontaneously breaks the symmetry (4.14) down to a
residual symmetry
om = Tw'dm, (4.18)

with w® an arbitrary three spatial vector. Indeed, transformation (4.18) leaves invariant
any function 7(¢), and only acts on the fluctuations 7 (¢, ¥) introduced in eq. (4.17). In the
limit of small fluctuations, the residual symmetry (4.18) acts at linear order on 7 (¢, %) as

5r(t, T) = 7(t) w'oir(t, ©) . (4.19)

Expanding the combination Lo at quadratic order in small fluctuation & around the
background 7(t), we do not find a standard kinetic term for the scalar fluctuation, but
instead the quantity

£ — (1) (V#)? (4.20)

where ¢(t) depends on 7(t), and on the coefficients «; characterising the combination L¢
we selected. Such quadratic Lagrangian for fluctuations only contain spatial derivatives of
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#, and lacks the time derivative piece #2. This fact is easier to understand in terms of the
residual symmetry (4.19): while the quadratic Lagrangian (4.20) is invariant under this
transformation (up to boundary terms), a term like 72 is not. The system described by the
quadratic Lagrangian (4.20) is degenerated, and does not satisfy the conditions of Leray’s
theorem for having a well defined Cauchy’s problem [52] (healthier degenerate systems will
be discussed in the next section, when coupling with gravity).

A way out is to break explicitly symmetry (4.14), for example by including a standard
kinetic term with small overall coefficient. We add such a term to our Lagrangian

— EC =X +a1L1 +asly + a3l + asly. (4.21)

The first term proportional to g breaks symmetry (4.14); in this case, again our homo-
geneous solution 7(t) of eq. (4.16) solves background equations of motion, since the term
proportional to ag has a Galilean symmetry. Studying the dynamics of quadratic fluctua-
tions, associated with this Lagrangian, we find a healthy kinetic term for the fluctuation 7«
at quadratic level, if a1 are positive:

Lnd = ag (72— 2 ojr ) (4.22)
(65} A2
2 =1- Pl (4.23)
0

By an appropriate choice of the quantities, o1 and Fy, we can ensure that
0<cr <1, (4.24)

so that fluctuations get healthy kinetic terms. We can also then canonically normalize
the field )

T — \/TTOﬁ, (4.25)
so to have a canonical kinetic terms, with a speed of sound different from unity. In order
to have a consistent system when «q is small — with 0 < ¢; < 1 — we have to require
that the energy scale of the background solution Fp is larger than the scale entering A in
the Lagrangian.

We can also proceed and examine higher order self interactions for the fluctuations.
We limit to turn on the coefficients ag, ay in eq. (4.21), while setting to zero the remaining
aj. After canonically normalize the field, as in eq. (4.25), we find that the Lagrangian

expanded up to fourth order results

(1= c2)° ap (V#)? (472 + (V7)?)
4a2 A4

+...

(4.26)
with ¢ given in eq. (4.23). As long as the sound speed lies in the interval (4.24), the

2
s Ll o o] Vo (l=—c) .
E—ﬁ{w —cz (V7) }_—\/ﬁalAz w(V

system is defined also in a small g regime, since interactions are suppressed.
On the other hand, symmetry (4.18) is explicitly broken by the contribution of the ki-
netic term. If we would like to recover the symmetry, in a regime where «y is very small, we
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need to go outside the safe interval (4.24) for the sound speed. Consider Lagrangian (4.26)
in a regime where oy — 0, ¢; — 00, such that the combination agc2 = const = 23a?
for some arbitrary constant 3. Moreover, let us rescale # — @ /cr. In such limit, the
Lagrangian (4.26) becomes

~ 1

Esym = _5

(V#)? — \g T (V)% — 2%

and each term respect symmetry (4.18) at the corresponding order in perturbations.

(V)2 (442 + (VA)?) + ... (4.27)

It would be interesting to analyse whether the symmetries and the properties of our
scalar actions can protect their structure under corrections, for example against scalar self
loops, leading to non-renormalization theorems as it happens for Galileons. In fact, this
kind of questions have been recently reconsidered for a wide class of derivatively coupled
theories [53], using simple yet powerful methods based on power counting techniques (see
e.g. [54] for a review). The scalar transformation that we consider — eq. (4.14) — is a
symmetry of the action only up to boundary terms. Usually set-ups with this property
are protected under quantum corrections, as discussed in [53]. Breaking it spontaneously
by selecting a non-trivial homogeneous scalar background should not spoil these features.
An explicit symmetry breaking (as done by adding a kinetic term to the Lagrangian in
eq. (4.21)) might still lead to a system where corrections can be kept under control: in
the limit in which the explicit symmetry breaking parameters are small (for our previous
example, oy < 1), one expects quantum corrections to be small, at most proportional to
ap and its powers [55]. It would be interesting to concretely develop these arguments in
our specific example, where we know that, in the limit of ag small, the background profile
Py/A must be large. We will return to these issues from a different perspective in the next
section 5, where we will study the related topic of what happens to our scalar system when
coupling with gravity.

