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A Geometrical Method or Optimal Control Problem
for Some Non.linear Systems

By Toshio NIWA

(Comm. by Kinjir6 KONUGI, M. 1. A., March 12, 1971)

0. Introduction. In this note we study the problem of optimal
control for some non-linear systems.

Let us consider the following control system"

( 1 ) dx --f(x, u),
dt

where u is a control parameter and belongs to some control domain U.
As was shown by E. Roxin [1] and J. Warga [3], it is proper to assume
the set F(x)= {f(x, u) u e U} is compact and convex. In fact convexity
of F(x)implies the closedness of the reachable set o the system (1),
therefore it guarantees the existence of optimal control for most control
systems, at least or time-optimal problem. Moreover, or the general
control system,

( 2 ) d_ff e G(x),
dt

if we take its relaxed system (3) instead of (2),

( 3 d__x e Convex hull of G(x)
dt

then for any solution x(t) of (3) there exists a solution of (2) which
approximates x(t) uniformely under fairly general condition, and con-
sequently it will be proper to consider the system (3) in the place of (2).

For the simplicity we consider the time-optimal problem and as-
sume F(x) is a compact convex set generated by finitely many extremal
points (vectors).

In the problem of time-optimal control, the value f(x, u)itself is
more important than the one of control parameter u, so we set the
system (1) in the following form"

( 4 d__x e Convex {X(x),..., X(x)},
dt

where x denotes a point of R, X,(x) (i- 1, ., r) smooth vector fields
on Rn, and Convex {X(x),..., X(x)} the convex set generated by the
points (vectors) X(x), ..., X(x).

1. Definitions. x= x(t) x(t Xo, to)(X(to x0, to) x0) is said to be
an admissible trajectory of the control system (4), when it is piece-wise
smooth and satisfies the following relation"
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dx(t) e Convex {X(x(t)), .,X(x(t))} a.e.t.
dt

For any points x and x in the domain D of R, the admissible
trajectory x() is said to be the trajectory joining x to x. in D, when
there exist times t and t such that x(t)- x, x(t) x, t <_ t. and x(t) D
or t_< t<_ t. We denote the set of all trajectories joining x to x in D
by T(x-x D).

We call the trajectory (t) e T(x-x. D) the time-optimal trajec-
tory rom x to x in D, i v(Y(t);x--x)<_v(x(t);xx) for any x(t)
e T(x-x; D), where v(x(t);x--x)--min {t--t x(t)--x, x(t)--x}.

Now the trajectory x(t)e T(x--x. ;D) is said to be (X,--X-...
-.X)-bang-bang type between x and x when there exist to_< t_<... _< t
such that x(to)- x, x(t)- x, and

dx(t) =X(x(t)) for t_< t< t (k-- 1, r).
dt

2. Local structure of optimal trajectory. A point x e R is said
to be (X,-X...--X)-type when there exists a neighbourhood U(x)
o2 x such that, or any two points x and x of U(x) i T(x-x U(x)):/:
then there exists one and only one time-optimal trajectory in R and
the trajectory is (X,X--. -X)-bang-bang type between x and x.

Our aim is to give a necessary and sufficient condition which
guarantees the point is (X-X...-Xr)-bang-bang type except the
set of "singular points".

Now let us assume n=r-2 or the simplicity. We give some
generalizations and remarks or the general cases.

Theorem.*) Let X(x) and X(x) be twice-continuously differen-
tiable vector fields in R. If I(X, X)0[0] at x e R, then x is the
point of (X-X)-[(X-X)-]-bang-bang type for the system;

(S) dx e Convex {X(x), X.(x)}.
dt

Here z/(X, X) det (X, X) det ([X, X], X- X). [X, X]
-gxX denotes the commutator product o the vector fields X and X,
and Tx the direction derivative" gx-X(x, x) 3/3x +X(x1, x) 3/3x, X
(X(x, xg, X(x, xg).

:. Proo of the theorem. Lemma. Let X(x) and X.(x) be dif-
ferentiable vector fields on Rn, then we have

The proof of this lemma is a direct consequence of the easy com-
putation so we omit it.

Now let us return to the verification of the theorem.
Let us assume A(X, X)>0 at x0 e R, and consider the following

equation"
Added in proof" Compare the method in "Hermes and La Salle" Func-

tional Analysis and Time Optimal Control, Academic Press, pp. 120-128 (1969)".



