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A GEOMETRY FOR E7
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Abstract. A geometry is defined by the 56-dimensional representation ÜJ! of a Lie

algebra of type E7. Every collineation is shown to be induced by a semisimilarity of

3W, and the image of the automorphism group of SO! in the collineation group is shown

to be simple.

Using the 56-dimensional ternary algebra VR with an alternating bilinear form

introduced in [2], we define here a geometry and investigate its collineation group.

The objects of the geometry are, in the real case, essentially the planes of the

symplectic geometry for E7 introduced by H. Freudenthal [4]. In §1, the notion of

semisimilarities of 5ÖI is introduced, some semisimilarities are exhibited, and some

identities in the group of semisimilarities are demonstrated. In §2, we define the

geometry, show that semisimilarities induce collineations, derive some transitivity

results, and prove that every collineation is induced by a semisimilarity. Finally,

in §3, we show that the image of the automorphism group of 9JI in the collineation

group is a simple group.

1. Semisimilarities. If %=3(N, 1) is a quadratic Jordan algebra over a field O

constructed as in [6] from an admissible nondegenerate cubic form N with base-

point 1, then yUx = T(x, y)x — x*xy where T( , ) and x -> x* are respectively the

associated nondegenerate bilinear form and quadratic mapping, and xxy

= (x+y)*-x#-y#. As in [2, pp. 399-401], we may construct 2Jl = 2tt(,3)

= «D«! © Oh2 © 312 © 321 with elements

(1.1) x = aux+ßu2 + a12 + b21;       a, ß e <S);a, b e$;

with a nondegenerate alternate bilinear form < , >, and with a ternary product

< , , > defined by

(1.2) (xu x2y = aiß2 - a2ßi - T(au b2)+T(a2, b{),

(1.3) (xu x2, x3} = yu! + 8u2 + c12 + d21,

where

y = a1ß2a3 + 2a1a2ß3-a37\a1, b2)-a2T(au b3)-ayT(a2, b3) + T(au a2xa3),

c = (a2ß3 + T(b2, a3))a1 + (a1ß3 + T(b1, a3))a2 + (a^2 + T(bu a2))a3

— a-J}2xb3 — a2bx xb3- a3b1 x b2 - {ûiè2a3} - {01^3^2}—{^26103}.

8 = -y",       d= -c",
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50 J. R. FAULKNER [May

where o is the permutation a = (aß)(ab) with xi = ajw1+|SiM2-f(ai)12 + (6i)21 e 9JÎ. In

[2, pp. 399-401], it was shown that

(Tl) <x, y, z> = <v, x, z> + <X y}z,

(T2) <x,j,z> = <x, z,y } + {y, z>x,

(T3) «x, y, z>, w> = «x, y, w>, z> + <x, j><z, u>>,

(T4) «x, y, z>, v, w} = «x, v, w>, y, z> + <x, <^, v, w), z> + <x, y, <z, w, t;»,

for x, j, z, w g 50L We also wish to recall that we have a nondegenerate four-linear

form q(xx, x2, x3, x4) = «X!, x2, x3>, x4> for x¡ e 9JÍ.

If 3'=3(N', 1') where A!' is an admissible nondegenerate cubic form with base-

point 1' on Q' over a field $', if SOT = SDîfô'), and if s is an isomorphism of i> onto

$', then an 5-semilinear mapping W of 9ft onto SOT satisfying

(1.4) q'(xx W, x2 W, x3 W, x4 W) = /^(xj, x2, x3, x4)s,       x¡ e 3ft,

for a fixed O^p e <P' is called an s-semisimilarity of SOi to 501' with multiplier p. If

.5 = 1, W is a similarity. Ifi=l andp = l,then W is & form preserving map.\i %& = '$&',

we denote the group of semisimilarities (respectively, similarities, form preserving

maps) by r = r(9JÎ) (respectively, G = G(£0c), S=S(m)).

Lemma 1. An s-semilinear map W of W onto SOT is an s-semisimilarity with

multiplier p if and only if p = À2, A e <!>', and <xx W, x2 W, x3 W}'=A«x1, x2, x3> W),

for x¡ e W. In this case, (.XxW, x2W>' = A<X!, x2>s.