4.2 A generalization

If we consider a field redefinition
T — f(m) (4.28)

and apply it to action (4.8), we obtain a new action which explicit depends on 7 (and
not only on its derivatives) thanks to an overall factor in front of the determinant. It is
given by

"
ol — Ma””) 8paﬂr] . (4.29)

S :N/d4a: F(m)VX det [5,’j +c %

%l
vX
Such action satisfies a symmetry which generalizes (4.14), and is given by

om = f(m)w"o,m (4.30)

for constant vector w*. As a byproduct, this fact implies that the equations of motion
associated with action (4.29) are invariant under constant rescaling of the field m: ™ — .
This since in this case f = Am, f/ = A, and the constant A\ goes in front of the integral in
eq. (4.29), without affecting the equations of motion.
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4.3 Extreme relativistic limit of DBI Galileons in AdS space

All what we said so far can be straightforwardly extended to the case of DBI Galileons
embedded in AdS space, which is another system with an interesting geometrical interpre-
tation (see section 3.3). Taking the ko — 0 limit of action (3.45), we get

—7 /L o
5t + ce\/)? (5!; - 67;?”) aﬂaﬂ] . (431

This action is symmetric under the field-dependent transformation (the k9 — 0 limit of
eq. (3.47))

S:N/d4xe_3”/é¢)7det

14
o = 3 (7 =1) wd,m, (4.32)
for arbitrary constant vector w*. Again, this transformation lacks the linear ‘coordinate
dependent’ part which characterises Galileon symmetries (the ‘07 = w,a*’); hence the
system is qualitatively different from Galileons. Also for the AdS case, the set-up admits a

simple generalisation: the structure of action (4.31) is the same by doing a field redefinition
m — —L{ Inh(m), (4.33)

for arbitrary function h. The action becomes

L
S = / d*z h3 W VX det {55 + c\/}% (55 - 67;(6””) 8”&,7?} . (4.34)
The associated symmetry becomes
{71

The resulting action and symmetry, eqs (4.34) and (4.35), are similar, although not iden-
tical, to the system discussed in the previous subsection 4.2.

5 Minimal coupling with gravity: degenerate scalar-tensor theories

Our flat space ‘extreme relativistic’ Lagrangians with kg — 0 can be minimally coupled
to gravity in a consistent way, by promoting the flat four dimensional slices to arbitrarily
curved slices with dynamical four dimensional metric. This relates our systems to beyond
Horndeski [21, 22] and extended scalar-tensor theories [24-26], providing a geometrical
perspective to the latter systems.

5.1 From DBI Galileons to beyond Horndeski theories

We can minimally couple with gravity the extreme relativistic actions (4.6) and (4.31),
promoting the flat four dimensional metric tensor 7,, to a dynamical tensor g,,, and
writing respectively

n
S—N /d4x V=aVX det {55 + c\/} (5;; _ 87;9’“) vpaﬂ} , (5.1)
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and

S=N /d4x6_3”/8 V—q VX det

—7 /L n
5H + ce\/y (5;; - 87;(8””) vpaﬂ] L (5.2)

Eq. (5.2) reduces to (5.1) in the limit of infinite AdS radius ¢ — oo. For simplicity, in what
follows we focus on the Poincaré limit £ — oo, although similar considerations can be done
for the AdS case as well.

Interestingly, the scalar-tensor theories one obtains by expanding the determinants in
the previous expressions are consistent, although the associated EOMs are generally of
higher order. The set of Lagrangians one finds corresponds to Lagrangian densities (4.10)—
(4.13), with standard derivatives replaced by covariant derivatives. Such scalar-tensor
theories belong to the class of beyond Horndeski theories [21, 22]. It is easier to check this
fact using the idempotent ‘projection tensor’

VHErV,
P# = 55 - X £ ’ (5'3)
which satisfies the relation P/ V,m = 0. Using this quantity, it is possible to prove (see
section IIB of [29]) that the theories of beyond Horndeski can also be expressed in terms

of a determinantal expression. They can be written as
5= / d*2/=q A, X) det [ + B(r, X)P{ V0 7], (5.4)

where A, B are arbitrary function of 7, X, and V denotes covariant derivative with respect
to a 4d metric g,,. Although these theories are characterised by EOMs of order higher
than two, they propagate at most three dofs. Action (5.2) belongs to this class of theories:
hence it does not propagate more than three degrees of freedom. We emphasize that actions
as (5.4) do not need supplementary gravitational counterterms for being consistent. This
fact relates a limit of DBI Galileons with beyond Horndenski.

