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On the basis of the classical theory of envelopes, we formulate the renormalization group (RG) 
method for global analysis, recently proposed by Goldenfeld et a!. It is clarified in a generic way why 
the RG equation improves the global nature of function obtained in the perturbation theory. 

§ 1. Introduction 
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Recently, Goldenfeld et al.1> have proposed a new method based on the renormal
ization group (RG) equation2>,a> to get asymptotic behavior of solutions of differential 

equations. The method is simple and has a wide variety of applications, including 
the treatment of singular and reductive perturbation problems in a unified way. 
However, the reason why the RG equation can be relevant and useful for global 
analysis is obscure: The RG equation is usually related to the scale invariance of the 
system under consideration. The equations which can be treated using the RG 
method are not confined to those with scale invariance.0 Actually, what the RG 
method does in Ref. 1) may be underestood as the construction of an approximate but 

global solution from those of a local nature which are obtained in the perturbation 
theory; the RG equation is used to improve the global behavior of the local solutions. 
This fact suggests that the RG method can be formulated in a purely mathematical 
way without recourse to the concept of the RG. A purpose of this paper is to show 
that this is the case, thereby revealing the mathematical structure of the method. 

Our formulation is based on the classical theory of envelopes.4
> As is well 

known, the envelope of a family of curves or surfaces usually has an improved global 
nature compared with the curves or surfaces in the family. So it is natural that the 
theory of envelopes may have some relevance for global analysis. One will recognize 
that the powerfulness of the RG equation in global analysis and also in the quantum 
field theory2>,a> is due to the fact that it is essentially an envelope equation. We shall 
also give a proof as to why the RG equation can give a globally improved solution to 

differential equations. 
In the next section, a short review is given on the classical theory of envelopes,· 

the notion of which is essential for the understanding of the present paper. In§ 3, we 
formulate the RG method in the context of the theory of envelopes and give a 
foundation to the method. In § 4, we show a couple of other examples to apply our 
formulation. The last section is devoted to a brief summary and concluding remarks. 
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504 T. Kunihiro 

§ 2. A short review of the classical theory of envelopes 

To make the discussion in the following sections clear, we here give a brief 
review of the theory of envelopes. Although the theory can be formulated in higher 
dimensions,4

> we discuss here only one-dimensional envelopes, i.e., curves, for simplic
ity. 

Let {Cr}r be a family of curves parametrized by r in the x-y plane; here Cr is 
represented by the equation 

F(x, y, r)=O. (2·1) 

We suppose that {Cr}r has the envelope E, which is represented by the equation 

G(x, y)=O. (2·2) 

The problem is to obtain G(x, y) from F(x, y, r). 
Now let E and a curve Cr. have the common tangent line at (x, y)=(xo, Yo), i.e., 

(xo, Yo) is the point of tangency. Then Xo and Yo are functions of ro; xo=¢(ro), Yo 
= ¢( ro), and of course G(xo, Yo)=O. Conversely, for each point (xo, Yo) on E, there 
exists a parameter ro. So we can reduce the problem to obtain ro as a function of (xo, 
Yo); then G(x, y) is obtained as F(x, y, r(x, y))= G(x, y).*> ro(xo, Yo) can be obtained 
as follows. 

The tangent line of E at (xo, Yo) is given by 

¢'( ro)(x- Xo)- ¢'( ro)(y- Yo)= 0 , 

while the tangent line of Cro at the same point reads 

Fx(xo, Yo, ro)(x- xo) + FAxo, Yo, ro)(y- Yo) =0 . 

(2·3) 

(2·4) 

Here Fx=aF/ax and Fy=aF/ay. Since both equations must give the same line, 

Fx(xo, Yo, ro)¢'(ro)+ Fy(Xo, Yo, ro)¢'(ro)=O. (2·5) 

On the other hand, differentiating F(x(ro), y(ro), To)=O with respect to To, one has 

hence 

Fx(Xo, Yo, To)¢'( To)+ Fy(Xo, Yo, ro)t/l'(ro)+ Fro(Xo, Yo, To)=O, 

Fro(Xo, Yo, To) aF(xo, Yo, ro) 
a To 0. 