Proof. If W is an s-semilinear map of SOI onto SOT, we may define an s~ ^semi-

linear map W* of SOT onto 501 by

(1.5) <x w, />' = <x, y w*y,     x e m, y e sor.

If W satisfies (1.4), then (xyW, x2W, x3wyw* = ps~\xx, x2, x3> for x( eWl. By

(Tl) we have (XxW, x2Wys~\x3WW*) = Ps'\xx, x2>x3. Hence, xWW* = Xs'1x

where A e 0' is given by A<x1W/, x2W)' = p(xx, x2>s, x¡ e 501. Now A<x1H/, x2W)'

= A<x1; x2H^H/*>s = A2<x1, x2>s, x, e £0t, so p = A2. We see

(XxW, x2W, x3Wy = p(<*i, *2, Xa)^*"1) = pA-iKx!, x2, x3)W)

= A«X!, x2, x3> W),       X; e SOI.

Conversely, if (XxW, x2W, x3W >' = A«x1, x2, x3>lf), then (Tl) yields

<XxW, x2Wy(x3W) = A<x1,x2>s(x3lK)

and

(XlW,x2Wy = A<x1,x2>5.

Clearly,

?'(X!^, x2If, x3W, XiW) = «xx^, x2lF, x3^>', XiWy

= A ^(Xi, x2, x3, x4)

for x, e 501 as desired.
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1972] A GEOMETRY FOR £7 51

It is now clear that if W is an automorphism of 9JÎ (i.e. (xx W, x2 W, x3 Wy

= <*!, x2, x3y, xt e 9JI), then We S(yR). We denote the group of automorphisms

by Aut (501).

We shall now exhibit some semisimilarities of 9JI to 9JT. If W is an j-semi-

similarity of S to 3' (with respect to N and N'; see [3, p. 10]) with multiplier A, then

we define W by

(1.6) xíV = asu1 + Xßsu2 + (aW)12 + (XbW)21,       x as in (1.1),

where W= W* ~1 and T(x' W*, y)s = T'(x', y W), x' e 3', y e 3. An easy calculation

using (1.22) and (1.23) of [3] shows

(1.7) (Xlw, x2\v, x3wy = x((Xl, x2, x3yw),     Xi s m,

so W is an i-semisimilarity with multiplier A2 by Lemma 1.

If 5=3', we may define e by

(1.8) xe = ßu1 — au2 — b12+a21,       xas in (1.1).

Clearly e2 = — 1 and one checks that e is an automorphism of 9JI.

If c e 3=3', we may define tc by

(1.9) xtc = aUl + (ß + T(b, c) + T(a, c#) + aN(c))u2 + (a + ac)12 + (b + axc + ac#)21,

for x as in (1.1). We shall show that tc e Aut (9JÎ), but first we introduce Sc defined

by

(1.10) xSc = T(b, c)u2 + (ac)12 + (axc)21,

for x as in (1.1). Clearly, S* = 0, and if í> is not of characteristic two or three, then

/c=exp (Sc)= 1 + SC + ^S2+IS3. One checks that (x,uu - c2l>=x5cand (ult -c21>

= 0 for x e 9JÎ. Thus by [2, p. 404], we see that Sc is an inner derivation of 9JÎ. It is

now clear that tc is an automorphism of 9JÎ, if i> is of characteristic zero.

A lengthy calculation would verify that tc is an automorphism for arbitrary fields.