We can also investigate geometrically the covariantization procedure for the extreme
relativistic limit of DBI Galileons, in terms of a probe brane in an five dimensional set-up.
Recall that for studying Poincaré DBI Galileons we consider a five dimensional metric as

dsé) = K Ny AXPAXY + dy? (5.5)

i.e. the four dimensional slices y =constant have flat metric. We discuss here the possibility
of promoting the metric of 4d slices to a dynamical field, writing

dslsy = ko qu X XY + dy’ (5.6)

with g, a dynamical tensor. We choose again the usual foliation associated with a brane
embedded on this geometry, X* = kg x*, y = . The induced metric on the brane is

uv = H%) Quv + 8M7T8V7T s (57)

with determinant

Ve = Vg X (58)
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where

X =¢"V,nV,m. (5.9)
Its inverse is (4d indexes are raised with ¢"")
1 oHm oV
W= _— (g" — ——— ] . 5.10
g 2 (q g X) (5.10)
The extrinsic curvature tensor is
Ko
K,ul/ = —\/ﬁ (V/_LVUTF) . (511)
Ko
We now consider the extreme relativistic limit
ko — 0. (5.12)

Most of the geometrical quantities written above become singular in this limit: or they
vanish, or they become infinite. On the other hand, the determinantal action (3.45)

S = Mg /d4x v—gdet {55 — ckogh” Kal,} ) (5.13)
ko
as a whole has a smooth limit, since taking kg — 0 we obtain the regular expression
1 oHmd,m
S = N /d4.fE VvV —q \/} det |:65 + C\/iY (65 — )(p> VP8V7T:| s (514)

which indeed coincides with action (5.1). So we learn that when taking the limit kg — 0, a
brane action built with appropriate combinations of geometrical quantities leads to sensible
scalar-tensor theories. We then find a connection between certain DBI Galileons and a
special case of beyond Horndeski theories.

5.2 The duality

We now discuss a way to extend the duality transformation presented in section 3.2.2 to
the case of curved space time. Our aim is to proceed as much as possible along the same
steps we followed in discussing duality with non-dynamical gravity. When coupling the
scalar with dynamical gravity, however, defining the action of a duality is a very delicate
matter, as already pointed out for the case of standard Galileons in [46] (see also [44]).
The main issue is how to define the transformation of the dynamical metric g, (2) under
duality. We study here a particular case of duality, which is nevertheless sufficient for
finding a novel relation among the different Lagrangians of eqs (4.10)—(4.13), once they are
minimally coupled with gravity.
Consider the field dependent map among two sets of coordinates

1
= gt =2t + —=0!r, (5.15)

VX

(where, as for the case of Galileons, we choose units which set to one the parameter Ag
which is needed for dimensional reasons.) Recall that X = ¢V V7V, 7.
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The duality is defined as the transformation which maps the line element dxz* of the
first set of coordinates, with the line element dZ* of the second set of coordinates as follows

1 1
de* = di*=dz*+d < 8“71') =dz"+V, <8”7r> dz" . 5.16
VX VX (5.16)
The transformation matrix between these line elements is
dzt 1
JH = = oM | —=0" . 5.17
. o

We demand that the dual metric G, (Z) is a scalar under duality:

QMV(j) = QW(JJ) . (518)

We also demand that there exists a dual scalar field 7, which we can use for mapping back
the coordinates Z# to a*:

1 .
it = xﬂ:i«ﬂ—ﬁaﬂﬁ. (5.19)

Comparing egs (5.19) and (5.15), and using (5.18), we find that the simplest way to satisfy
our conditions is to impose that the derivative of 7 is a scalar under duality

7 (z) = O (). (5.20)

This is analogous to what we have seen in the case of flat metric; also, these results
imply that the induced four dimensional metric g, is scalar under duality (indexes are
raised /lowered with curved metric g, )