(2·6) 

(2·7) 

One can thus eliminate the parameter To to find a relation between xo and Yo, 

G(x, y)=F(x, y, ro(x, y))=O (2·8) 

with the replacement (xo, Yo)-+(x, y). G(x, y) is called the discriminant of F(x, y, r). 
Comments are in order here: (i) When the family of curves is given by the function 

y= f(x, r), the condition Eq. (2·7) is reduced to aJ/aro=O; the envelope is given by y 
= f(x, To(x)). (ii) The equation G(x, y)=O may give not only the envelope E but also 

*> Since there is relation G(xo, Yo)=O between Xo and Yo, ro is actually a function of Xo or Yo-
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A Geometrical Formulation of the Renormalization Group Method 505 

Fig. 1. A family of functions and its envelope: The thin lines represent y=exp(- e-ro)(l- e-(x- ro)) 

+exp( -x) with ro=0.2, 0.4, 0.6 and 0.8, which are attached to the respective lines. The thick line 
represents the envelope y=exp(-e-x)-exp(-x) (e-=0.8). 

a set of singularities of the curves {Cr},. This is because the condition oF/iJx=oF/iJy 
=0 is also compatible with Eq. (2·7). 

As an example, let 

(2·9) 

Note that y is unbounded for x- r-"oo due to the secular term. The envelope E of 
the curves Cr is obtained as follows: From o//or=O, one has r=x. That is, the 
parameter in this case is the x-coordinate of the point of the tangency of E and C,. 
Thus the envelope is found to be 

(2 ·10) 

One can see that the envelope is bounded even for x-"oo. In short, we have obtained 
a function as an envelope with a better global nature than functions which are 
bounded only locally. 

As an illustration, we show in Fig. 1 some of the curves given by y= !(x, ro) 
together with the envelope. 

§ 3. Formulation of the RG method based on the theory of envelopes 

In this section, we formulate and give a foundation of the RG method0 in the 
context of the classical theory of envelopes sketched in the previous section. Our 
formulation also includes an improvement of the prescription. 

Although the RG method can be applied to both (non-linear) ordinary and partial 
differential equations, let us take the following simplest example to show our formula
tion: 

(3·1) 

where € is supposed to be small. The solution to Eq. (3·1) reads 
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506 T. Kunihiro 

x(t)=Aexp(- ~ t )sin(/ 1- ~
2 

t + ()), (3·2) 

where A and () are constants to be determined by an initial condition. 
Now, let us blindly try to get the solution in the perturbation theory, expanding 

x as 

x(t)=xo(t) + €Xt(t)+ €2x2(t) + ··· , 

where Xn (n=O, 1, 2, ···)satisfy 

Xo+xo=O, Xn+t+Xn+t=-i:n. 

(3·3) 

(3·4) 

Thus xo=Aosin(t + 8o), Xt +xt =-Aocos(t + 8o), and so on. Then we get for Xt and X2 
as special solutions 

Xt(t)=- t ·(t- to)sin(t + Oo), 

X2(t)=1° {(t-to)2sin(t+8o)-(t-to)cos(t+8o)}. (3·5) 

Here we have intentionally omitted the unperturbed solution from xn(t)(n=1, 2, ···). 
Although this prescription is not adopted in Ref. 1), subsequent calculations are 
simplified with this prescription; see also § 4.*> It should be noted that the secular 
terms have appeared in the higher order terms, which are absent in the exact solution, 
and invalidates the perturbation theory for t far away from to. 