However, we shall be content to show this for 3 a 27 dimensional exceptional

simple Jordan algebra by the following trick. By extending 0, we may assume that

3=§(03) where £5 is the split octonion (Cayley-Dickson) algebra. D has a basis

x = eu ej, e¡¡, (ej)l, i= 1, 2, with the involution given by ëx = e2,j= —/, /= -/, and

multiplication given by ef = et,j2 = l2 = l =e1 + e2, al=la, a(bl) = (ba)l, (al)b=(ab~)l,

(al)(bl)-ba, for a, b either et or ej, /'= 1, 2. 3 has a basis a= 1 [h], x[ij], x as above,

and i<j=\, 2, 3. 9JÎ has a basis u¡, au, i, j= 1, 2, i^j, a as above. Using (1.3), one

sees that the multiplication table for 3K relative to this basis is integral. The action

of tc on 9ft given by (1.9) is also integral for c belonging to the basis for 3- For such

a c, the automorphism condition for tc follows from the one in which O is the split

octonion algebra over the integers, which follows in turn from the one in which O

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



52 J. R. FAULKNER [May

is the split octonion algebra over the reals. Thus, tc is an automorphism, if c

belongs to the basis for 3- Easy calculations show

(1.11) tctd = tc+d   fore, de &

(1.12) tc W = WtcW   forced, We I\3),

where r(3) is the group of semisimilarities of 3. Since W may be taken to be otl,

O^a e <D, we see that tc, td e Aut (SOI) imply tac+ßd e Aut (50Î) for a, ß e O. Thus,

tc e Aut (501) for all ceQ.

We now list two more identities which may be checked directly. The second is

an analogue of Hua's identity (see [5, p. 144]).

(1.13) eW=(W)~\e, for We T(SOc) with multiplier A.

(1.14) et<fitc-iste=-N(c)-1(Ue)"', for ceS with N(c)¿0.

2. The geometry and collineations. We denote by 11(501) the set of O^x e SOI,

x as in (1.1) with

a# = ab,   b* = ßa,   N(a) = *2ß,   N(b) = aß2,

I ' ' T(a,b) = 3aß,    Va,b = 2aß\.

We say x e 11(501) is an element of rank one.

Lemma 2. Ifxe n(50î) and<p = tc, W, e, or Al, where ce 3, W e r(3), 0 ̂  A 6 <D,

then x" e Il(50i).

Proof. We may assume that the field í> is infinite. The set S={x e SOI | x as in

(1.1) with a^0/|8eO, a^O^beg} is open in the Zariski topology on 50i and

II u {0} is closed. Hence IP u {0} is also closed and IP n S is dense in IP u {0}.

Thus, we need only show n'nSgllu {0}. If x e S with a# = ab and b*=ßa, then

XEfl, since uM = N(u)u,T(u,u#) = 3N(u), Vu,«# = 2N(u)l for ue 3. Thus, if

x' =cc'ux+ß'u2 + a'x2 + b'2x=x0 for x e II, we need only show {a')* = a'b', (b')*=ß'a'.

These follow by direct calculation from the definitions and (1.1), (1.1a), (Lib),

(1.21), and (1.22) of [3].

If r'(SDJ) (respectively, G'(SUl); Auf (SOI)) denotes the group generated by tc,

W,e,Xl where c e 3, W e T(3), 0 # A e 4> (respectively, W e G(3) ; W e S(3), A = 1),

then r'(50l)s T(W), G'(50l)£ G(50i), and Auf (SOI) ç Aut (501) by (1.7). From now on,

we shall assume 3 = £>(03, y), a reduced exceptional simple Jordan algebra (see [6]).

Lemma 3. Ifx e 3, then the following are equivalent:

(a) x is of rank one.

(b) <50î, x, x> = 0 and dim Mx=dim 5mUl w/iere 5DÍ* = {v | <S0l, y, x> = 0, y e 501}.

(c) x<p = au1for some <p e Auf (50Î), 0#a e í>.

Proof. Since t/j is of rank one, we have (c) implies (a) by Lemma 2. Since

<50c, ux, «!>=0 and Auf (SOI) S Aut (SOI), we see that (c) implies (b).

We shall next show that if 0=£x e 501 with x as in (1.1), then after replacing x by
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x" for some q> e Aut' (50?), we may assume a^O and a=0. First, we shall get a^O.

If a=0andß^0, apply e. If a = ß=0, then one of a or ¿is nonzero, and by applying

e, we may assume ¿>^0. Since the elements O^ceS with c#=0 span 3, we may

find such a c with T(b, c)^0 and replace x by xtce to get a#0. If a^O, replacing x

by xr_a-ia allows us to assume a^O and a=0 as desired.