G () = “(Q)qw + 0o = Gu(T) = gu(x), (5.21)

as happens in flat space.
Eq. (5.20) implies

oymdit = O, Jl' da” = Oymdat + 0,7V, (y0!'m) dx” . (5.22)

Integrating both sides of the previous relation, we find a non local relation among the
field 7w and its dual

w(z) = #(F) = m(x) + / 7V (70°x) Oy . (5.23)
The results so far imply that, under the action of the duality,

1
d*z = d*'z = (det J) d*z = det [5ﬁ +V, (\/)?8“77)] diz, (5.24)

X=>X=X. (5.25)

We meet a serious problem however, with respect to how to define in a consistent way the
dual of the second derivative of the scalar field. This since the expression V, 0" m contains
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a covariant derivative, which does not transform properly as a vector, because the metric
does not transform as a tensor under duality. Hence, following this route, we can not define
a dual version of the entire set of scalar-tensor actions we examined.

Less ambitiously, we can nevertheless define a dual version of the action

S = /d‘*x\/?g (5.26)
= /d4x\/?q\/§ (5.27)

associated with Lagrangian (4.10) minimally coupled with gravity. It is
S = /d%u/—q\/} (5.28)

= /d4x\/—7qﬁ det {51‘,‘ +V, (\/1?8’%)} , (5.29)
which is a particular case of eq. (5.1) for ¢ = 1. Expanding the determinant, we find a
minimal coupling with gravity of all the actions (4.10)—(4.13), with fixed coefficients: our
duality maps scalar and metric fields in such a way to generate all our actions starting from
the simplest among them. It would be interesting to extend these findings to determine an
action of the duality which applies to all the scalar-tensor actions we have studied.

5.3 The symmetry

We can now ask about the fate of the flat space symmetries we discussed in the previous
sections. In the presence of dynamical gravity, as in action (5.1), we normally break the
scalar symmetry

om = mwhoy,m (5.30)

since the equations of motion for the dynamical metric field are not necessarily invariant
under such transformation. On the other hand, two classes of general arguments can
be made. The first set of considerations concerns systems in which gravity is still not
dynamical, but with a non trivial fixed metric g,, on the 4d slices. If such space 5d
space time has still some isometries, it is possible to use the techniques of [13, 14] for
constructing a scalar transformation which generalises (5.30) and is a symmetry of the
action. If, on the other hand, the 5d space time does not admit any isometry, it might
still be possible to describe it as a ‘small perturbation’ of some symmetric space time.
A second kind of considerations can be made when gravity becomes dynamical, and the
metric g, (x) on the 4d slices is a dynamical field with its own equations of motion. In this
set-up, the equations of motion for g, normally break the scalar symmetry (5.30). In some
situations, the symmetry could be broken by gravity in a soft way, and some of its properties
might be maintained. Such arguments have been used in phenomenological approaches of
Galileons to cosmology, see e.g. [16-18]. Moreover, as advocated for example in [12], one
could try to promote the global 5d Poincaré and AdS symmetries considered so far to local
symmetries, and analyse their physical consequences for the brane induced action. It would
be interesting to develop these considerations by studying concrete systems, to explicitly
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understand the fate of symmetries when gravity is turned on. In the present context, we
limit ourselves to reconsider the simple, explicit example of section 4.1.1, for understanding
the behavior of fluctuations when the set-up is coupled with dynamical gravity, and at what
extent the symmetry is broken.

5.3.1 An explicit example: part II

We focus on time like systems with X < 0, and reconsider the example of section 4.1.1
in the present context. We analyse the dynamics of fluctuations around a time dependent
homogeneous background 7(¢) which solves the equations of motion for scalar and metric
fields. We have seen in section 4.1.1 that, in absence of gravity, a residual symmetry pre-
vents us from having canonical kinetic terms for scalar fluctuations around our background
profile. When gravity is turned on, the situation can be improved. The symmetry gets
dynamically broken by gravitational effects, and fluctuations acquire kinetic terms, thanks
to a kinetic mixing among the scalar and the metric sectors. Let us see these facts more
explicitly.

We focus for simplicity on a scalar-tensor action based of Lagrangian density L3 of
eq. (4.12), to which we add an Einstein-Hilbert (EH) term
as

2
W2R- 2
X]

2

So = [ d'sv=q @WﬂmwXGﬂ—mmDL (5.:31)

where all derivatives are covariant derivatives, u is a constant with dimension mass, and
a3 a dimensionless constant. An EH term is included since it does not break the symmetry
further than what is done by the covariant derivatives in (5.31): it will be nevertheless
important when discussing fluctuations. An EH term does not introduce ghosts in this
case: this since such term belongs to quartic Horndeski theories, it can be merged with no
harm with the combination proportional to «3, which belong to quartic beyond Horndeski
(see e.g. [22, 24, 29] for details and related discussions). The resulting theory is disformally
related to Horndeski, but only in absence of matter; we do not discuss here such disformal
transformation.

