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A GEOMETRY FOR E;
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Abstract. A geometry is defined by the 56-dimensional representation M of a Lie
algebra of type E,. Every collineation is shown to be induced by a semisimilarity of
M, and the image of the automorphism group of M in the collineation group is shown
to be simple.

Using the 56-dimensional ternary algebra 9% with an alternating bilinear form
introduced in [2], we define here a geometry and investigate its collineation group.
The objects of the geometry are, in the real case, essentially the planes of the
symplectic geometry for E; introduced by H. Freudenthal [4]. In §1, the notion of
semisimilarities of M is introduced, some semisimilarities are exhibited, and some
identities in the group of semisimilarities are demonstrated. In §2, we define the
geometry, show that semisimilarities induce collineations, derive some transitivity
results, and prove that every collineation is induced by a semisimilarity. Finally,
in §3, we show that the image of the automorphism group of 9t in the collineation
group is a simple group.

1. Semisimilarities. If F=3(N, 1) is a quadratic Jordan algebra over a field ®
constructed as in [6] from an admissible nondegenerate cubic form N with base-
point 1, then yU,=T(x, y)x—x# x y where T( , ) and x — x* are respectively the
associated nondegenerate bilinear form and quadratic mapping, and xxy
=(x+y)yf—x#—y*. As in [2, pp. 399-401], we may construct IM=M(J)
=0u; @ Ou, D J10 @D Foy With elements

(1.1) X = oy +Pus+a5+byy; a,Bed;a,bel;

with a nondegenerate alternate bilinear form ¢ , >, and with a ternary product
{, , » defined by

(1.2) (X1, X2 = o1fo— Py —T(ay, by)+T(ay, by),
(1.3) (X1, Xg, X3) = YUy +OUp+C1a+dy,
where

y = afoes+2e 03— 3T (as, by) — 2xT(ay, b3) — a1 T(az, bs) +T(a,, as x a3),
¢ = (2afs+T (b, as))ay +(e1fs+T(b;, as))as+(e1fa+T(by, az))as

—arby X by — agby X by — azby X by —{a,byas} —{a,bsas} —{azb,as},
8= —y°, d= —c°
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50 J. R. FAULKNER [May

where o is the permutation o=(«f)(ab) with x;=cu; + Bus+(a;)12+ (b)21 € M. In
[2, pp. 399-401], it was shown that

(T1) <x, y, 2>=Ly, X, 2)+<x, y )z,

(T2) <{x,y, 2> =Lx,2, y >+, 2)X,

(T3) x5 20, wy =KX, ps w), 2y +<x, y><{z, w),

(T4) <<x9 Vs Z>a v, w>=<<x, v, W>’ Vs Z>+<X, <y, v, W>, z>+<x, Vs <Z, w, U>>,
for x, y, z, w € M. We also wish to recall that we have a nondegenerate four-linear
form q(x, xa, X3, X4) =<{X1, X3, X3, X4, fOr x; € M.

If ¥ =3(N’, 1') where N’ is an admissible nondegenerate cubic form with base-
point 1’ on & over a field @', if M'=IM(J’), and if s is an isomorphism of @ onto
@', then an s-semilinear mapping W of MM onto M’ satisfying

(1.4) q'(cL W, xoW, x3sW, x4W) = pq(xy, X3, X3, X4)’, x; € I,

for a fixed 0+#p € @' is called an s-semisimilarity of M to M’ with multiplier p. If
s=1, Wis a similarity. If s=1and p=1, then Wis a form preserving map. If =I’,
we denote the group of semisimilarities (respectively, similarities, form preserving
maps) by I'=T(M) (respectively, G =G(M), S=S(M)).

LEMMA 1. An s-semilinear map W of M onto M’ is an s-semisimilarity with
multiplier p if and only if p=2X%, A€ @', and {x, W, xoW, xsW ' =X({xy, X3, Xa) W),
for x, € M. In this case, <X, W, x, W' = A Xy, X3)°

Proof. If W is an s-semilinear map of 9% onto M’, we may define an s~ -semi-
linear map W* of M’ onto M by

(1.5) W,y =<Kx, y W*)s, xeM,y e WM.