If (a) holds, we may normalize x as above so a/0 and a = 0. Since T(a, b)

= 3aß and Ka>i) = 2aßl, we see ß=0. Also, a* = ab implies b=0, so x=au1 and (c)

holds.

If (b) holds, we again normalize x so a^O and a=0. The condition (y, x, x>=0

for all J>=cia, c e 3, yields (aß + T(a, b))l =2V0¡a. Hence, ß = 0.

If _V = pM1 + ijM2 + r12+521, /3,T/e<î>; r, î e 8, then using (1.3) one checks that

ye^ if and only if Va-T(r, b) = 0, s+p¿> = 0, sx¿ = 0, Vb¡r=0 (since ^,,.=0

implies Fr,¡, = 0 and 2T(b, r) = T(l Fb>r)=0; and {íc¿} = T(í, c)¿ + T(c, b)s - (s x b)

xc, ce 3). Thus, 50îUi = {p^ + r12 \ p e <D, r e 3} and dim 50tUi = 28. If b ¿ 0, then

yeSJc^. implies rj = a'1T(r, b), s=-a~1pb where ^,. = 0 and 2pb* = Q. Since y

depends linearly on the choice of p and r, and since dim 50^ = 28, all re3 are

possible fory; but Vb,r = 0 for all r e 3 implies b=0 (use (1.35) of [3]), a contradic-

tion. Thus, x = aux.

We are now in a position to define a "geometry" from 501. If xe II(9Jl), let

x = {ax | O^a e 0} and let ^(501) = {i | x e II(50t)}. Define x incident to y (denoted

x\y) if R(x, j) = 0, where z/?(w, v) = (z, u, vy, w, f, z e 50J; and define x connected to

y (denoted x~y) if <x, j> = 0. Since (x,yy\ = R(x,y)-R(y,x) and since

(uR(x, y), vy + (u, vR(y, x)>=0 (see (2.7) of [2]), we see that x\y implies y\x and

x~y.

If 3' = §(©3, y'), if x e II(50t), and if W is a semisimilarity of 501 onto 501' = 501(3'),

then xW satisfies condition (b) of Lemma 3, so xWe 11(501'). Thus, we may define

a map r Wn of ^(50c) onto &(W) by xr W = (xW)~. It is clear that W is a co///«e-

ai/on in the sense x\y if and only if xrW\yrWn and x~j> if and only if x.rW^

~yrW'). If H is a subgroup of r(5Dl), then we denote the image of H in the col-

lineation group of á*(50c) under W^rWn by PH. The kernel of W^rW in

T(50î) is easily seen to be {al | 0#a e $}.

One checks immediately from (1.3) that x\û1 if and only if x = au1+al2 e 11(501),

a e O, ae3- Hence, x|«! and x~«2 if and only if x = a12 and ae 11(3), where

II(3)={0^ae3 | <i# = 0}. Similarly, x|w2 and x~ûi if and only if x=621 and

b e 11(3). If a e 11(3), we shall set fl* = (a12r and a* = (a21)~. Using (1.1) and (1.2),

we see a*~è* and a*~b* always hold, a*~¿>* holds if and only if T(a, b) = 0;

each of u*|¿>* and a*\b* hold if and only if axb = 0; while a*|6* if and only if

Vb¡a = 0 (since K„,a = 0 implies Va,b = 0 and T(a,b) = 0), for a, b e 11(3). Hence,

{a*, b*\a, b e 11(3)} may be identified with ̂ (3) as defined in [3, p. 32] (with a slight

change of notation). Moreover, if W e F(3) so W e T(50l), we see that if we abuse

notation and set rW~1 = rWn, we get aifrW^=(aW)if and a*rW=(aW)* for

a e 11(3), which agrees with the action of T(3) on ^"(3) given in [3, p. 32].
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54 J. R. FAULKNER [May

Lemma 4. P Aut' (501) is transitive on

(a) xe^(SOÎ).