We are interested to study configurations which admit Minkowski space as metric
background. Einstein equations, when evaluated on a Minkowski background, impose the
following condition on the scalar field:

1
0= 3y (1% = [ + 27° (W] ) — 7 oy — [T,
1 a B 2 a8
e | T ([H] (@] + O T o py + 3[D ]) + [OIL + 2% 1oy L,
1
+27r7a7r7ﬁ7r7a/3(u7ru) + 2W’aHa5Hﬁ(MW7V) — %,y (I o + 5([1_[]2 — 3?7 7,
1
+32 (394w [ @] = 6[@)7 T ) + 3[@%m ] - (5.32)

Such condition breaks the scalar symmetry as in (5.30). On the other hand such system of
equations still admits a scalar solution which is linear in the coordinates in Minkowski space:

T = cuat (5.33)
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for arbitrary constant vector c¢,. This because such configuration satisfies the scalar equa-
tion (as explained section 4.1.1) and at the same time satisfies condition (5.32) (because
each of its terms contain second derivatives, hence it vanishes when evaluated on a linear
scalar configuration). It would be interesting to investigate whether this fact can be asso-
ciated with some remnant of a symmetry. Hence we are allowed to select a time dependent
homogeneous profile

mo(t) = Pt (5.34)

(see eq. (4.16)) as background scalar solution, with Py is some arbitrary parameter with
dimension of a mass.

We study the dynamics of fluctuations (scalar, tensor) around this scalar profile and
Minkowski space. Scalar and tensor fluctuations are defined at linear level around our
background as:

Qv dztdz” = — (14 2N) dt* + 2 B;da" dt + [(1 + 2C) 6i5 + hij] da*da?,  (5.35)
T =Pit+7. (5.36)

Here N, B are the standard ADM constraints, 7, ¢ scalar fluctuations, and h;; transverse
traceless tensor fluctuations. Constraint equations impose the following relations

N =0, (5.37)
B L LI ith V24 Gas (5.38)
= W1 - .

p? + 2P3as (n? +2P2 a3)
2 2
_ . 5.39
T 2y ¢ (5.39)

After imposing the constraints, we find that the quadratic Lagrangian for scalar fluctuations
contain only one propagating mode, (, whose quadratic Lagrangian is

2 2
: + 2a3 P,
£ = b [@ ) (“sw) (&'Oﬂ | o

The mode still propagates in the limit 4 — 0: the kinetic mixing among scalar fluctuations
and the constraints, induced by the covariant derivatives in action (5.31) is sufficient for
fully breaking the symmetry and give dynamics to scalar fluctuations. In order to avoid
ghosts, one imposes ag > 0.

The quadratic action for tensors, on the other hand, results

2 2 2
£~ % (hfj - /124»“7043.3)2 (alhijf) . (5.41)
In order for tensors to propagate with no strong coupling issues (as pointed out in [28, 56]),
we need p # 0. The resulting system propagates three healthy degrees of freedom. Notice
that both the sound speeds c¢, ¢, are less than one, if s, u? are positive quantities. It would
be interesting to understand whether gravity breaks the scalar symmetry (5.30) in some
spontaneous way, and whether (around Minkowski space) there are some remnants of the
scalar symmetry that are also a symmetry of the gravitational equations of motion (5.32).
We plan to investigate this subject in a separate publication.
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5.4 The relation with a broader class of EST theories

Beyond Horndeski are not the only scalar-tensor theories, with higher order equations of
motion, which are made consistent by the existence of primary constraints preventing the
propagation of additional degrees of freedom. Generalisations of this case have been studied
recently, and have been dubbed EST [26] or DHOST [25], using an approach developed
by Langlois and Noui [24]. In particular, in [26] it has been pointed out that a class of
consistent extensions of beyond Horndeski theories can be built in terms of the projection
operators P introduced in (5.3).
We introduce the two index tensor

p = PV Vi, (5.42)

and consider a scalar-tensor theory described by an action which is a combination of scalar
quantities formed with @, like

S = /d4x\/fq (A X) Qt + As(m, X) (@) + As(r X) (QUQE) +...]  (5.4)

for arbitrary functions A;. Thanks to the existence of a primary constraint, these actions
propagate at most three degrees of freedom. See appendix B — based on [26] — for full
details.