Inserting Eq. (3·5) into Eq. (3·3), we have 

x( t, to)= Aosin(t + Oo)- € 1° ( t- to)sin( t + Oo) 

+€21° {(t-to)Zsin(t+Oo)-(t-to)cos(t+Oo)}+0(€3
). (3·6) 

Now we have a family of curves {Cto}to given by functions {x(t, to)}to parametr
ized with to. They are all solutions of Eq. (3·1) up to 0(€3

), but only valid locally, i.e., 
for t near to. Let us find a function XE(t) representing the envelope E of {Cto}to· 

According to the previous section, we only have to eliminate to from 

ax(t, to) 
a to 

0, (3·7) 

and insert the resultant to(t) into x(t, to). Then we have XE(t)=x(t, to(t)). It will be 
shown that XE(t) satisfies the original differential equation Eq. (3·1) uniformly V t up 
to 0(€4

) (see below). 
Equation (3·7) is in the same form as the RG equation, hence the name of the RG 

method.!) In our formulation, this is a condition for constructing the envelope. 
Here comes another crucial point of the method. 1

> We assume that Ao and Bo are 
*> It is amusing to see that the unperturbed solution in the higher order terms Xn( n= 1, 2, ···) is analogous 

to the "dangerous" term in Bogoliubov's sense in the quantum-field theory of superfluidity and supercon
ductivity."1 
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functionally dependent on to: 

Ao=Ao(to), Oo= Oo(to), (3·8) 

and accordingly x(t, to)=x(t, Ao(to), Oo(to), to). Then it will be found that Eq. (3·7) 
gives a complicated equation involving Ao(to), Oo(to) and their derivatives as well as 
to. It turns out, however, that one can actually greatly reduce the complexity of the 
equation by assuming that the parameter to coincides with the point of tangency, that 
is, 

to=t, (3·9) 

because Ao(to) and Oo(to) can be determined so that to=t. We remark here that the 
meaning of setting to= t is not clearly explained in Ref. 1), while in our case, this has 
the clear meaning of choosing the point of tangency at t =to. *l 

From Eqs. (3·7) and (3·9), we have 

dAo A O dOo e
2 

O 
dto +€ o= ' dto +s= · (3·10) 

Solving the simple equations, we have 

(3·11) 

where A and 1f are constant numbers. Thus we get 

XE(t)=x(t, t)=Aexp(- ~ t )sin( ( 1- ~
2 

)t + 1!). (3·12) 

Noting that J1-e2 /4 =1-e2 /8+ O(e4
), one finds that the resultant envelope function 

XE(t) is an approximate but global solution to Eq. (3·1) (see Eq. (3·2)). In short, the 
solution obtained in the perturbation theory with the local nature has been "im
proved" by the envelope equation to become a global solution. 

There is another version of the RG method/) which involves a "renormalization" 
of the parameters. We shift the parameter for the local curves as follows: Let r be 
close tot, and write t-to=t-r+r-to. Then putting 

€ €2 
A(r)=Ao(to)Z(to, r), Z(to, r)=1--z (r- to)+s (r- toY, 

€2 
O(r)= Oo(to)+ oO, oO= -8 (r- to), (3 ·13) 

we have 

x(t, r)=A(r)sin(t + O(r))- EA~r) (t- r)sin(t + 8( r)) 

*l It is interesting that the procedure to get the envelope of x(t, Ao(to), 8o(to), to) assuming a functional 
dependence of Ao and 8o on to is similar to the standard method in which the general solution of a partial 
differential equation of first order is constructed from the complete solution.<> 
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508 T. Kunihiro 

+ €2 A~r) {(t- r)2sin(t + 8( r))-(t- r)cos(t + B(r))} + 0(€3
), (3·14) 

where 

x(r, r)=A(r)sin(r+ B(r)). (3·15) 

Then the envelope of the curves given by {x(t, r )}r will be found to be the same as that 
given in Eq. (3 ·12). 

