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Abstract 

The analysis of the Kirchhoff plate is performed using rational Bézier triangles in 

isogeometric analysis (IGA) coupled with a feature-preserving automatic meshing algorithm. 

IGA employs the same basis function for geometric design as well as for numerical analysis. The 

proposed approach also features an automatic meshing algorithm that admits localized geometric 

features (e.g., small geometric details, sharp corners) with high resolution. Moreover, the use of 

rational triangular Bézier splines for domain triangulation significantly increases the flexibility in 

discretizing spaces bounded by complicated NURBS curves. To raise the global continuity to C
1
 

for the solution of the plate bending problem, Lagrange multipliers are leveraged to impose 

continuity constraints. The proposed approach also manipulates the control points at domain 

boundaries in such a way that the geometry is exactly described. A number of numerical 

examples consisting of static bending and free vibration analysis of thin plates bounded by 

complicated NURBS curves are used to demonstrate the advantage of the proposed approach. 

Keywords: isogeometric analysis; Kirchhoff plate; Bézier triangle; automatic meshing; feature 

preserving; Lagrange multiplier 

 

1. Introduction 

Numerical modeling and analysis of plates of complicated shapes has continuously been a 

popular research topic because of the widespread applications of plate structures in various fields. 

Finite element analysis (FEA) of plates can be categorized into thin plate analysis based on the 

Kirchhoff plate theory and thick plate analysis based on the Reissner-Mindlin plate theory.  The 

main difference between the two prevailing theories lies in the fact that thin plate analysis 

assumes that the vector normal to the plate mid-surface remains normal to the mid-surface during 

deformation and thus does not take into account transverse shear deformations, whereas thick 

plate analysis does. Due to the fact that Reissner-Mindlin plate elements can be joined with C
0
 

continuity, the use of very simple basis functions is allowed. On the contrary, in the Kirchhoff 

plate formulation, because of the presence of second-order derivatives, C
1
 continuity is 

demanded between elements which requires higher order basis functions. For this reason, the C
0
 

shear deformable Reissner-Mindlin plate element is more propagated in commercial finite 
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element codes. However, most of the plate structures in reality belong to thin and very thin plates, 

and the use of C
0
 basis functions would usually result in various shear locking problems. 

Although the numerical analysis of thin plates is already a very mature field, to exactly 

describe the plate geometry can be rather difficult and sometimes inaccurate, particularly when 

the structures have curved boundaries or complicated cutouts are involved. The main reason for 

this lack of accuracy lies in the fact that the model created from standard FEA, which is 

represented by Lagrange basis functions, is only an approximation of the original computer-

aided design (CAD) model, which is described by Non-Uniform Rational B-spines (NURBS). 

About a decade ago, isogeometric analysis (IGA) was proposed by Hughes et al. [1] as a novel 

approach to bridge the gap between design and analysis. By employing the same basis functions 

used in geometric design to approximate field variables in an isoparametric sense, the models 

created using IGA possess geometric exactness. Other appealing features of IGA include high-

order continuity of basis functions, which further leads to more stable numerical conditioning, 

faster convergence of solutions, and so on. NURBS-based IGA has since been applied to the 

analysis of thin and thick plates ([2–8], to name a few). 

Nevertheless, NURBS functions, which are the main tool for IGA, exhibit a number of 

defects. First of all, NURBS h-refinement propagates across the entire domain, which 

compromises the efficiency of the method. Secondly, the control mesh generated is restricted to a 

quadrilateral shape and is therefore not flexible in discretizing domains of arbitrary topology. 

Moreover, the smoothness in multi-patch analysis using NURBS is not satisfactory. The patch 

interface is either C
0
-continuous or simply not closed (i.e., non-physical gaps). To regain control 

of the smoothness across the patch boundaries, additional efforts such as the imposition of 

geometric constraints [9] or the bending strip method [10] are necessary, which requires extra 

computational time. On the other hand, a variety of local refinement techniques have been 

developed to overcome the problematic tensor-product structure of NURBS, such as hierarchical 

B-splines [11,12], truncated hierarchical B-splines (THB-splines) [13], T-splines [14], locally 

refined splines [15] and polynomial splines over hierarchical T-meshes [16]. However, the 

construction of the aforementioned local refinement splines relies on complicated algorithms and 

the resulting mesh is still dependent on the four-sided geometry. On the contrary, the use of 

spline basis functions for domain triangulation increases the flexibility in discretizing complex 

spaces. One way to realize this is to use certain triangle-splitting algorithms such as the Powell-

