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Abstract. A simple solution is given to the problem of finding the unknown boundary from 
the extra boundary condition. 

Let 

Au=O in D, u=u0 on To, U N = U I  on To (1) 

u = O  on rl (2a) 
or 

uN=0 on rl. (2b) 

Here u = u ( x , ~ ) ,  D is a domain on the plane and is homeomorphic to an annulus, To  and 
TI are the boundaries of D, To is the inner curve and TI is the outer curve. We assume that 
To is known and that lu0l + lull $0, i.e. at least one of the functions uo or u I  does not 
vanish identically. The problem is to find r, given To, U O ,  u1 and the fact that the harmonic 
function U vanishes on the unknown boundary rl.  We assume that To and TI are closed 
smooth star-like curves, i.e. their equations in polar coordinates can be written as r=f(p), 
wheref is a differentiable 2n-periodic function. 

This type of problem can be quite useful practically. For example, problem (1)-(2b) 
can be interpreted as follows: if U is the velocity potential of an incompressible fluid, then 
the knowledge of U and uN on To implies that the velocity and the pressure are known on 
To, and we want to find the surface rl on which the normal component of the velocity 
vanishes, i.e. the bottom of the reservoir. A numerical method for solving problem (1)-(2a) 
is given in [ 11, where one can find other references. In [ 11 the existence and uniqueness of 
the solution to the problem (1)-(2a) and the convergence of the numerical procedure 
proposed there are not discussed. The numerical procedure is complicated: it is an iterative 
process, at each step of which one has to solve a linear boundary value problem and a 
Fredholm integral equation of the first kind. Here we give a simple solution to the problems 
(1)-(2) and discuss the questions of uniqueness and existence. 

The uniqueness of the solution to (1)-(2a) is easy to establish. Indeed, if r and rl, are 
the solutions, then there exists a domain D’, bounded by some parts of r l  and rl,, in which 
there exists a harmonic function, U ,  which vanishes on aD’. Therefore, U = 0 in D’. This 
and the unique continuation property for harmonic functions imply that U = 0 in its domain 
of definition. Therefore uo = u1 = 0, which contradicts our assumption. For problem 
(1)-(2b) uniqueness of the solution does not hold in general; see example 3 later in this 
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article. But if the boundary condition is uN=O on rl, then the uniqueness of r l  is 
guaranteed if uo # constant or u1 $0. Indeed, suppose there are two different surfaces, I 

and r;, on which uN=O. Then there is a domain D' bounded by parts of r l  and r', 
in which Au=O and U N = O  on aD'. Thus, u=constant in D', and, by the unique 
continuation property for solutions to elliptic equations, U =constant everywhere in its 
domain of definition. Therefore u0=constant, u1 =O. Thus, there is at most one r l  on 
which UN = 0 provided that uo # 1 or u I  $ 0 .  Our method is applicable to other boundary 
conditions and other differential equations. 

The existence of a solution to (1)-(2) cannot be guaranteed for arbitrary uo and u l .  
These functions, being the Cauchy data for an elliptic equation, should satisfy some 
compatibility conditions. For example, if uo = 0 and u = 0 on r then u 0 in D, and 
u1 = 0. Therefore problem (1)-(2a) has no solution if uo = 0 and u1 = 1, for example. 

A method for solving problem (1)-(2) is as follows. 
(i) Without loss of generality, assume that To is the unit circle. Otherwise one first maps 

(ii) Any harmonic function in the exterior of the unit circle can be written in polar 
conformally the exterior of To onto the exterior of the unit circle. 

coordinates as 
W 

u(r, p)= a0 + bo In r + 1 [rn((a, COS np + bn sin np) + r-"(cn COS np + d, sin np)]. (3) 

The constants a,, b,, c,, d, are uniquely determined by the two functions uo and u I  from 
the equations 

n = l  

= A0 U, +- C, = A n  b, + d, = Bn n> 1 (4) 

bo = A b  n(a, - c,) =A:,  n(b, - d,) = Bh n > l  ( 5 )  

where 
W 

uo =A0 + 1 (An COS np + Bn sin ~ p )  
n= 1 

and 
W 

u1 = ~ b  + 1 (A:, cos np + B:, sin np). 
n =  1 

Let r=f(p) be the equation of r l .  Then the unknown functionf(9) can be found 
numerically from the equation 

u ( f ( y ) ,  ul) = 0 ( 6 )  

if condition (2a) holds, and from the equation 

-__ -  - - 

if condition (26) holds, where we used the formulae 

(7)  

and e, and e? are coordinate unit vectors in polar coordinates. Here u(r, p) is given by (3) 
with the coefficients determined by (4)-(5). Equation (6) is just a transcendental equation 
forf(p). In some cases it can be solved analytically. 



Letter to the Editor L2 1 

Example 1 .  Let uo= 1, u1 =-1. Then A , = B , = A ; = B ; = O ,  n> 1, A o =  1, Ab=- l .  
From (4), ( 5 )  one finds a,=c,=b,=d,=O, n > l ,  a o = l ,  bo=-1. Thus u = l - l n r .  
Equation ( 6 )  takes the form 1 =lnf(q). Thereforef(q)=e, and r l  is a circle of radius e. 
Equation (7) takes the form - l / f ( q )  =O and has no solutions. 

Example 2. Let uo =cos q, u I  =cos q. Then one can easily check that U =  r cos q. 
Equation (7) becomes 

Here there is no bounded f ( q )  that solves equation (7). Therefore, the problem has no 
solutions. 

Example 3. Let uo = 1, u I  =O. Then u(r, q)= 1, and any closed curve r l  solves 
problem (1)-(2b). 

The basic idea in this paper is as follows. Suppose that a certain function satisfies an 
elliptic equation for which the uniqueness of the solution to the Cauchy problem is 
established. Then by measuring the Cauchy data on a certain surface one can uniquely 
determine the function everywhere in its domain of definition. In particular, one can find 
the sets on which this function (or a certain combination of its derivatives) vanishes. This 
set is often of practical interest. For example, one can measure the pressure and velocity on 
the surface of the water and determine the surface of a submarine. Of course, the Cauchy 
problem for elliptic equations is ill-posed and its numerical solution is very difficult. 

The author thanks ONR for support. 
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