This may conclude the account of our formulation of the RG method based on the 
classical theory of envelopes. However, there is a remaining problem: Does XE(t) 
=x(t, t) indeed satisfy the original differential equation? In our simple example, the 
result Eq. (3·12) shows that it does. It is also the case for all the resultant solutions 
worked out here and in Ref. 1). We are, however, not aware of a general proof 
available to show that the envelope function should satisfy the differential equation 
(uniformly) up to the same order as the local solutions do locally. We give here such 
a proof for a.wide class of linear and non-linear ordinary differential equations (ODE). 
The proof can be easily generalized to partial differential equations (PDE).12

l 

Let us assume that the differential equation under consideration can be converted 
to the following coupled equation of first order: 

d~~t) =F(q(t), t; €), (3·16) 

where 1q=(qt, Qz, ···),and Fare column vectors. It should be noted that F may be 
a non-linear function of q and t, although in our example, 

Q1 =X , Q2 = :i , F = ( Qz ) , 
-qt-€Qz 

(3·17) 

i.e., F is linear in q. We also assume that we have an approximate local solution 
ij(t, to) around t=to up to O(€n): 

One can see for our example to satisfy this using Eq. (3·6). 
The envelope equation implies 

oij(t, to) 
oto 

0 

at to= f. With this condition, QE(t) corresponding to XE(t) is defined by 

QE(f)= ij(t, t). 

(3 ·18) 

(3·19) 

(3·20) 

It is now easy to show that QE(t) satisfies Eq. (3·16) up to the same order that ij(t, 
to) does: In fact, for V to 

dqE(t) I 
dt t=to 

dij(t. to) I + oij(t, to) I 
dt t=to oto t=to 

dij(t, to) I 
dt t=to ' 

(3·21) 
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A Geometrical Formulation of the Renormalization Group Method 509 

where Eq. (3·19) has been used. Noting that F(qE(to), to; E)=F(q(to, to), to; €), we see 
Vt 

(3·22) 

on account of Eq. (3 ·18). This completes the proof. It should be stressed that 
Eq. (3·22) is valid uniformly V t in contrast to Eq. (3·18) which is valid only locally 
around t =to. 

§ 4. Examples 

Let us take a couple of example to apply our formulation. These can be convert
ed to equations in the form given in Eq. (3·16). 

4.1. A boundary-layer problem 

The first example is a typical boundary-layer problem:6
> 

d 2 d 
€____2:'._ + ( 1 + €) ____,!'_ + y = 0 

dx2 dx 
(4 ·1) 

with the boundary condition y(O)=O, y(1)=1. The exact solution to this problem is 
readily found to be 

(x)= exp( -x)-exp( -x €) 
Y exp( -1)-exp( -1 € · 

(4 ·2) 

Now let us solve the problem in the perturbation theory. Introducing the inner 
variable X by EX=x,6

> and putting Y(X)=y(x), the equation is converted to the 
following: 

(4·3) 

Expanding Y in a power series of € as Y = Yo+ € Y1 + €2 Y2 + · · ·, one has 

Yo"+ Yo'=O, 

Y{' + Y{ = - Yo'- Yo . 

(4·4) 

Here, Y'=dY/dX. To solve the equation, we set a boundary condition for Y(X) and 
Yo(X) at X=Xo: 

Y(X)= Yo(Xo)=Ao, (4 ·5) 

where Xo is an arbitrary constant and Ao is supposed to be a function of Xo. 
For this problem, we shall follow the prescription given in Ref. 1) for the higher 

order terms. Then the solutions to these equations may be written as 

Yo(X)=Ao- Boe-<X-Xo), 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/94/4/503/1934346 by guest on 20 August 2022



510 T. Kunihiro 

Yi(X)=- Ao(X- Xo)-(Bo+ Co)(e-<X-Xol_1). 

Defining A=Ao+ t(Bo+ Co) and B=Bo+ E(Bo+ Co), we have 

Y(X, Xo)=A- Be-<x-x.J_EA(X- Xo)+ 0(€2). 

In terms of the original coordinate, 

y(x, Xo)= Y(X, Xo)=A- Be-<x-xoJt•- A(x-xo)+ 0(€2) 

with xo= Xo/€. 