If W satisfies (1.4), then {x; W, xoW, xsW)' W* =p*"*(x,, Xa, x3» for x; € M. By
(T1) we have (x,W, x,W 'S (xsWW*)=p*"'(x,, x5)x5. Hence, xWW*=X""x
where A e @' is given by X(x; W, x,W)'=p{xy, x5)°, x; € M. Now A x; W, x, W)’
= XX, X WIW 8= 2%xy, X5)°, x; € M, so p=A% We see

W, xoW, X3 W' = p({Xy1, X2, Xa) W* 1) = pA~1 (X1, X2, X3D W)
= A<X1, Xg, X3) W), x; € M.

Conversely, if (x; W, x,W, xsW)' = M<xy, Xq, X3) W), then (T1) yields
AW, xoaWH (X3 W) = XXy, X9)%(x3 W)
and
W, W' = X xq, X2)°.
Clearly,

q' 1 W, xoW, X3 W, x, W) = K1 W, %o W, X3 W', x4 W'
= )‘2‘1(?‘1, Xgy X3, Xg)°

for x; € M as desired.
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1972 A GEOMETRY FOR E; 51

It is now clear that if W is an automorphism of M (i.e. <x, W, x,W, xsW)
={X1, Xg, X3, X; € M), then W e S(IM). We denote the group of automorphisms
by Aut ().

We shall now exhibit some semisimilarities of M to M'. If W is an s-semi-
similarity of & to & (with respect to N and N'; see [3, p.10]) with multiplier A, then
we define W by

(1.6) xW = oSuy+ Mug+(@aW)ia+(AbW)g,  xasin (1.1),

where W=W*-1and T(x'W*, y)=T'(x', yW), x' € ¥, y € S. An easy calculation
using (1.22) and (1.23) of [3] shows

1.7 {xy W, sz, x3W>, = AM{xy, Xa, x3>W), x; € M,

so W is an s-semisimilarity with multiplier A by Lemma 1.
If 3=8’', we may define ¢ by

(1.8) Xe = Bul—alJ2—b12+a21, X as iIl (l.l).

Clearly ¢2= —1 and one checks that ¢ is an automorphism of 9.
If ce 3=, we may define 7, by

(1.9)  xt, = auy +(B+T(b, c)+T(a, c*)+aN(c)us+(a+ac)o+(b+ax c+act)y,

for x as in (1.1). We shall show that ¢, € Aut (3%), but first we introduce S, defined
by

(1.10) xSe = T(b, cJuz+(ac)12+ (@ X €)a1,

for x as in (1.1). Clearly, St =0, and if ® is not of characteristic two or three, then
t.=exp (S;)=1+S.+3S2+1S2. One checks that {x, u;, —c,,>=xS,and {uy, —cg;>
=0 for x € M. Thus by [2, p. 404], we see that S, is an inner derivation of M. It is
now clear that ¢, is an automorphism of M, if @ is of characteristic zero.

A lengthy calculation would verify that ¢, is an automorphism for arbitrary fields.
However, we shall be content to show this for § a 27 dimensional exceptional
simple Jordan algebra by the following trick. By extending ®, we may assume that
J=9(L;) where © is the split octonion (Cayley-Dickson) algebra. © has a basis
x=ey;, e;j, el, (e;j)l, i=1, 2, with the involution given by &, =e,, j= —j, I= —1I, and
multiplication given by e =e,, j2=12=1=e, +e,, al=1a, a(bl)=(ba)l, (al)b=(ab),
(al)(bl)=ba, for a, b either ¢, or e,j, i=1, 2. ¥ has a basis a= 1[ii], x[ij], x as above,
and i<j=1, 2, 3. M has a basis u;, ay;, i, j=1, 2, i#J, a as above. Using (1.3), one
sees that the multiplication table for M relative to this basis is integral. The action
of ¢, on I given by (1.9) is also integral for ¢ belonging to the basis for §. For such
a ¢, the automorphism condition for ¢, follows from the one in which D is the split
octonion algebra over the integers, which follows in turn from the one in which ©
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52 J. R. FAULKNER [May

is the split octonion algebra over the reals. Thus, 7, is an automorphism, if ¢
belongs to the basis for §. Easy calculations show

(1.11) tty =t,4q4 forec,deg,
(1.12) t.W =Wty forcel Wel(3),

where I'($) is the group of semisimilarities of &. Since W may be taken to be «l,
0#a« € @, we see that 7., 1, € Aut (M) imply o, 54 € Aut (M) for o, B € O. Thus,
t.e Aut (M) for all ce . i

We now list two more identities which may be checked directly. The second is
an analogue of Hua’s identity (see [5, p. 144]).

