## LETTER TO THE EDITOR

## A geometrical inverse problem

A G Ramm<br>Mathematics Department, Kansas State University, Cardwell Hall, Manhattan, KS 66506, USA

Received 12 December 1985


#### Abstract

A simple solution is given to the problem of finding the unknown boundary from the extra boundary condition.


Let

$$
\begin{aligned}
& \Delta u=0 \quad \text { in } \mathrm{D}, \quad u=u_{0} \quad \text { on } \Gamma_{0}, \quad u_{N}=u_{1} \quad \text { on } \Gamma_{0} \\
& u=0 \text { on } \Gamma_{1}
\end{aligned}
$$

or

$$
\begin{equation*}
u_{N}=0 \quad \text { on } \quad \Gamma_{1} . \tag{2b}
\end{equation*}
$$

Here $u=u(x, y), \mathrm{D}$ is a domain on the plane and is homeomorphic to an annulus, $\Gamma_{0}$ and $\Gamma_{1}$ are the boundaries of $\mathrm{D}, \Gamma_{0}$ is the inner curve and $\Gamma_{1}$ is the outer curve. We assume that $\Gamma_{0}$ is known and that $\left|u_{0}\right|+\left|u_{1}\right| \not \equiv 0$, i.e. at least one of the functions $u_{0}$ or $u_{1}$ does not vanish identically. The problem is to find $\Gamma_{1}$ given $\Gamma_{0}, u_{0}, u_{1}$ and the fact that the harmonic function $u$ vanishes on the unknown boundary $\Gamma_{1}$. We assume that $\Gamma_{0}$ and $\Gamma_{1}$ are closed smooth star-like curves, i.e. their equations in polar coordinates can be written as $r=f(\varphi)$, where $f$ is a differentiable $2 \pi$-periodic function.

This type of problem can be quite useful practically. For example, problem (1)-(2b) can be interpreted as follows: if $u$ is the velocity potential of an incompressible fluid, then the knowledge of $u$ and $u_{N}$ on $\Gamma_{0}$ implies that the velocity and the pressure are known on $\Gamma_{0}$, and we want to find the surface $\Gamma_{1}$ on which the normal component of the velocity vanishes, i.e. the bottom of the reservoir. A numerical method for solving problem (1)-(2a) is given in [1], where one can find other references. In [1] the existence and uniqueness of the solution to the problem (1)-(2a) and the convergence of the numerical procedure proposed there are not discussed. The numerical procedure is complicated: it is an iterative process, at each step of which one has to solve a linear boundary value problem and a Fredholm integral equation of the first kind. Here we give a simple solution to the problems (1)-(2) and discuss the questions of uniqueness and existence.

The uniqueness of the solution to (1)-(2a) is easy to establish. Indeed, if $\Gamma_{1}$ and $\Gamma_{1}^{\prime}$ are the solutions, then there exists a domain $\mathrm{D}^{\prime}$, bounded by some parts of $\Gamma_{1}$ and $\Gamma_{1}^{\prime}$, in which there exists a harmonic function, $u$, which vanishes on $\partial \mathrm{D}^{\prime}$. Therefore, $u \equiv 0$ in $\mathrm{D}^{\prime}$. This and the unique continuation property for harmonic functions imply that $u \equiv 0$ in its domain of definition. Therefore $u_{0}=u_{1}=0$, which contradicts our assumption. For problem (1)-(2b) uniqueness of the solution does not hold in general; see example 3 later in this
article. But if the boundary condition is $u_{N}=0$ on $\Gamma_{1}$, then the uniqueness of $\Gamma_{1}$ is guaranteed if $u_{0} \neq$ constant or $u_{1} \not \equiv 0$. Indeed, suppose there are two different surfaces, $\Gamma_{1}$ and $\Gamma_{1}^{\prime}$, on which $u_{N}=0$. Then there is a domain $\mathrm{D}^{\prime}$ bounded by parts of $\Gamma_{1}$ and $\Gamma_{1}^{\prime}$ in which $\Delta u=0$ and $u_{N}=0$ on $\partial \mathrm{D}^{\prime}$. Thus, $u=$ constant in $\mathrm{D}^{\prime}$, and, by the unique continuation property for solutions to elliptic equations, $u=$ constant everywhere in its domain of definition. Therefore $u_{0}=$ constant, $u_{1}=0$. Thus, there is at most one $\Gamma_{1}$ on which $u_{N}=0$ provided that $u_{0} \neq 1$ or $u_{1} \not \equiv 0$. Our method is applicable to other boundary conditions and other differential equations.

The existence of a solution to (1)-(2) cannot be guaranteed for arbitrary $u_{0}$ and $u_{1}$. These functions, being the Cauchy data for an elliptic equation, should satisfy some compatibility conditions. For example, if $u_{0}=0$ and $u=0$ on $\Gamma_{1}$ then $u \equiv 0$ in D , and $u_{1}=0$. Therefore problem (1)-(2a) has no solution if $u_{0}=0$ and $u_{1}=1$, for example.