(4 ·6) 

(4·7) 

(4·8) 

Now let us obtain the envelope YE(X) of the family of functions { Y(X, Xo)}x. 
each of which has the common tangent with YE(X) at X= Xo. According to the 
standard procedure to obtain the envelope, we first solve the equation, 

gr =0 with Xo=X, (4 ·9) 

and then make the identification Y(X, X)= YE(X). 
Equation (4·9) claims 

A'+tA=O, B'+B=O (4·10) 

with the solutions A(X)=Aexp(-EX), B(X)=Bexp(-X), where A and B are 
constant. Thus one finds 

YE(X)= Y(X, X)=A(X)- B(X)=Ae-•x- .Be-x. (4 ·11) 

In terms of the original variable x, 

(4 ·12) 

It is remarkable that the resultant YE(x) can admit both the inner and outer boundary 
conditions simultaneously; y(0)=1, y(1)=1. In fact, with the boundary conditions we 
have A=B=1/(exp( -1)-exp( -1/t)), hence YE(x) coincides with the exact solution 

0.7 y 

0. 6 

0. 5 

0. 4 

0.3 

0.2 

0.1 

X 

0.2 0.4 0. 6 o .a 

Fig. 2. The thin lines represent y(x, xo)=A(xo)- B(xo)exp( -(x-xo)/E)- A(xo)(x-xo) with xo=0.2, 
0.4 and 0.8, which are attracched to the respective lines. The thick line represents y(x) given in 
Eq. (4·2) (c=O.l.). 
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A Geometrical Formulation of the Renormalization Group Method 511 

y(x) given in Eq. (4·2). 
In Fig. 2, we show the exact solution y(x) and the local solutions y(x, xo) for 

several xo: One can clearly see that the exact solution is the envelope of the curves 
given by {y(x, xo)}xo· 

A comment is in order here. If we adopted the prescription given in § 3 for the 
higher order terms, the perturbed solution Yi(X) reads Yi(X) =-Ao(X- Xo); note the 

boundary condition Eq. (4·5). Then the calculations following Eq. (4·6) would be 
slightly simplified. 

4.2. A non-linear oscillator 

In this subsection, we consider the following Rayleigh equation,6>,I> 

(4·13) 

Applying the perturbation theory with the expansion y=yo+ey1+e2y2+···, one 

has 

y(t, to)=RoSin(t+ 8o)+ e{ ( ~0 - ~03 )(t- to)sin(t+ 8o) 

(4 ·14) 

Here we have not included the terms proportional to the unperturbed solution in the 
higher order terms in accordance with the prescription given in § 3, so that the 
following calculation is somewhat simplified than in Ref. 1). Furthermore, the result 
with this prescription will coincide with the one given in the Krylov-Bogoliubov
Mitropolsky method,7> as we will see in Eq. (4·18). 

Equation (4 ·14) gives a family of curves { Ctolto parametrized with to. The 

envelope E of { Cto}to with the point of tangency at t =to can be obtained as 

oy(t, to) 
a to 

0 

with to= t. Assuming that Ro and Oo are ~ O(e) at most, we have 

Oo=O, 

the solution of which reads 

Ro(t) 

with Ro=Ro(O) and eo= constant. Thus the envelope is given by 

YE(t)= y(t, t)=Ro(t)sin(t +eo)+ eR9~)
3 

cos3(t +eo)+ 0(~). 

(4 ·15) 

(4·16) 

(4 ·17) 

(4 ·18) 
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512 T. Kunihiro 

This is an approximate but global solution to Eq. ( 4 ·13) with a limit cycle.*> We note 
that since Eq. (4 ·13) can be rewritten in the form of Eq. (3 ·16), Eq. (4 ·18) satisfies Eq. 
(4·13) up to 0(€2

). 