(1.13) eW=(W)~ e, for W e I'(I) with multiplier A.

(1.14) etet.-1et,=—N(c)"Y(U,)~, for c € § with N(c)#0.

2. The geometry and collineations. We denote by II(IM) the set of 0#x e M,
x as in (1.1) with

at = ab, bt = fa, N(a) = o?, N(b) = of?,

2.1) T(a, b) = 3B, V., = 208l

We say x € II(9R) is an element of rank one.

LemMA 2. If x e II(9) and p=t,, W, &, or Al, where ce S, W e T'(), 0£A e @,
then x° € II(M).

Proof. We may assume that the field @ is infinite. The set S={xe I | x as in
(1.1) with «#0#B8€ @, a#0#b € J} is open in the Zariski topology on M and
IT U {0} is closed. Hence II® U {0} is also closed and II® N S is dense in I1° U {0}.
Thus, we need only show I1° N S<II U {0}. If x € S with a#=«b and b#=Ba, then
x € Il, since w##=N@u, T(u, u*)=3NW), V..+=2Nw)l for ue . Thus, if
x'=a'uy +B'us +ay,+ by, =x° for x € I1, we need only show (a'y#*=o'b’, (b')¥=B'a’.
These follow by direct calculation from the definitions and (1.1), (1.1a), (1.1b),
(1.21), and (1.22) of [3].

If V(M) (respectively, G'(M); Aut’ (IR)) denotes the group generated by ¢,
W, e, Al where ce 3, W e I(3), 0# A € @ (respectively, W e G(3); We S(3), A=1),
then I"(IM) = (M), G'(M)< G(M), and Aut’ ()< Aut (M) by (1.7). From now on,
we shall assume 3 =9(Ds, y), a reduced exceptional simple Jordan algebra (see [6]).

LEMMA 3. If x € 3, then the following are equivalent:

(a) x is of rank one.

(b) <M, x, x>=0 and dim M, =dim M., where M,={y | <M, y, x>=0, y e M}.
(©) x°=oqu, for some p € Aut’ (M), 0%« € O.

Proof. Since u, is of rank one, we have (c) implies (a) by Lemma 2. Since
(M, uy, u;»)=0and Aut’ (IM)< Aut (M), we see that (c) implies (b).
We shall next show that if 0#x € I with x as in (1.1), then after replacing x by
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x° for some ¢ € Aut’ (M), we may assume «#0 and a=0. First, we shall get «#0.
If e=0and B0, apply e. [f c=8=0, then one of a or b is nonzero, and by applying
&, we may assume b#0. Since the elements 0#c € § with ¢#=0 span §, we may
find such a ¢ with T(b, ¢)#0 and replace x by xt. to get «#0. If «#0, replacing x
by xt_,-1, allows us to assume a0 and a=0 as desired.

If (a) holds, we may normalize x as above so a#0 and a=0. Since T(a, b)
=3eB and V, ,=20B1, we see B=0. Also, a*=a«b implies b=0, so x=ou; and (c)
holds.

If (b) holds, we again normalize x so «#0 and a=0. The condition {y, x, x> =0
for all y=cy,, c€ G, yields (ef+T(a, b))l =2V, ,. Hence, B=0.

If y=pus +nug+ris+ss, p,ne®@; r,s€, then using (1.3) one checks that
ye M, if and only if na—T(r, b)=0, s+pb=0, sxb=0, V,,=0 (since V,,=0
implies ¥, ,=0 and 2T(b, r)=T(1V,,)=0; and {scb}=T(s, c)b+T(c, b)s—(s x b)
xc, c€ ). Thus, M, ={pu;+r5| pe ®,reJ} and dim M, =28. If b#0, then
ye M, implies n=a"'T(r, b), s= —a~1pb where V,,=0 and 2pb#=0. Since y
depends linearly on the choice of p and r, and since dim M, =28, all reJ are
possible for y; but ¥, ,=0 for all r € § implies =0 (use (1.35) of [3]), a contradic-
tion. Thus, x=au,.