(b) x, y e ^(501) with x£y.

(c) x,ye ^(SOi) with x~y, x\y.

(d) x, y e SP^Si) with x\y, x+y.

Proof. Lemma 3 yields (a). In the remaining cases we may assume y = u2 and x

is as in (1.1). In case (b), (x,y}^0 implies a^O, and we may assume a=l. The

condition xe n(S0c) yields a* = b and N(a)=ß. Hence, x = uxta. Since u2ta = u2, we

are done in this case. In case (c), a = 0 and a^O.Hß=£0, then b#=ßa implies b^O.

One may choose c e 11(3) with T(b, c)= -ß. Replacing x by xtc, we may assume

<x = /S = 0 and a/0. If 6^0, then a, b e 11(3) and a*\b* since Va<b = 0. By [3, Lemmas

3.6 and 3.3] we know that there exists c*\b* with c*\a*, and that we may choose c

such that a x c = — b. Replacing x by xtc, we may assume a=ß = 0, b = 0, and a =£ 0

(since KbiC = 0 implies T(b, c) = 0). Since PS(3) is transitive on points of ^(3), we

may choose I-Te SCS) such that xrW^=aj[W^ = ejf, where e e 11(3) ¡s fixed.

Since u2W=u2, we are done in this case. In case (d), we have a=0 and a = 0. Since

jp#x, we see b^O. We may choose c e 11(3) with T(b, c)=—ß and replace y by

ytc to assume a=/S = 0, a = 0, b^O. Since PS(3) is transitive on lines of ^(3), we

may choose We S(3) with yr Wn = b*r W~> = e*, where eell(3) is fixed. This

completes the proof of the lemma.

We shall need the following result about £>(£>3, y).

Lemma 5. If W is an s-semilinear map of $¡ = lc(D3,y) to itself such that for

a e fl(3) there is 0/ Aa e <P with aW=Xaa, then W=\l for some 0?¿AeO.

Proof. We may assume 3 = í>(£>3) and Xêx = 1. If « e O and 0 ̂  p e $, then

x = p.e1+'p,~1n(u)e2 + u[l2] e 11(3). Since exW=ex and e2W=Xe2e2, we see that

u[l2]W= £xei + £2^2 + Ku[12] where 0t^A = Ax is independent of m and

(2.2) Xp, = p,s+êx   for 0 ¿ p. e <D,

(2.3) A/i"1«^) = (p-ln(u))sXê2 + Ç2   for 0 # m e <D.

If <S> has two elements, then Xajt=0 implies Aa=l for all a e 11(3). Since Tl(3)

generates 3 under addition, W=\. If O^p-x, p.2 e i>, with ^i7¿/*2, then (2.2), with

p.=P-i, p-2, p-x — /¿2, gives ^i=0. Thus, p.= l yields A=l and hence s=l. Similarly,

(2.3) yields £¡ = 0 and Aê2 = l. Thus, W is linear and e2W=e2, u[\2]W=-u[l2] for

u e £). Similarly, fiH/=ei, «[//'] H/=w[y], ueD, /Vy'= 1, 2, 3 and ^=1.

Theorem 1. //3 = §(£>3, y) a«¿ SW = S0J(3), ?Ae« T(S0c) (respectively, G(50c);

Aut (S0Í)) ¿s generated by tc, W, e, Al wAere c e 3, ff e T(3), 0^Ae$ (respectively,

WeG(Q); We S(3), A = l).