At the light of these facts, we can use the results we obtained in the previous sections
to determine a geometrical perspective for these particular cases of EST theories. We
consider a probe brane in AdS bulk, as described in section 3.3. We have seen in the
previous subsection that the kg — 0 limit of the combination kg g"* K, reads

e—ﬂ/f e—ﬂ/f
li H'K oy = ——PE VYO, =
Fi(}glo K’O g av \/X [6% Vﬂ- \/X
So it is proportional to @Q¥. (The limit ¢ — oo corresponds to a brane embedded in a
Poincaré bulk.) On the other hand,

1
L= vt e X o)
0

This implies that any probe brane action built as a scalar related to kg g*“ Ky, automati-

Q! (5.44)

cally propagates at most three degrees of freedom in the limit k9 — 0, being a special case
of an EST action (5.43). For example, using the results of the previous sections, any action
of the form (a; are constant parameters)

. N 4 y1re}
S=lim — [dz—g {1 + aj tr (ko ¢"*Kav)

Hoﬁ)o /<.',0

+ as tr (ko g’w‘Kw,)2 + as tr? (ko g"* Kow) + .. } (5.46)
belongs to EST theories, and consequently propagates no more than three degrees of
freedom.

Do these actions satisfy some symmetries in certain limits, which can protect their
structure against loop corrections, and lead for example to non renormalization theorems?
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It depends, and a geometrical approach in terms of a brane probing an extra dimensional
space can be useful to investigate this question. First, let us discuss the case of gravity
not dynamical. If these theories correspond to super relativistic (kg — 0) limits of probe
brane actions, the existence of symmetries depend on the presence of isometries in the bulk
space time, as discussed in [13, 14] and reviewed in the previous sections. However, in
general, actions as eq. (5.46) do not admit a ‘decoupling limit’ around Minkowski space
where gravitational dynamics can be set to zero and only scalar dynamics can be considered
(unless they reduce to beyond Horndeski), since Minkowski space is not a solution of the
equations. On the other hand, scalar theories can be well defined around some non trivial
backgrounds with isometries, and exhibit new symmetries which are different from the ones
considered here. Second, for the case with dynamical gravity, the same considerations of
the previous sections apply. Gravity tends to break all scalar symmetries, but there might
be cases where such symmetries are broken only in a soft way, or generalisations which
promote the scalar symmetries to full scalar-tensor symmetries. We intend to develop
these interesting issues in a future analysis.

6 Discussion

In this work, we investigated a geometrical approach to degenerate scalar-tensor theories,
with the main aim to investigate symmetries and dualities that they satisfy. Using such
view point, we found a connection between beyond Horndeski (and more general degenerate
scalar-tensor theories of gravity) and a certain limit of DBI Galileons.

We started presenting a perspective on DBI Galileons based on a determinantal ap-
proach. In absence of dynamical gravity, a particular limit of DBI Galileons — which we
called extreme relativistic — leads to classes of scalar theories with a field dependent sym-
metry, that are connected by dualities. These theories reveal problematic properties when
one computes the kinetic terms of fluctuations around a given background. Such problems
can be tamed by weakly breaking the symmetry, by hand or by coupling the scalar theory
to gravity. In the latter case, we showed that a minimal covariantization of DBI Galileons
in the extreme relativistic limit leads to beyond Horndeski systems, or more in general
to degenerate scalar-tensor theories which are consistent despite having equations motion
of order higher than two. Our results indicate that degenerate scalar-tensor theories can
admit a geometrical interpretation in terms of particular limits of DBI Galileon set-ups,
and that (in absence of dynamical gravity) they enjoy symmetries which are different from
Galileons. Moreover, different special cases of beyond Horndeski theories are connected by
a duality, in some cases also with dynamical gravity. Our results can be helpful for as-
sessing the stability properties or understanding the non-perturbative structure of systems
based on degenerate scalar-tensor theories.