We are now in a position to define a “geometry” from M. If x e II(M), let
X={ax | 0#a € ®} and let 2(M)={% | x € [I(M)}. Define £ incident to y (denoted
%|p) if R(x, y)=0, where zR(u, v)={z, u, v), u, v, z € M; and define X connected to
y (denoted X~yp) if (x,y>=0. Since <x,y>l=R(x,y)—R(y,x) and since
uR(x, y), v>+<u, vR(y, x)> =0 (see (2.7) of [2]), we see that £|y implies $|% and
X,

If § =9(D3, y), if x € [I(M), and if W is a semisimilarity of M onto M’ =M(F’),
then x W satisfies condition (b) of Lemma 3, so xW € I1(M’). Thus, we may define
amap "W of Z(M) onto P(M') by X" W' =(xW)". It is clear that W is a colline-
ation in the sense X|p if and only if 2" W73 W™ and £~ if and only if 2" W™
~p" W If H is a subgroup of I'(IM), then we denote the image of H in the col-
lineation group of Z(M) under W — "W by PH. The kernel of W— "W in
(M) is easily seen to be {al | 0#a € D}.

One checks immediately from (1.3) that %|4, if and only if x=au, +a,, € [I(IM),
ae®, aeQ. Hence, £|i; and £~d, if and only if x=a,, and a e TI($), where
I(})={0#a €| a*=0}. Similarly, £|d, and £~d, if and only if x=b,, and
b e TI(Q). If a € II(Y), we shall set a,=(a;5)” and a* =(a,,)". Using (1.1) and (1.2),
we see ay,~b, and a*~b* always hold, a,~b* holds if and only if T(a, b)=0;
each of ay|b, and a*|b* hold if and only if a x b=0; while a,|b* if and only if
V,a=0 (since V, ,=0 implies V,,=0 and T(a, b)=0), for a, b € I1(JF). Hence,
{as, b*|a, b € I1(J)} may be identified with Z(3) as defined in [3, p. 32] (with a slight
change of notation). Moreover, if W e I'(3) so W e I'(3), we see that if we abuse
notation and set "W7="W7, we get a,” W'=(aW), and a*" W =(aW)* for
a € TI(Q), which agrees with the action of I'(§) on Z(J) given in [3, p. 32].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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LEMMA 4. P Aut’ (M) is transitive on
(a) xe2(WM).

(b) £, € P(M) with 4.

(c) %,y e P(M) with £, .

(d) %, y € P(M) with £|p, X#J.

Proof. Lemma 3 yields (a). In the remaining cases we may assume y=u, and x
is as in (1.1). In case (b), {x, y>#0 implies «#0, and we may assume a«=1. The
condition x € II(M) yields a*=5b and N(a)=B. Hence, x=u,1,. Since uyt,=u,, we
are done in this case. In case (c), «=0 and a#0. If 8#0, then b*=Ba implies b #0.
One may choose ¢ € TI(J) with T(b, c)= —B. Replacing x by xt., we may assume
a=B=0and a#0. If 50, then a, b € TI(Y) and a, |b* since V, ,=0. By [3, Lemmas
3.6 and 3.3] we know that there exists c,|b* with c,fa,, and that we may choose ¢
such that a x c= —b. Replacing x by xt., we may assume a=8=0, b=0, and a#0
(since V;, =0 implies T'(b, c)=0). Since PS(J) is transitive on points of Z(3J), we
may choose We S(J) such that X" W '=a,” W =e,, where e II(J) is fixed.
Since u,W =u,, we are done in this case. In case (d), we have «=0 and a=0. Since
y#X, we see b#0. We may choose c € II() with T'(b, c)=—B and replace y by
yt, to assume a=B=0, a=0, b#0. Since PS(J) is transitive on lines of Z(J), we
may choose We S(J) with 3" W'=b*" W =e*, where e e II(J) is fixed. This
completes the proof of the lemma.

We shall need the following result about $(O3, v).

LemMa S. If W is an s-semilinear map of I=9(Dg, y) to itself such that for
a € II(Q) there is 0+# A, € © with aW = Aa, then W=l for some 0# X € ©.