Sabin splines [17–19] and the Clough-Tocher splines [20], depending on particular macro-

triangle structures. Higher-order Powell-Sabin splines are also available to triangulate a given 

space [18,21,22]. However, for a given space for triangulation, the Powell-Sabin triangles are 

sometimes not unique [23]. Recently, NURBS have been successfully converted to the non-

uniform rational Powell-Sabin splines (NURPS) [24]. To exactly recover the boundary NURBS 

curve of degree p, NURPS of degree p or higher should be used. For the recovery of the interior 

domain described by NURBS of bi-degree (p1, p2), NURPS of degree p1+p2 or higher should be 
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used. Powell-Sabin B-splines have been applied to study Kirchhoff-Love plate problems [25] 

and fracture mechanics [26] with satisfactory results. 

An alternative is to construct the domain triangulation through the use of rational Bézier 

triangles [27]. This approach is more general and does not depend on specific triangle-splitting 

schemes. Since rational basis functions of the Bézier-Bernstein form are used to represent the 

parametric space, it has the potential to describe the exact geometry as well. In our work, the C
0
 

rational Bézier triangles are employed for the representation of the triangulated space. Since the 

Kirchhoff plate formulation involves second-order derivatives of the basis function, at least C
1
 

continuity is required. For this reason, the global continuity of the triangular Bézier splines is 

raised to C
1
. Note that the approach we adopted can be used to elevate the splines to any desired 

continuity 
r

C . Lagrange multipliers are used to impose the Dirichlet boundary conditions and 

the continuity constraints. Considering that the use of Lagrange multipliers results in an increase 

of unknowns in the system equations, which hinders efficiency, an iterative approach for the 

solution of the Lagrange multiplier augmented system is provided as well.  

As to the parameterization of the boundary and interior space of the model, we leverage on 

the recently developed algorithm TriGA [28]. Specifically, a polygonal approximation of the 

NURBS boundary is first established through h-refinement and a dynamic quadtree 

decomposition algorithm. This procedure allows us to capture sharp geometric features with very 

good accuracy. With the polygonal approximation of the original NURBS curves computed, a 

linear domain triangulation can then be constructed by resorting to the meshing package mesh2d 

[29] that is available online. After that, the linear triangular elements are raised to cubic such that 

there are sufficient control points for imposing inter-element continuity constraints. The last step 

is to replace the control points at boundary with those governing the original NURBS curves. 

This boundary replacement algorithm is also discussed in [23]. Thus, a geometrically exact 

domain triangulation admitting sharp geometric features can be established. 

A Kirchhoff plate formulation is implemented into the algorithm. To verify our modeling 

approach, a number of plate models bounded by complicated NURBS curves are investigated in 

the context of static bending and free vibration analysis. Numerical results prove the accuracy 

and efficiency of the proposed method. 

2. A brief review of NURBS and rational Bézier triangles 

In this section, we give a brief review on the fundamentals of Bézier curves [30], NURBS [1] 

and the construction of rational triangular Bézier spline spaces [28]. 

2.1. Bézier and NURBS curve 

In one dimension, a degree-n Bernstein polynomial is defined as follows 
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The B-spline basis functions are related to the Bernstein basis through a Bézier extraction 

operator C [31] uniquely defined by a specified knot vector on the parametric space, and is 

written as 

( ) ( )tCBtN =  (3) 

Through projection of the B-splines from 
dℜ  to 

1+ℜd
 using the weights associated with the 

corresponding control points, a degree-n NURBS curve is then given as 
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where ncp  denotes the number of control points used to define the curve. 

2.2. Rational Bézier triangles 

A bivariate Bernstein polynomial can be constructed on a triangular domain as 

( ) kjin

ijk uuu
kji

n
B 321

!!!

!
=u  

(5) 

where n  is the polynomial order, the triplet ( )kji ,,  represent the ordinate index that sum to n , 

and { }321 ,, uuu=u  denote the barycentric coordinates of a point in the triangle. 

The rational form of the above Bernstein basis functions is written as 
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where w  is the weight. 

Finally, a rational triangular Bézier space can be defined as a linear combination of the 

rational Bernstein basis functions ( )un

ijkR  and the corresponding control points ijkb  

( ) ( )∑
=++

=
nkji

ijk

n

ijk bRT uu  (7) 

Fig. 1 illustrates the control lattice of linear, quadratic and cubic Bézier triangles on the 

parametric domain, respectively. 