Our results can be extended in several directions. Our geometrical construction of
degenerate scalar-tensor theories in terms of branes probing extra dimensions indicates
that special theories can be obtained when the brane probes specific points in the extra
dimensions, where the coefficient in front of the time coordinate vanishes. It would be

interesting to examine this observation further, investigating in more general terms scalar-
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tensor theories obtained from branes placed in special locations of the embedding space
time. Other possible developments concern symmetries and dualities. We have shown that
the scalar symmetry is normally broken when gravity is made dynamical: it would be
interesting to find concrete systems or situations — specific subclasses of our theories, for
example expanded around specific configurations — where the symmetry breaking can be
soft and controllable, and some of the features of the symmetry can be maintained. Also, we
have studied some special case of duality when gravity is dynamical: it would be interesting
to extend the discussion to study dualities connecting other examples of degenerate scalar-
tensor theories. Finally, it would be interesting to study whether additional fields can be
included in these systems, still preserving the properties that we determined. We plan to
investigate these questions in future studies.
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A de Sitter case

In this appendix we discuss an alternative, model dependent way to incorporate a case of
beyond Horndeski in a brane world scenario described by an action of the same determi-
nantal form that we introduced in the main body of the text, e.g. eq. (3.21). The physical
effect of the limit that we discuss here is the same as in the case Kk — 0: to get a situation
where the derivative terms of 7 dominate the induced metric. However, it is important to
emphasize that this alternative limit is formally different from x — 0 and only works for
specific brane/bulk configurations.

By construction, action (3.21) inherits a global symmetry from the Killing symmetries
of the bulk [13, 14|, and propagates the right number of degrees of freedom in the limit
to beyond Horndeski. The explicit form of the scalar symmetry depends on the isometries
of the bulk metric and the geometry of the brane, as explained in [14], where maximally
symmetric embeddings are worked out in detail. Among all the possible configurations,
there are two that admit a limit f(7) — 0 controlled only by the (A)dS radius, irrespectively
of the value of k9. These two cases are the following;:

1. A Minkowski brane embedded in an AdSs bulk. This is the same geometrical config-
uration that we discussed in section 3.3. Here f(7) = e~™/*, and the limit f — 0 is
achieved when ¢/ — 0 and m > 0. Under these considerations, the results presented
in section 3.3 are recovered by redefining m = 7/kg and £ = Kol.

2. A dSs brane embedded in a dSs bulk. Here f = fsin(7r/¢) and the limit f — 0
corresponds to £ — 0. In contrast to the previous case, this limit cannot be related
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to a limit taken with k¢ by a redefinition of ¢ and w. We describe this model in
detail below.

The set-up of point 2 has the induced metric

Guv = f(ﬂ)QqW/ + v;ﬂrvlﬂra (Al)

with f = Esm( ) and g, the metric on the dS, slices that foliate the dSs bulk. Indices
are raised and lowered with g,,. The extrinsic curvature K, is constructed according
o (3.42), but replacing 7,,, with g,,. The contraction of the matrix inverse of (A.1) with
the extrinsic curvature takes the form

f

g"“Koy = —5 (5“ 72 V“ﬂ'VOﬂT> ( VeV, + ff6% + 2f’

I v%vﬂ) (A.2)

with v = f/v/f?+ X. For this embedding, the action can be put in beyond Horndeski
form by taking the limit £ — 0. To see this, first note that

A2
hm (5“ QV“WVQW> Ve =0. (A.3)
=0 S

Now, since ff" ~ O(f), in the limit £ — 0 the action is dominated by

0 V“WVQW> o

{sin (W/E)\F ( “ X v V,,7T‘| ’
(A.4)

which is well-defined if |¢1 /£ is kept finite when taking the limit £ — 0. This action belongs

to beyond Horndeski, cf. (5.4). The symmetries of this action — the limit £ — 0 of the

Sasa = /d4x\/7€3 sin®(7/0)V'X det [5”-%—

transformations generated by the Killing vectors of a dS4 brane embedded in a dSs bulk

derived in [14] — are
s
dym = —cot <€> Oy, (A.5)
o_m = —(u® +y?) cot (Z) Oy — 2u cot (g) y oy, (A.6)

dm = yzcot( )87r ucot( >87r (A.7)

where u and y* (y* = &;;y'y/, i = 1,2,3) are coordinates defined in terms of the bulk
coordinates, such that the induced metric can be written as

1
ds® = dn® + (*sin® (g) Lﬂ(—du2 + dyz)] . (A.8)
These symmetries differ from the symmetries for finite ¢ only in that the Killing vectors

have lost their J; components, these components are associated to the part of the symmetry
transformation that does not depend on .
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B Existence of a primary constraint