Proof. We may assume J=9(D3) and Aé;=1. If ue O and 0#p e @, then
x=pey+p " *n(u)e+u[12] € II(). Since e,W=e, and e;W=A,e,, we see that
u[12]W=¢,e, + €2e5+ A,u[12] where 05 A=A, is independent of u and

2.2) Mm=ps+¢ for0 # ped,
2.3) A~ In(w) = (un(u))réz+ €, for 0 # ue @,

If @ has two elements, then A,#0 implies A,=1 for all a € II(). Since TI()
generates & under addition, W=1. If 0#p,, u, € @, with p, # u,, then (2.2), with
B=pa, Mo, B — Re, gives £,=0. Thus, p=1 yields A=1 and hence s=1. Similarly,
(2.3) yields £,=0 and Aé,=1. Thus, W is linear and e, W=e,, u[12]W=u[12] for
u € O. Similarly, e W=e;, u[ij]W=ulij], ue O, i#j=1,2,3 and W=1.

THEOREM 1. If 3=9(D3,y) and M=I(J), then T'(M) (respectively, G(M);
Aut () is generated by t., W, ¢, Al where c€ S, W e I(S), 0# A € © (respectively,
WeGR); WeSR), A=1).

Proof. Using the notation preceding Lemma 3, we need only show that I'(30t)
cI'(M), GM)=G'(M), and Aut (M) Aut’ (MM). If WeT'(M), then "W is a
collineation of (M), and by Lemma 4(b) there is W, e Aut’ (M) with 4" W™
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=4 "W, i=1, 2. Since "WW3'" induces a collineation of #(J), we may apply
the fundamental theorem of octonion planes (see [3, p. 40]) to find W; € I'(Y) such
that "W, agrees with "WW ;1" on 2(3). Since u, WW3W351=xu, and, by
Lemma 5, a,,WW5W;51=(ya),,, a€ 3, for some 0#£), ne ®, we may set
Wi=A"1nWsto get W = WW3 Wi A~ satisfying x W' = auy + pBuy+ay5+ (ub)s,
for some fixed 0#p, p € @, x as in (1.1). (Note: W’ is linear on &, and hence on
all of M.) If «=B=1 and a=b=1, then xW’' e II(IM) which implies p=p=1 by
(2.1). Hence, W’'=1 and W=W,W,, 0#£Xe®, W,eI(3), W,ecAut' (M).
Clearly, I'(M) = TV'(M).

If WeG(M), then W, must be linear so G(M)=G'(M). If W e Aut (M), then
AW, € Aut (). If W, € G(3) has multiplier p, then 1={Au, W,, AuW,>=22p. Set
c=(A—1)e+1 €3 where e € J is a primitive idempotent. Since ¢##= Ac, we see that
N(c)=A and U, € G(J) with multiplier A2=p~*, By (1.14), we see that A~}(U,)~
€ Aut’ (M). But AW, A-YU,)~ =(W,U,)~ € Aut’ (M) since W,U, e S(3). Thus,
AW, € Aut’ (M) and Aut ()< Aut’ ().

We shall need the following result on the plane Z(3).

LEMMA 6. If x4, yx € P(J) and x>~ z* if and only if y,~z*, then x,=y,.

Proof. Since PI'(Y) is transitive on points of (), we may assume x=e,
where ey, e,, 3 are pairwise orthogonal primitive idempotents for §. If I is split,
then there is a basis for § of elements of rank one of the form z=e,, a,[jk], i, j, k# ;
a; € O, n(a;)=0. The condition T(y, z)=0 if and only if T'(e,, z)=0 yields y € De,,
as desired. If  is not split, then Z(J) is a projective plane and u, ~v* if and only
if uy|v* (see [3, p. 50]). Thus, y.|ed and y,|e¥ implies y,=e; 4.

We shall eventually show that every collineation of Z(IR) is in PT'(M), but first
we must demonstrate the following two characterizations of the identity: col-
lineation.

LeEMMA 7. If o is a collineation of P(IN) such that o fixes i, and all points incident
to i, then o is the identity.