3. Automatic domain triangulation based on dynamic quadtree decomposition 

Automatic mesh generation has been a very popular topic over the last a few decades and is 

by itself a very complicated process. Mesh generation using triangular segmentations is a very 

well developed field, and therefore our work resorts to a number of mesh generation algorithms 

that are available online, with a special leverage on TriGA [28] and mesh2d [29]. Our goal is to 

automatically generate a domain triangulation that is capable of capturing the local sharp features 

with high resolution and maintaining the exact geometry from the input NURBS curves. This is 

done via a dynamic quadtree decomposition algorithm presented in the work of Engvall and 

Evans [28]. To make this paper self-contained, we briefly discuss the algorithm. For details of 

the implementation aspects, the readers are recommended to look at the original paper.  

As illustrated in Fig. 2, the automatic mesh generation algorithm can roughly be divided into 

four steps: 

1). Constructing a polygonal approximation: the input NURBS curves are firstly subdivided 

through h-refinement (i.e., knot insertion) until a sufficiently close polygon approximating the 

NURBS curve is generated by connecting control points. This process is guided by a prescribed 

threshold ϕ  defined as the relative difference between the length of the NURBS curve on each 

knot span and the length of the polygon approximating it. Mid-span knot insertion is performed 

until the relative difference on every span is within the given limit. 

2). Generating quadtree background mesh: the mesh is further refined by evaluating a linear 

sizing function for every side of the polygonal approximation and subsequently comparing it to 

the side length. If the ratio exceeds a given threshold (normally 1.5), mid-span knot insertion is 

performed to enrich the local curve. The process iterates until the above ratio for all the sides is 
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below a prescribed tolerance. This part of the algorithm can be realized using the mesh2d.m 

function [29]. 

3). Triangulating polygonal domain: based on the polygonal approximation of the input 

NURBS boundary curves, a linear domain triangulation can be automatically constructed with 

any standard meshing tool available in commercial software or open source toolkit (e.g., the 

meshpoly function in mesh2d). 

4). Elevating polynomial degree and recovering exact boundary: the global continuity of the 

polynomials is raised to a desired order (usually bicubic as it is the standard in CAD) and knots 

that correspond to the polygon vertices are repeated 1−n  times such that C
0
 continuity at the 

vertices is imposed. Additionally, the control points at the boundary edges are substituted by the 

control points obtained from h-refinement of the original NURBS curves. In this way, the exact 

boundary is recovered. 

4. Enforcing high-order continuity via Lagrange multipliers 

In this section, the 
r

C  continuity constraints for inter-element continuity are explicitly 

defined. In order to impose the continuity constraints, a number of approaches can be used: (1) 

the master-slave method, (2) penalty method, (3) boundary minimum determining set (BMDS) 

approach, and (4) Lagrange multipliers. The master-slave method is inferior in handling arbitrary 

constraints. The penalty method requires careful selection of the penalty weight to avoid ill-

conditioning. In the BMDS used in [23], solving for the reduced row echelon form is 

computationally expensive. Moreover, relaxing the constraints on the boundary vertices by 

restraining the internal free vertices that have influence on the constrained boundary vertices 

requires user intervention. In addition, careful selection of the free internal vertices is necessary 

to avoid inaccurate results. On the other hand, the continuity constraints can be exactly enforced 

through the use of Lagrange multipliers, but this method increases the size of the problem by the 

number of constraint equations. In the following, we provide an iterative solution procedure 

presented in [32] that solves the Lagrange multiplier augmented system without increasing the 

system size. 

In the domain discretized by Bézier triangles, the neighboring triangles are connected with C
0
 

continuity. However, the formulation of Kirchhoff plate involves second order derivatives of the 

basis functions, and therefore raising the degree of continuity at the common edges is necessary. 

Assuming two adjacent triangles ( )321 ,, vvvT  and ( )234 ,,
~

vvvT  that share the edge 
32vv , they 

can be joined with 
r

C  differentiability if and only if [27]: 
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where r≤≤ γ0 , nkj =++γ , { }321 ,, uuu  are the barycentric coordinates of the vertex 4v  

relative to T . An example is shown in Fig. 3 where two bicubic triangles are joined with C
1
 

continuity.  