Proof. Using the notation preceding Lemma 3, we need only show that r(S0l)

çr'(SOl), G(SDÎ)çG'(50l), and Aut (SOI) s Auf (SDÎ). If WeFÇm), then rWn is a

collineation of ^(SOl), and by Lemma 4(b) there is W2 £ Auf (S0Î) with ûf W
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=ûirW2n, i=\, 2. Since rWW2^ induces a collineation of ^(3), we may apply

the fundamental theorem of octonion planes (see [3, p. 40]) to find W3 e T(3) such

that rW3n agrees with rWW2ln on ^(3). Since u1WW21W31 = Xu1 and, by

Lemma 5, a12WW21W3l = (-qa)12, ae%, for some 0#A, r¡ e O, we may set

W^X-i-qWsto get W^WWï'-Wï'X-1 satisfying xW' = au,, + Pßu2 + a12 + (p.b)2l

for some fixed 0#p, p e O, x as in (1.1). (Note: W' is linear on 3i2 and hence on

all of 501) If a = ß=l and a = b=\, then xf*"ell(50c) which implies p = p-=l by

(2.1). Hence, W'=\ and W=XW1W2, 0/Ae<D, Wx e T(3), W2 e Aut' (501).

Clearly, r(5üc)sr'(50c).

If WeGCm), then Wx must be linear so G(50i)£G'(50i). If We Aut (50?), then

XW, e Aut (50Î). If W, e G(3) has multiplier p, then 1 =(Xu1W1, Xu2W1y = X2p. Set

c = (A- l)e+1 e 3 where e e 3 is a primitive idempotent. Since c## = Xc, we see that

N(c) = X and Uc e G(3) with multiplier A2 = p"1. By (1.14), we see that A"1^)-

e Auf (50c). But XW^-^U,)-=(W,UC)~ e Auf (m) since U^í/c e S(3). Thus,

XWt e Auf (50c) and Aut (501) s Auf (501).

We shall need the following result on the plane ^(3)-

Lemma 6. If x*, >'* e ^(3) and x*~z* //aw/ on/y ify*~z*, then x*=jv

Proof. Since Pr(3) is transitive on points of ^(3), we may assume x = eu

where eu e2, e3 are pairwise orthogonal primitive idempotents for 3- If 3 is split,

then there is a basis for 3 of elements of rank one of the form z = eu at[jk], i,j, k^ ;

a¡ e £>, w(a¡) = 0. The condition T(y, z) = 0 if and only if T(e,, z) = 0 yields y e (be,,

as desired. If 3 is not split, then ^(3) is a projective plane and u^~v* if and only

if u*\v* (see [3, p. 50]). Thus, y*\e* and y^e* implies y* = e1*.

We shall eventually show that every collineation of ^(501) is in iT(50i), but first

we must demonstrate the following two characterizations of the identity col-

lineation.

Lemma 1. If a is a collineation of^(W) such that a fixes û2 and all points incident

to «!, then a is the identity.

Proof. We have (au, + a12)~ and û2 fixed by a, for a e <t>, a e 11(3)- Since by

(1.3) «! is the unique point of &>(W) incident to all a*, ae 11(3), «î = «i. Since

a stabilizes ^(3) and fixes the points a*, a e 11(3), a also fixes a*. Let>'=>'«i-r-8M2

+ ci2 + d21 e 11(501) and let y° =y" where y'= y'u1 + 8'u2 + c¡_2 + d21. If S = 0, then

y'^Û! implies S' = 0. In this case, d, d' e 11(3). The condition y ~ a* if and only if

j>'~a„, ae 11(3), implies d' = Xd for some O^Ae í> by Lemma 6. If S/0, then

SV0, and we may assume 8 = 8' = I. Then y~(au, + al2)~ if and only if

y'~(aux+a12T, a e 4>, a e 11(3), implies T(d, a) = T(d', a), a e 11(3) or d=d'. In

either case, y" = (iux + 8u2 + h12 + d21)~ for some i e <J>, h e 3. In particular, a fixes

all points (8u2 + d21)~. Using the above argument, for some O^pe <ï>, one sees

y° = (yu1 + p8u2 + c12 +pd2l)~. Since c# = yd=pyd and since c = 0 implies y = 0 or

y=yu, (and o- fixes y in either case), we may assume c e 11(3). Similarly, we may

also assume de 11(3) so y = 8 = 0 and c*\d*. If ¿> e3 is such that T(d, b) = T(c, b#)
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^0, then y~w implies y"~wa = w where w = Ux + N(b)u2 + b12 + (b#)21- Thus,

pT(d, b) = T(c, M) and p = l. To show such a b exists, we choose c2if\d* and c3*

such that c = Cx, c2, c3 form a three-point (see [3, p. 33]). If b = Cx + c2 + c3, then

T(c¡, d) = 0, i= 1, 2, and T(c3, d)^0 since í/* = (Cí x c2)*. Thus, T(è, í/)^0. Also,

T(cxXCi,Cx) = 0, i=2, 3, and T(c2xc3, cJ^O, so T(b#,c)¿0. Replacing Z> by

J(6, í/)J(¿#, c)-1^, we get è as desired.