Proof. We have (au; +a,,)” and i, fixed by o, for a € @, a € II(J). Since by
(1.3) #, is the unique point of Z(M) incident to all a,, a € II(Y), 4 =4,. Since
o stabilizes Z(3J) and fixes the points a,, a € II(J), o also fixes a*. Let y =yu, + Su,
+c15+dy; € II(M) and let j°=p’ where y' =y'uy +8'us+cio+ds,. If =0, then
Jy'=~i, implies 8" =0. In this case, d, d’ € II(3). The condition j~a, if and only if
y' ~a,, aell(F), implies d'=Ad for some 0#Ae ® by Lemma 6. If §#0, then
8'#0, and we may assume 8=8=1. Then p~(ou,+a,;)” if and only if
V' ~(au; +ay,)”, ae @, aell(Q), implies T(d, a)=T(d’, a), ae II(J) or d=d’. In
either case, j° =(éu; + 8uy+hy5+dy;)” for some ¢ € @, h e J. In particular, o fixes
all points (8uy+d,;)”. Using the above argument, for some 0%#p € @, one sees
§°=(yu,+ pdug+c,5+ pd,,)". Since c#=yd=pyd and since ¢=0 implies y=0 or
y=yu, (and o fixes y in either case), we may assume c € II(3). Similarly, we may
also assume d € II(J) so y=38=0 and c,|d*. If b €  is such that T(d, b)=T(c, b*)
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#0, then §~w implies §°~w°=w where w=u; +N(b)uz+b;;+(b#)y. Thus,
pT(d, b)=T(c, b¥) and p=1. To show such a b exists, we choose cy4|d* and cz,
such that c=c¢,, ¢y, ¢c; form a three-point (see [3, p. 33]). If b=c;+c,+c3, then
T(c;, d)=0, i=1, 2, and T(c3, d)#0 since d* =(c, x cp)*. Thus, T(b, d)#0. Also,
T(cyxc, c;)=0, i=2,3, and T(cyxcg, ¢1)#0, so T(b?, ¢)#0. Replacing b by
T(b, d)T(b*, c)~'b, we get b as desired.

LeMMA 8. If o is a collineation of P(M) fixing ay, a € I(Y), and (u, +e,5)" for
some e € II(3), then o is the identity.

Proof. As in the proof of Lemma 7, we see that i, is fixed by o. The condition,
344, implies #g=(cu, +us+ayo+by)" for some a € @; g, beJ. Since d5~cy,
ceTI(S), we see b=0 and a=0, «=0, by (2.1). Thus, #3=4d, and a*’=a* for
a € TI(R), since o stabilizes Z(S) and fixes its points. Since £°|#, and £ ~a* if and
only if £~a*, a e II(Q), for x=u, +¢;5, ¢ € II(F), we see that £7=(u, + p(c)c12)”
for some O0#p(c)e ®. Similarly, (us+ds) =+ Nd)ds)” for dell(S),
0#£A(d) € ®. Since there is a norm similarity W of & to J with e; W=e, where
ey, e,, e, are the diagonal idempotents of §'=9H(Dg), we may assume I=3' and
e=e,, after replacing ¢ by "W7" W= If T(c,d)=1, then (u;+p(c)c12)”
~ (ug+ Md)dy,)” implies p(c)A(d)=1. Since p(e;) =1, we see A(e; +u[lj]+n(w)e;) =1
for j=2, 3, ue ©. Letting u=1, we get p(e;)=1, j=2, 3. Since A(e;)=1, i=1, 2, 3,
we have p(e,+ulij]+n()e)=1 for all ueO, i=1,2,3. If x=u;—n(u)(eg):.
+ (u[ij])2; then x e II(M) since N(u[ij])=0, and X7 =(uy+ (v#),3+v,,) for some
ve . Since X9 ~ay, if and only if £~a, for a € II(J), we see T(u[ij], a)=0 if and
only if T(v, a)=0 for a € II(J). Taking a=e;, e;+s[ij]+n(s)e;, s€ O; i,j=1, 2, 3,
i#j, we get v=_¢ufij] for some 0+ ¢ € @. Choose s € © with n(s, u)= —1. Then
£~9 implies £°~p°=3 for y=u;+(e;+s[ij] +n(s)e;)12. Thus, én(s, u)=—1 and
£=1. Hence, #°=%. If a=> we;+> a[jk] with a.[if]#0 and a e II(J), then
choose ue O with n(u, a,)=—1. Then (u;+a,,)"’~% and p(a)=1. If a=«e,
0#ac @, then what was just proved shows p(ae;+a[if]+ae;)=1 which implies
Ma~te))=1and p(a)=1. Thus, p(a)=1 for all a € TI(J), and o fixes &, and all points
incident to #,. By Lemma 7, o is the identity.

THEOREM 2. If §=9(D3, v) and ' =H(Ds, ¥'), then o is a collineation of P(IMM(ST))
onto P(M(Y)) if and only if e="W" for some semisimilarity W of M(F) onto M(F").