Collecting the continuity constraints computed in Eq. (8), we can write them in matrix form 

as 

GLd =  (9) 

where L  is the matrix containing the coefficients of the constraints, d  is the vector including the 

ordinate information, and G  is the right-hand side of the continuity constraint equations. 0G =  

in the case of enforcing the continuity constraints. We use G  in the derivation to keep the 

method general. Note that, to avoid the ill-conditioning of the augmented stiffness matrix, in 

which the L  matrix is not of full rank, a preprocessing step is recommended to sort out the 

linearly independent rows in L  to use for enforcing higher-order continuity. 

The Lagrange multiplier augmented system can be expressed as follows 
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where K  is the stiffness matrix, F  is the forcing vector, and λ  denotes the Lagrange multiplier 

vector. 

When a large number of continuity constraints are to be enforced, solving Eq. (10) can be 

very costly. Alternatively, an iterative approach can be used to solve the problem without 

increasing the matrix size. Consider a variant of Eq. (10) where the lower diagonal block of zeros 

is replaced by a diagonal matrix consisting of small numbers, termed a constraint-scaling 

diagonal matrix, i.e. 









−
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λ
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(11) 

where ε  is a small number and I  is the identity matrix. 

The above system can be expressed in an iterative form as 
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(12) 

where i  indicates the 
th

i  iteration. 

Multiplication of TL  to the second equation in Eq. (12) and rearranging terms yields 

( ) ( ) ( )iTTiTiT
ww λLGLLdLλL +−= ++ 11

 (13) 

where 
ε
1

=w  is the weight. 

Combining Eq. (13) with the first equation in Eq. (12) results in the following 

( ) ( ) ( )iTTiT
ww λLGLFdLLK −+=+ +1  (14) 

Taking an initial guess of 
( ) 0λ =0

 yields 

( ) ( ) ( )GLFLLKd TT
ww ++=

−11  (15) 

Recall from the first equation of Eq. (12) that 
( ) ( )iTi λLKdF += . Substituting this into Eq. 

(14) leads to 

( ) ( ) ( )( )GLKdLLKd TiTi
ww ++=

−+ 11  (16) 

Eq. (15) and Eq. (16) can be used to solve the augmented Lagrangian system iteratively. Note 

that this method essentially combines the penalty method with the Lagrange multiplier method. 

By solving the problem iteratively, it circumvents the problematic ill-conditioning issue 

exhibited in the penalty method. 

5. Governing equations for the Kirchhoff plate 

5.1. Kinematics 

Let ijm  be the bending moment of a plate and q  the external distributed load vector. The 

equilibrium equation for a Kirchhoff plate can be expressed as 

qm ijij =,  (17) 
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where the comma indicates differentiation and i , j  are the indexes ranging from one to two, 

since the out-of-plane stresses are assumed to be zero. 

Multiplying Eq. (17) with the variation in transverse displacement dδ  and integrating over 

the entire domain Ω  yields the following 

( ) ( ) ∫∫∫∫ ΩΩ∂Ω∂Ω
Ω=+−+−+Ω dqddsMnmddsQndmdmd ijijiijijijij δδδδ ,,,  

(18) 

where ijijd κ=,  is the curvature The second and third terms on the left-hand side are the shear 

and moment boundary conditions on the boundary Ω∂ , respectively. Neglecting the boundary 

terms yields the weak form 

∫∫ ΩΩ
Ω=Ω dqddmijij δδκ  

(19) 

In Eq. (19), the bending moments ijm  can be computed as 

∫−−=
2/

2/

t

t
ijij zdzm σ  

(20) 

where t  is the thickness of the plate. 

The stress-strain relationship for a homogeneous and isotropic plate is 
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where E  and ν  represent the Young’s modulus and Poisson’s ratio, respectively. Eq. (21) can 

be written in shorthand as ijij εσ C= . The strain vector can be rewritten in terms of transverse 

displacement as 

2

2

11
x

d
z
∂
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2
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22
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d
z
∂
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−=ε , 
yx

d
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∂
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2

12ε  
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Substituting Eq. (21) and Eq. (22) into Eq. (20) leads to the moment-curvature relationship 
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(23) 

Combining Eq. (23) and Eq. (19) gives 

∫∫ ΩΩ
Ω=Ω dqddijij δκδκ C  

(24) 

where C  is the material matrix shown in Eq. (23). 