Lemma 8. If a is a collineation of ^(W) fixing a*, a e 11(3), ond (ux + e12)^ for

some e e 11(3), then a is the identity.

Proof. As in the proof of Lemma 7, we see that Wj is fixed by a. The condition,

w2£«i implies û2=(aux + u2 + ax2 + b2x)~ for some ccEÍ>; a, beg. Since «2~c+,

ce 11(3), we see 6=0 and a = 0, a=0, by (2.1). Thus, w2=w2 and a*" = a* for

a e I7(,3), since a stabilizes ^(3) and fixes its points. Since x"\ûx and x"~a* if and

only if x~a*, a e 11(3), for x = «!4-c12, c e 11(3), we see that x" = (ux + p(c)c12)~

for some 0/p(c)e<D. Similarly, (u2 + d2xT° = (u2 + X{d)d2xT for ¿£11(3),

0,¿A(í/) e í>. Since there is a norm similarity W of 3' to 3 with exW=e, where

e1( e2, e3 are the diagonal idempotents of 3' = í>(p3)> we may assume 3=3' and

e = ex, after replacing a by rWarW"ln. If r(c, i/) = l, then (wi + />(c)c12r

~(u2 + X(d)d21)~ implies p(c)X(d) = \. Since p(ex) = \, we see X(ei + u[lj]+n(u)ej) = \

fory=2, 3, m £ O. Letting u=\, we get p(ej)=l,j=2, 3. Since A(e,) = l, i'=l, 2, 3,

we have p(ei + u[ij] + n(u)ej)=l for all ueO, i=l,2,3. If x = M2-n(w)(efc)12

+ (w[//])21 then xeII(SOÎ) since Af(w[//']) = 0, and x" = (m2 + (1^)12+ f 21) for some

f e 3- Since x"~a* if and only if x~a* for a e 11(3), we see T(u[ij], a)=0 if and

only if T(v, a) = 0 for a e 11(3). Taking a = e¡, ei + s[ij]+n(s)ej, seD; i,j= 1, 2, 3,

/#./, we get v = £u[ij] for some O^feO, Choose s e O with w(s, a)= —1. Then

x~j> implies xa~ya=y for y = u1 + (ei + s[ij]+n(s)ej)12. Thus, £«($,»)= —1 and

f=T. Hence, x"=x. If a = Z «¡¿i + Zflil/fc] with ak[ij]^0 and a e 11(3), then

choose ue£) with «(«, ak)=-l. Then («i+ai^"^^ and p(a) = l. If a = aeu

0^a£<I>, then what was just proved shows p(aei + a[ij] + aej) = l which implies

A(a-1ej)=l and p(a)=l. Thus, p(a)=l for alia £ 11(3), and a fixes w2 and all points

incident to ûx. By Lemma 7, a is the identity.

Theorem 2. 7/"3=i>(£>3, y)an</3'=£0D3, /), then o-is a collineation of &(%l(%))

onto ^(501(3')) //anrf o«/y z/ct=r W for some semisimilarity W o/S0t(3) onto S0t(3').