In this appendix, we review the main arguments that prove that actions of the form (5.43)
(which generalise and include Beyond Horndeski systems as discussed in eq. (5.1)) are free
of Ostrogradsky instabilities, and propagate at most three degrees of freedom. We consider
the quantities X = V,7V#m and

y vV, nVPr y
Qﬂzz(q;_ /CX ) v,V (B.1)

and examine arbitrary scalar-tensor actions (calling g,, the metric tensor) of the form
— 4 Iz M 2 v O
S= [ d'ev=q [Bi+ B Qi+ B3 (Q4) + B (QuQl) +-.. | , (B.2)

where the B; are arbitrary functions of 7, X. An immediate issue arises: action (B.2)
contains second derivatives of the scalar field. Hence, besides the metric and the scalar
7, actions as (B.2) would seem to propagate an additional, fourth mode mode — related
with the scalar velocity @ — which is associated with an Ostrogradsky instability. In this
appendix, we show that this issue does not actually apply for actions (B.2): there exists a
primary constraint which relates the dynamics of the scalar velocity with the dynamics of
the metric, so to have a system which propagates at most three — and not four — degrees
of freedom.

We do so using the geometrical approach introduced by Langlois and Noui, and further
developed in [24]; in particular, we review the arguments as presented in [24, 26]. We
decompose the four dimensional space time in 3 + 1 dimensional slices: we assume there
exists a foliation of space time on t = const hypersurfaces. We can then define on each
hypersurface a ‘time vector’ t* as

th = Nn'+ N, (B.3)

with n* the normal, and N and N* respectively the lapse and shift vector. Such time
vector determines the time evolution of the fields involved. The 3+ 1 decomposition allows
us to consider two quantities which further characterise the hypersurface geometry:

hy, =4, +n"n,, (B.4)

is the induce metric on the hypersurface; while

1 .
K;uz = ﬁ (h/u/ - v(uNu)> ’ (B'5)
is the hypersurface extrinsic curvature. Here dot indicates the Lie derivative

Py = 17N iy (B.6)

Instead of using V7 in the scalar-tensor action, it is convenient to express it in terms of
a vector A, defined as
A, =V,m, (B.7)
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so that X = A, A" and
A, AP
Q= (5;1 -5 > VoA (B.8)

After expressing the action in terms of A,, it is easy to ‘go back’ to an expression in

terms of 7 only, if one wishes to do so, by imposing relation (B.7) by means of a Lagrange
multiplier. The 3 + 1 decomposition of space time can be implemented on the vector A,
and its covariant derivative as

A, = A, +A,, (B.9)
VuAy = Dy Ay = A Ky 41, (K A2 = Dy A ) mny, (Vi = Aga?) - (B.10)

where (...) on the index denotes symmetrization (with no numerical factors in front) and
a? = n% Vynf is the acceleration vector. We have to consider three quantities which
characterise the time flow of the fields described by the action. The first is time derivative
of the metric, conveniently described by the extrinsic curvature K,,,: there are generically
two degrees of freedom associated with this quantity (as expected for a spin 2 massless
tensor). The second is the time derivative of the scalar, described by A, (one dof). The
third one is the time derivative of the scalar time derivative (one dof), controlled by the
quantity

V. =ntA, = % (Ao = N"V,4,) . (B.11)
Hence action (B.2) propagates 4 dofs, unless there are constraint conditions. In what
follow, in order to identify the kinetic terms in the action and express everything in terms
of covariant quantities, it is easier to work directly with the extrinsic curvature K, and
with V, rather than the velocities fz,w and A,. We now show that constraint conditions
exist in the form of primary constraints, by proving that a linear combination of the
conjugate momenta

1 68
= — — B.12
Tx \/_—q (5‘/*7 ( )
qo_ L 9% (B.13)

® \ _q (5K5K* ’
vanishes. This fact forbids the propagation of a fourth mode.
Using the definition of projection tensor, one has the important relation

N

A PYny, =P Ay . (B.14)
Moreover,
oQ" y
Wf = P{n,n", (B.15)
0Qu 4, 4o — pr (—AApAY 4 A%, A7 4 A2 A,n¥) (B.16)
(5Kg B — *41p p p : :

Using the fact that the action S in eq. (B.2) is a sum of powers of traces of Q}, and its
powers, as well as relation (B.14), one finds the following linear relation among conjugate
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momenta (with the notation ~ we mean weak inequality, that is inequality in the phase
space of constraints)
A, (24% = A2) m, — A, A7 wh ~ 0. (B.17)

Hence, there exists a primary constraint which forbids the propagation of a fourth mode
for theories described by an action (B.2). The theories that we are investigate propagate
at most three degrees of freedom.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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