5.2. Discretized form 

The input NURBS geometry is triangulated using the approach discussed in Section 3 along 

with the rational triangular Bézier splines. Recall from Section 2 that R  is the rational Bézier 

basis function used to represent a triangular patch. The transverse displacement in one patch can 

then be represented using the following 

Rd=d  (25) 

Differentiating Eq. (25) twice with respect to the physical coordinates results in the 

expression for the curvature 

Bd=κ  (26) 

where 

T

yxyx








∂∂

∂
∂
∂

∂
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2

2

2
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Substituting Eq. (25) and Eq. (26) into Eq. (24) leads to the final expression of the weak form 

∫∫ ΩΩ
Ω=Ω qdd

TTT RdCBdBd δδ  
(27) 

From the virtual work equation (i.e., Eq. (27)), we obtain the stiffness K  and forcing terms 

F , i.e., 

∫Ω Ω= d
TCBBK  

∫Ω Ω= qdRF  

(28) 
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5.3. Free vibration analysis 

For free vibration analysis of the Kirchhoff plate, the weak form of the elastodynamic 

equilibrium equation is written as follows: 

0=Ω+Ω ∫∫ ΩΩ
dtd

TT uuCεε ρδδ  
(29) 

where ρ  is the mass density, u  is the displacement tensor and u  represents the acceleration 

tensor. The displacement tensor is defined as 

[ ] d
y

z
x

zdvu

T

T









∂
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−
∂
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−== 1u  
(30) 

and the acceleration tensor is obtained from Eq. (30) by differentiating twice in time. 

Eq. (29) can be concisely expressed in the form 

 0dMKd =+   (31) 

Based on Eq. (25) and integrating over the thickness, the mass matrix takes the form 

∫Ω Ω
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The general solution of Eq. (31) is 

( )θωφ += tsindd  (33) 

where ω  is the frequency and φd  denotes the eigenmode obtained from the following 

eigenvalue problem 

( ) 0dMK =− 2ω  (34) 

The above problem essentially amounts to a generalized constrained eigenvalue problem, the 

solution of which requires special treatment. To solve Eq. (34), a solution procedure presented in 

[33] is used to compute a constrained stiffness matrix incorporating Lagrange multipliers. The 

natural frequencies and eigenmodes governing the vibration are further obtained from the 

eigenvalue analysis. 

6. Numerical examples 
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In this section, four numerical examples of Kirchhoff plates of complicated geometries are 

demonstrated in the context of static bending and free vibration analysis. For all of the examples 

shown, a 28-point quadrature rule is used for the integration over the triangle, and a 5-point 

quadrature rule is employed for the integration over the edges to ensure the accuracy of the 

solution. The results are compared to analytical solutions, if available, or converged finite 

element solutions using Abaqus. 

 

6.1. Bending of a simply supported circular plate  

To verify the plate formulation, a simply supported circular plate subjected to uniform 

loading is analyzed. For this example, an exact solution is available in [34] and is reproduced 

here in Eq. (35). The geometry and material properties are illustrated in Fig. 4 along with the 

deformed shape.  

( ) ( )
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where r  is the radius of the point at query and ( )2

3

112 ν−
=

Et
D . 

Four meshes with different thresholds ϕ  are illustrated in Fig. 5, from which it is easy to see 

that the boundary mesh becomes finer as the threshold value ϕ  gets smaller. The relative error at 

the center of the plate and the L
2
 relative error norm 2

L
e  are measured against the analytical 

solution. Results are also compared with uniform meshing using Abaqus linear triangular shell 

element S3 (see Table 1). Note that, Eq. (36) was used to calculate the L
2
 norm 2

L
e . In terms of 

the relative error at the center of the plate, we observe that our solution with %3≤ϕ  already 

outperforms the Abaqus model with 604 nodes.  The L
2
 relative error norm also shows a faster 

convergence with our proposed model. Worth noting is that the Abaqus S3 element for thin plate 

analysis employs five degrees of freedom (DOF) per node, whereas our proposed element has 

only one DOF per node, which further demonstrates a significant saving in computational cost. 
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(36) 

6.2. Bending of a perforated circular plate 
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In this example, a more complicated geometry is used to demonstrate the ability of the 

proposed approach in capturing local geometric features. Specifically, a perforated circular plate 

with simply supported boundary condition is subjected to uniformly distributed load. The 

dimensions, loading condition, and the simulation results are shown in Fig. 6. The material 

properties are the same as in the first example. 