A method for solving problem (1)-(2) is as follows.
(i) Without loss of generality, assume that $\Gamma_{0}$ is the unit circle. Otherwise one first maps conformally the exterior of $\Gamma_{0}$ onto the exterior of the unit circle.
(ii) Any harmonic function in the exterior of the unit circle can be written in polar coordinates as
$u(r, \varphi)=a_{0}+b_{0} \ln r+\sum_{n=1}^{\infty}\left[r^{n}\left(a_{n} \cos n \varphi+b_{n} \sin n \varphi\right)+r^{-n}\left(c_{n} \cos n \varphi+d_{n} \sin n \varphi\right)\right]$.
The constants $a_{n}, b_{n}, c_{n}, d_{n}$ are uniquely determined by the two functions $u_{0}$ and $u_{1}$ from the equations

$$
\begin{array}{llrr}
a_{0}=A_{0} & a_{n}+c_{n}=A_{n} & b_{n}+d_{n}=B_{n} & n \geqslant 1 \\
b_{0}=A_{0}^{\prime} & n\left(a_{n}-c_{n}\right)=A_{n}^{\prime} & n\left(b_{n}-d_{n}\right)=B_{n}^{\prime} & n \geqslant 1 \tag{5}
\end{array}
$$

where

$$
u_{0}=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \varphi+B_{n} \sin n \varphi\right)
$$

and

$$
u_{1}=A_{0}^{\prime}+\sum_{n=1}^{\infty}\left(A_{n}^{\prime} \cos n \varphi+B_{n}^{\prime} \sin n \varphi\right)
$$

Let $r=f(\varphi)$ be the equation of $\Gamma_{1}$. Then the unknown function $f(\varphi)$ can be found numerically from the equation

$$
\begin{equation*}
u(f(\varphi), \varphi)=0 \tag{6}
\end{equation*}
$$

if condition (2a) holds, and from the equation

$$
\begin{equation*}
\left.\frac{\partial u}{\partial N}\right|_{r=f(\varphi)}=\frac{\partial u}{\partial r}-\left.\frac{1}{r^{2}} \frac{\partial u}{\partial \varphi} \frac{\partial f}{\partial \varphi}\right|_{r=f(\varphi)}=0 \tag{7}
\end{equation*}
$$

if condition (2b) holds, where we used the formulae

$$
\nabla u=\frac{\partial u}{\partial r} e_{r}+\frac{1}{r} \frac{\partial u}{\partial \varphi} e_{\varphi} \quad N=e_{r}-\frac{1}{r} f^{\prime}(\varphi) e_{\varphi}
$$

and $e_{r}$ and $e_{\varphi}$ are coordinate unit vectors in polar coordinates. Here $u(r, \varphi)$ is given by (3) with the coefficients determined by (4)-(5). Equation (6) is just a transcendental equation for $f(\varphi)$. In some cases it can be solved analytically.

Example 1. Let $u_{0}=1, u_{1}=-1$. Then $A_{n}=B_{n}=A_{n}^{\prime}=B_{n}^{\prime}=0, n \geqslant 1, A_{0}=1, A_{0}^{\prime}=-1$. From (4), (5) one finds $a_{n}=c_{n}=b_{n}=d_{n}=0, n \geqslant 1, a_{0}=1, b_{0}=-1$. Thus $u=1-\ln r$. Equation (6) takes the form $1=\ln f(\varphi)$. Therefore $f(\varphi)=e$, and $\Gamma_{1}$ is a circle of radius $e$. Equation (7) takes the form $-1 / f(\varphi)=0$ and has no solutions.

Example 2. Let $u_{0}=\cos \varphi, u_{1}=\cos \varphi$. Then one can easily check that $u=r \cos \varphi$. Equation (7) becomes

$$
\cos \varphi+\frac{f \sin \varphi}{f^{2}} f^{\prime}=0 \quad f=c|\sin \varphi|^{-1} \quad c=\text { constant } .
$$

Here there is no bounded $f(\varphi)$ that solves equation (7). Therefore, the problem has no solutions.

Example 3. Let $u_{0}=1, u_{1}=0$. Then $u(r, \varphi)=1$, and any closed curve $\Gamma_{1}$ solves problem (1)-(2b).

The basic idea in this paper is as follows. Suppose that a certain function satisfies an elliptic equation for which the uniqueness of the solution to the Cauchy problem is established. Then by measuring the Cauchy data on a certain surface one can uniquely determine the function everywhere in its domain of definition. In particular, one can find the sets on which this function (or a certain combination of its derivatives) vanishes. This set is often of practical interest. For example, one can measure the pressure and velocity on the surface of the water and determine the surface of a submarine. Of course, the Cauchy problem for elliptic equations is ill-posed and its numerical solution is very difficult.

The author thanks ONR for support.

## Reference

[1] Jia-qi Liu and Ying-wei Lu 1985 A new algorithm for solving the geometrical inverse problems for a partial differential equation and its numerical simulation Proc. 11th IMACS Congress, Oslo vol. I pp 221-4