§ 5. A brief summary and concluding remarks 

We have given a geometrical formulation of the RG method for global analysis 
recently proposed by Goldenfeld et al. 1> We have shown that the RG equation can be 
interpreted as an envelope equation, and given a purely mathematical foundation to 
the method. We have also given a proof that the envelope function satisfies the 
differential equation up to the same order as do the functions representing the local 
curves. 

It is important that a geometrical meaning of the RG equation even in a generic 
sense has been clarified in the present work. The RG equation appears in various 
fields in physics. For example, let us take a model in the quantum field theory8> 

(5·1) 

where c.t. stands for counterterms. The true vacuum in the quantum field theory is 
determined by the minimum of the so-called effective potential CV( ¢c).8>·9> In the 
one·loop approximation, the renormalized effective potential reads 

(5·2) 

where M 2 is the renormalization point. To see a correspondence to the envelope 
theory, one may parametrize as ¢/=expt and M2 =expto. Then one sees that In 
¢c2 /M2 becomes a secular term t- to. In the quantum field theory, one applies the RG 
equation to improve the effective potential as follows:8>.w> 

(5·3) 

One sees that this is the envelope equation! The resultant "improved" effective 
potential is found to be 

(5·4) 

Thus one can now understand that the "improved" effective potential is nothing but 
the envelope of the effective potential in the perturbation theory. One also sees the 
reason why the RG equation with ¢c=M can "improve" the effective potential. Then 
what is the physical significance of the envelope function CVJmpr(¢c)? One can readily 
show that V M, 

*> Equation (4 ·18) is slightly different from the one obtained by Cheng, Goldenfeld and Oono!l due to the 
different prescription for the treatment of the unperturbed functions in the higher order terms. 
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A Geometrical Formulation of the Renormalization Group Method 513 

JC{J(r/Jc, M) I 
(Jrpc2 ;c=M' 

(5·5) 

owing to the envelope condition Eq. (5·3). This implies, for example, that the 

vacuum condensate r/Jc that is given by (JC{Jtmpr/o¢c2 =0 is correct up to the same order 

of the 1i-expansion in which the original effective potential is calculated; this is 

irrespective of the size of the resultant ¢c. Detailed discussion of the application of 

envelope theory to quantum field theory will be reported elsewhere. 11 >·*> 

The RG equation also has had remarkable success in statistical physics, espe

cially in critical phenomena.3> One may also note that there is another successful 

theory of critical phenomena called the coherent anomaly method (CAM).13
> The 

relation between CAM and the RG equation theory is not known. Interestingly 

enough, CAM utilizes envelopes of susceptiblities and other thermodynamical quan

tities as a function of temperature. It might be possible to give a definite relation 

between CAM and RG theory, since the RG equation can be interpreted as an envelope 

equation, as shown in this work. 
Mathematically, it is most important to give a rigorous proof for the RG method 

in general situations and to clarify what types of differential equations can be 

analyzed using this method, although we have given a simple proof for a class of 

ODE's. We note that the proof can be generalized to partial differential equations.12
> 

One should also be able to estimate the accuracy of the envelope theory for a given 

equation. We hope that this paper may stimulate studies for a deeper understanding 

of global analysis based on the theory of envelopes. 
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Note added in proof: After submitting the present paper, the author was informed that S.L. Woodruff 
(Studies in App. Mathematics 90 (1993), 225) also developed a new method for constructing a large-scale 
(global) solution motivated by the fact that the renormalization group technique of quantum field theory 
employs an in variance property to extend the region of validity of straighifonvard expansion: Starting from the 
multiple-scale singular perturbation theory, he constructs a uniformly-valid asymptotic expansion from the 
straighifonvard expansion at an arbitrary point in the large-scale domain, which includes secular terms. 
Although the key equation of his method is not exactly the RG equation, nor he mentions the relevance of 
envelopes, we believe that his method is also best formulated in the context of envelope theory. The author 
thanks N. Goldenfold andY. Oono for informing him of Woodruff's paper. 
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