To illustrate the capability of the proposed approach in discretizing space bounded by 

complicated NURBS curves, four meshes of the perforated plate are shown in Fig. 7. As we can 

see, the holes in the plate are accurately captured. To verify the deformation, our results are 

compared with the converged solution using the Abaqus linear shell element S3, as listed in 

Table 2. Again, we observe that the results agree very well.  

Note that the relative error at %3≤ϕ  is fairly large, but it does not indicate that %3≤ϕ  is 

not a good setting for all cases. The threshold ϕ  is merely a control parameter relative to the 

dimension of the local feature. In other words, %3≤ϕ  is likely to result in very satisfying result 

if the radius of the holes in the plate is not very small. 

6.3. Free vibration of a square plate with an elliptical hole 

In this section, the undamped free vibration analysis of a simply supported square plate with 

an elliptical hole of varying radius is investigated. The dimension of the plate is illustrated in Fig. 

8. The thickness of the plate is mt 05.0= . The material properties are: Young’s modulus 
211102 mNE ×= , Poisson’s ratio 3.0=ν  and mass density 38000 mkg=ρ . The mesh 

generated with %1≤ϕ  is shown in Fig. 9. 

The dimensionless parameter 
ndΩ  is used to measure the natural frequency and is defined as 

4

1
42









=Ω

D
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ρω
 

(37) 

The solutions are compared with those modeled using the Abaqus linear shell element S4R 

and are listed in Table 3. As we can see, the results are in very good agreement. The first 10 

vibration modes are plotted in Fig. 10 for illustrative purposes. 

6.4. Free vibration of a square plate with a heart-shape cutout 

In the last example, a simply supported square plate with a heart-shape cutout is used to 

demonstrate the performance of the proposed plate model. The dimension of the plate is shown 

in Fig. 11. The thickness of the plate is mt 05.0= . The material properties are the same as the 

third example. Free vibration analysis is conducted, for which a number of reference solutions 
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are available in the literature [8-10]. The dimensionless parameter 
ndΩ  defined in Eq. (37) is 

used to measure the natural frequency. 

The automatically generated meshes are shown in Fig. 12, in which we can observe that the 

proposed approach is able to handle sharp geometric corners fairly easily. The natural 

frequencies and mode shapes of the first 10 modes are listed and plotted in Table 4 and Fig. 13, 

respectively. As we can see, the free vibration results match very well with those in literature. 

7. Concluding remarks 

In this paper, we solved the Kirchhoff plate problem using isogeometric analysis (IGA). The 

parameter space was represented by rational Bézier triangles, and the analysis was further 

facilitated by an automatic meshing algorithm that admits local geometric features with high 

resolution. Due to the use of rational Bézier splines, the proposed model was extremely flexible 

for representing geometries comprised of complex topologies. In addition, the replacement of 

control points at domain boundaries yielded a geometrically exact model to be analyzed. By 

resorting to the Lagrange multipliers, the global continuity of the domain triangulation was 

elevated to C
1
, which is suitable for Kirchhoff plate analysis. Numerical examples comprised of 

static bending and free vibration analysis of plates bounded by complicated NURBS curves 

verify the accuracy and efficiency of the proposed modeling approach. In the future, we intend to 

investigate the performance of the developed plate model for stability analysis. 
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Table 1. Relative error in deflection using different thresholds 

Threshold 
ϕ  

%3≤  %1≤  %5.0≤  %1.0≤  Abaqus exact 

solution 

#nodes 169 481 1273 3004 37 105 237 604 - 

#DOF 169 481 1273 3004 185 525 1185 3020 - 

center 

deflection
310−×  

 

-8.699 

 

-8.690 

 

-8.694 

 

-8.699 

 

-7.996 

 

-8.430 

 

-8.564 

 

-8.655 

 

-8.695 

relative 

error 

0.046% 0.058% 0.005% 0.050% 8.039% 3.048% 1.507% 0.460% - 

2
L

e   

0.803% 

 

0.181% 

 

0.065% 

 

0.012% 

 

7.724% 

 

2.287% 

 

0.910% 

 

0.311% 

 

- 
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Table 2. Relative error in deflection using different thresholds 

Threshold ϕ  %3≤  %1≤  %5.0≤  %1.0≤  Abaqus 

#DOF 2949 5154 9219 17109 162600 

max deflection -0.007367 -0.008273 -0.008608 -0.008772 -0.008950 

relative error 17.687% 7.564% 3.821% 1.988% - 
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Table 3. Natural frequencies of the square plate with an elliptical hole 