Proof. By Lemma 4(b), we may assume that û° = û[, i=\, 2. Thus, a induces a

collineation of ^(3) onto ^(3)- By the fundamental theorem of octonion planes

(see [3, p. 40]), a agrees with r W on ^(3) for some semisimilarity W of 3 onto

3'. Replacing a by ^W'1, we may assume 3=3', "ï = ûu /'= 1, 2, a%=a%,

a*a=a*, for <i6 11(3). If ee 11(3), then (Ml+eiaT<r|öi, and (Ml + e12rff~a* if and

only if (ux + ex2)~~a* imply by Lemma 6 that (ux + e12y = (ux + pe12)~ for some

O/peí). Replacing a by or(p~1iy~~*, we may assume that a fixes a*, a e 11(3) and

(ux + e12)~. By Lemma 8, a is the identity.
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3. Simplicity of P Aut (50Î).   The purpose of this section is to prove the following

Theorem 3. P Aut (501) is a simple group.

We shall first establish some facts about P Aut (50c).

Lemma 9. P Aut (50Î) is a primitive permutation group of ¿PÇ3JI).

Proof. By Lemma 4(a), P Aut (501) is transitive. Suppose M,, M2,... is a system

of imprimitivity for PAut(5rJl) with u^eM,. If ux^xe Mu then either x^lû,;

x~u1 and x\û,; or x\û,. By Lemma 4, we may assume x = û2, x=e*, or x=e1*

where e,, e2, e3 are orthogonal primitive idempotents for 3- Let z = u, + (e1)12 and

w = u1 + (e1 + e2)12 + (e3)21, so z, w e 11(501). If x = w2, then î^û2%w so z, w e Mx.

But z\u1 and w~«i with wf«!, so elements of all three types are in M,, and Mi

=^(501). If x=ef, then w~û, with wf«! implies we M,. But w^ef, and we may

apply the previous case. If x = elif, then e*|e1=is implies é%eMx. But ef^Wi and

effwi and we may apply the second case.

We denote by 7/(3) the group {ta \ a e 3}.

Lemma 10. PTfâ) is a normal abelian subgroup of the subgroup H of P Aut (501)

fixing û2.

Proof. PT(S) is abelian by (1.11) and fixes u2 by (1.9). If oeH, write wf

= (wi+ai2 + (a#)21 + A/(a)w2)''\ Replacing a by <Tr?_an, we may assume ¡2f = í2¡,

i =1,2. By the proof of Theorem 2, we have a=rW^ for some We T(3). We see

a-1!-tcn<j = rW-1tcWn = rtcW~l, ce3, by (1.12), so PT(3) is normal in H.

Set vc = e~1tce for ce3 so

xvc = (a- T(a, c) + T(b, c#) - ßN(c))u,

+ßu2 + (a-bxc+ßc#)12 + (b-ßc)21   for x as in (1.1).

A direct calculation verifies, for u e £>,

(3.2) íe1t'u[12]í-e11'-ii[i2]t;n(u)e2 = (T¡i[i2},ei)~

where in general Ta¡b = 1 + Va,b+UaUb (see [3, p. 17]).

Lemma 11. Aut (501) is generated by conjugates o/T(3) in Aut (501).

Proof. If G is the group generated by conjugates of 7X3) in Aut (50c), then by

(1.14) with c=l, we see e=-(t1et1et1)~1 = (t1E-1t1et1)~1 eG. Since vceG for

c e 3, (3.2) shows that (Tm2hei)~ e G. Theorem 4.7 of [3] implies that conjugates

of Tui,2uv « e O, in 5(3) generate £(3). By Theorem 1, we see G = Aut (501).

Lemma 12. P Aut (501) = 9(P Aut (501)), the derived group.

Proof. By Lemma 11, we need only show rta1 e D = 3>(P Aut (501)), ae3. By

(1.11), (1.12), the fact that 11(3) spans 3 and the transitivity of PS(3) on points

of ^(3), we need only show tae2 e D for all a e 0>. Since Tull2hei e @(PS(%)) by

Lemma 4.6 of [3], we see by (3.2) that vnWe2 e D for all u e D. Hence, tnW(,2 e D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



58 J. R. FAULKNER

If ae <P, there exist u, v e D with n(u, v) = n(u + v)-n(u)-n(v) = a. Thus, by (1.11),

tae2 £ D, as desired.

Proof of Theorem 3. This follows immediately from Lemmas 9, 10, 11, 12 and

Lemma 4, p. 39 of [1].
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