Proof. By Lemma 4(b), we may assume that i/ =;, i=1, 2. Thus, ¢ induces a
collineation of Z(3) onto Z(3’). By the fundamental theorem of octonion planes
(see [3, p. 40]), o agrees with "W on 2(J) for some semisimilarity W of ¥ onto
Q’. Replacing o by o" W71, we may assume J=g', @/ =4d;, i=1,2, a;=a,,
a*=a*, for a € II($). If e € II(), then (u; +e,2)"°|iF;, and (u; +e;5)"~a* if and
only if (4, +e,5)" ~a* imply by Lemma 6 that (u; +e,5)"° = (u, + pe;2)” for some
0+#p € ©. Replacing o by ¢"(p~*1)"7, we may assume that o fixes ay, a € II(J) and
(u;+e,5)". By Lemma 8, o is the identity.
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3. Simplicity of P Aut (). The purpose of this section is to prove the following
THEOREM 3. P Aut (M) is a simple group.

We shall first establish some facts about P Aut (I%).
LeMMA 9. P Aut (M) is a primitive permutation group of P(M).

Proof. By Lemma 4(a), P Aut (M) is transitive. Suppose M, M,, ... is a system
of imprimitivity for P Aut (M) with &, € M,. If &, # X € M, then either £34,;
X~4, and ®fid;; or £|d4,. By Lemma 4, we may assume £=i,, £=ef, or £=e;4
where e;, e,, e; are orthogonal primitive idempotents for §. Let z=u, +(e,),, and
w=u;+(e;+e3)12+(e3)s1, 50 z, w e II(M). If £=il,, then Z4d,¥W so 2, we M,.
But 2|4; and w~d, with W{i,, so elements of all three types are in M,, and M,
=P(M). If £=ef, then w4, with Wi, implies w € M,. But w4 ef, and we may
apply the previous case. If £=e,4, then e¥|e,, implies e € M;. But e¥~d, and
e3td, and we may apply the second case.

We denote by T(J) the group {t, | a € J}.

Lemma 10. PT(Q) is a normal abelian subgroup of the subgroup H of P Aut ()
fixing iy,

Proof. PT($) is abelian by (1.11) and fixes 4, by (1.9). If o€ H, write ¢
=(u;+a,2+(a#)2; + N(@)uy)~. Replacing o by o"f_,7, we may assume i =i,
i=1, 2. By the proof of Theorem 2, we have o="W" for some W € I'(¥). We see
ot lo="W U W ="ty", ceS, by (1.12), so PT(S) is normal in H.

Set v,=¢"t.efor ce G so
xv, = (e—T(a, c)+T(b, c#)—BN(c))u,

G.1) +Bup+(@a—bx c+Bch)s+(b—Bc)sy for x as in (L.1).

A direct calculation verifies, for u € O,
(3.2) te,Vuniaif - e,V - unnzinwe, = (Tunizy,e,)”™
where in general T, ,=1+V, ,+ U,U, (see [3, p. 17)).
LemMMA 11. Aut () is generated by conjugates of T(J) in Aut (M).

Proof. If G is the group generated by conjugates of 7(J) in Aut (M), then by
(1.14) with c=1, we see e= —(t et et;) "1 =(t,e"*t1et;) 1 € G. Since v, € G for
c €y, (3.2) shows that (Tyg,.,)" € G. Theorem 4.7 of [3] implies that conjugates
Of Tup19),e,, u € O, in S(J) generate S(JI). By Theorem 1, we see G=Aut (M).

LemMmA 12. P Aut (IR)=2(P Aut (M), the derived group.

Proof. By Lemma 11, we need only show "1,” € D=2(P Aut (I)), ae J. By
(1.11), (1.12), the fact that II(3) spans & and the transitivity of PS(J) on points
of 2(3J), we need only show #,,, € D for all « € ®. Since Typs,., € 2(PS(J)) by
Lemma 4.6 of [3], we see by (3.2) that v,., € D for all u € O. Hence, fnu, € D.
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If « € ®, there exist u, v € O with n(u, v) =n(u+ v)—n(u) —n(v)=c. Thus, by (1.11),
tse, € D, as desired.

Proof of Theorem 3. This follows immediately from Lemmas 9, 10, 11, 12 and
Lemma 4, p. 39 of [1].
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