 

Mode 
1=ba  2=ba  3=ba  4=ba  

Abaqus %3≤ϕ
 

%1≤ϕ
 

%5.0≤ϕ  Abaqus %1≤ϕ  %5.0≤ϕ  Abaqus %1≤ϕ  %5.0≤ϕ
 

Abaqus %1≤ϕ
 

%5.0≤ϕ
 

#nodes 11734 585 1128 2001 11382 1314 2034 10835 1644 2505 10623 1530 2196 

1 4.3876 4.5419 4.4809 4.4423 4.3725 4.5058 4.4587 4.3550 4.5108 4.4755 4.3436 4.5455 4.4970 

2 6.9581 7.1086 6.9936 6.9669 6.6411 6.6689 6.6613 6.0098 6.0724 6.0484 5.3019 5.3728 5.3734 

3 6.9582 7.1720 6.9937 6.9683 6.9127 6.9162 6.9227 6.9298 6.9783 6.9681 6.9975 7.1451 7.0998 

4 8.7803 8.8150 8.8040 8.8067 8.6904 8.6915 8.7006 8.4595 8.4901 8.4783 7.9516 8.0177 8.0112 

5 9.7965 9.8998 9.8113 9.8027 9.6815 9.6819 9.6840 9.6498 9.6792 9.6723 9.7759 9.9202 9.8772 

6 10.0848 10.4552 10.3084 10.2298 10.3845 10.5686 10.5129 10.4431 10.5391 10.5203 10.3834 10.4428 10.4390 

7 11.2292 11.3397 11.2882 11.2987 10.8277 10.9352 10.9038 10.4642 10.5433 10.5284 10.4189 10.4877 10.4871 

8 11.2293 11.3483 11.2883 11.2994 11.2325 11.2764 11.2692 11.3071 11.3736 11.3502 10.9105 11.0077 11.0073 

9 12.7027 12.9518 12.8121 12.8005 12.0485 12.1568 12.1390 11.5094 11.5863 11.5666 11.5470 11.6823 11.6525 

10 12.7032 12.9707 12.8124 12.8012 12.9157 13.0627 13.0437 12.8471 13.0027 12.9357 12.2924 12.4050 12.4054 
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Table 4. Natural frequencies of the square plate with a heart-shape cutout 

 

Mode 
Threshold ϕ  Cubic 

NURBS [2] 

Moving Kriging 

interpolation [35] 

Radial point 

interpolation [36] %3≤  %1≤  %5.0≤  

#nodes 384 777 1671 512 506 - 

1 5.3688 5.1618 5.0386 5.193 5.3898 4.919 

2 6.6041 6.4982 6.4205 6.579 7.5023 6.398 

3 7.1068 6.9956 6.8818 6.597 8.3470 6.775 

4 8.7629 8.6670 8.6151 7.819 10.6358 8.613 

5 9.3238 9.1539 9.0555 8.812 11.0484 9.016 

6 10.9440 10.7818 10.7140 9.420 12.8945 10.738 

7 11.1755 11.0085 10.9480 10.742 13.7100 10.930 

8 11.9959 11.7631 11.6683 10.776 14.0620 11.601 

9 13.4042 12.9533 12.8590 11.919 16.6492 12.903 

10 13.6026 13.3453 13.2412 13.200 17.3641 13.283 

 

 

This article is protected by copyright. All rights reserved.



NME_5809_F1.tif

This article is protected by copyright. All rights reserved.



NME_5809_F2.tif

This article is protected by copyright. All rights reserved.



NME_5809_F3.tif

This article is protected by copyright. All rights reserved.



NME_5809_F4.tif

This article is protected by copyright. All rights reserved.



NME_5809_F5.tif

This article is protected by copyright. All rights reserved.



NME_5809_F6.tif

This article is protected by copyright. All rights reserved.



NME_5809_F7.tif

This article is protected by copyright. All rights reserved.



NME_5809_F8.tif

This article is protected by copyright. All rights reserved.



NME_5809_F9.tif
This article is protected by copyright. All rights reserved.



NME_5809_F10.tif

This article is protected by copyright. All rights reserved.



NME_5809_F11.tif

This article is protected by copyright. All rights reserved.



NME_5809_F12.tif

This article is protected by copyright. All rights reserved.



NME_5809_F13.tif

This article is protected by copyright. All rights reserved.