246 T. Nwk [Vol. 47,

(E) dx X(x) X(x) X(x).
ds

Let f(x) be a twice continuously differentiable integral of the equation
(E), i.e. gxf=O, such that g’x,fO. Existence of such integral is as-
sumed only on some neighbourhood of x0.

Let us show that lTzgx,f>O at x0"
VxVx,f VxVx,f P’Xllrxf Vx,xf cx-x.,xf x,xf

Put, [X,XI=aX+X, then we can see that a>0 at x0. In act,
A(X, X) det (X, X) det ([X, X], X--X)

det (X, X) det (--aXe-- X, X)
det (X, X) det (- aXe, X-X)
det (X, X0 det (aXe, X)
a(det (X, X))>0

.’. a>O
Therefore, VxVxf=Vx,+xf--(aVx, + flP’x)f --CrVxf >O.

Let U(xo) be a neighbourhood of x0 such that it is bounded by the
four solution-curves of the systems"

(E) dx X(x) (i= 1, 2).
ds

Such a neighbourhood exists because of the linear independence of
Xt(x) and Xz(x). Making U(xo) small, if necessary, we can assume
gxgxf is positive in U(xo) by the continuity of it.

Let us take points x and x in U(xo) such that T(x--+x; U(x0)).
Let (t) be the trajectory joining x to x in U(xo) of (X-X)-bang-bang
type. Existence and uniqueness of such trajectory is clear for the
shape of U(xo). Let x(t) be any trajectory of T(xx U(xo)). Because
of the linear independence of X(x) and X(x), the solution curve x(t) of
the system (S) transverses to the family of curves defined by f(x)=A
(--constant) in U(xo). Therefore, we can define the function A(t) of t
depending on x(t) by A(t)-f(x(t)).

As x(t) is the solution of (S), so we can write
dx(t) (1-u(t))X(x(t)) + u(t)X(x(t))
dt

where u(t) is a piece-wise continuous function such that 0_<u(t)< 1.
dA 7(1-u(t))X(w(t))
dt

Now
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Clearly Vx(())f<_’x,(())f on the curve f(x)-A because
(here, f(x(t))-f(())-A). So,

r((t) x--.x2)<_ r(x(t) x-x2),
where equality holds if and only if 2(t)-x(t) up to time translation.
This proves the time-optimality of the trajectory (t) in U(xo), and con-
sequently in R. q.e.d.

4. Generalization and remarks. It is interesting and important
problem to extend these arguments to the more general cases. But it
is not possible to extend our results by the same arguments without
some additional conditions.

Let us consider the case n)2, n >_r.
Put Y.(x)-X(x)-X(x) i= 1, ., r- 1. Assume that for any

x e R there exists a (r-1)-dimensional submanifold M-(x) such that
x e M-(x) and the tangent space TM-(x) to M-(x) at any point
y e M-(x) is spanned by {Y(y)" i-1, ..., r-l}. Namely, if Y(x),i
=1, ..., r--1 are completely integrable, then the arguments of 3 will
be available with slight modification even for this case. In the argu-
merits of section 3, M-(x) are the submanifolds {f(x)--A}.

In the case rn, another serious difficulties arise. They are the
very proper difficulties of the control problem. However, by consider-
ing the systems

dx e Convex {X, X}, 1GiGi_ GiGr.
dt

all together, we can deduce some information rom them for the system
considered. For instance, let us consider the system"

dx e Convex {X(x),..., X(x)}, x e R.
dt

If we have d(X, X2) 0, d(X2, X3) 0, and A(X, X3)0 near Xo, then the
optimal trajectory is of (X, X2, X)-bang-bang type near Xo.

5. Example. For the example, consider Mathien equation which
appears in the study of parametric-resonance"

( 5 ) dx --(1 + u)x,
dt

where u is a control parameter such that
Put x x, dx / dt x, then the system (5) becoms

( 6 dx x dx (1 + eu)x.
dt dt

If we put X-(x, --(1+)x9 and X=(x, --(1--)x9, then the system
will be the form"

dx e Convex {X, X} x-(x1, x) e R.
dt

In this case, we obtain by easy computation
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A(X, X)=8 (x)x.
x=0 and x=0 are the sets of singular points.
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