A GEOMETRY FOR E_{7}

BY
JOHN R. FAULKNER

Abstract

A geometry is defined by the 56-dimensional representation \mathfrak{m} of a Lie algebra of type E_{7}. Every collineation is shown to be induced by a semisimilarity of \mathfrak{M}, and the image of the automorphism group of \mathfrak{M} in the collineation group is shown to be simple.

Using the 56 -dimensional ternary algebra \mathfrak{M} with an alternating bilinear form introduced in [2], we define here a geometry and investigate its collineation group. The objects of the geometry are, in the real case, essentially the planes of the symplectic geometry for E_{7} introduced by H. Freudenthal [4]. In §1, the notion of semisimilarities of \mathfrak{M} is introduced, some semisimilarities are exhibited, and some identities in the group of semisimilarities are demonstrated. In $\S 2$, we define the geometry, show that semisimilarities induce collineations, derive some transitivity results, and prove that every collineation is induced by a semisimilarity. Finally, in $\S 3$, we show that the image of the automorphism group of \mathfrak{M} in the collineation group is a simple group.

1. Semisimilarities. If $\mathfrak{J}=\mathfrak{F}(N, 1)$ is a quadratic Jordan algebra over a field Φ constructed as in [6] from an admissible nondegenerate cubic form N with basepoint 1 , then $y U_{x}=T(x, y) x-x^{\#} \times y$ where $T($,$) and x \rightarrow x^{\#}$ are respectively the associated nondegenerate bilinear form and quadratic mapping, and $x \times y$ $=(x+y)^{\#}-x^{\#}-y^{\#}$. As in [2, pp. 399-401], we may construct $\mathfrak{M}=\mathfrak{M}(\mathfrak{F})$ $=\Phi u_{1} \oplus \Phi u_{2} \oplus \Im_{12} \oplus \Im_{21}$ with elements

$$
\begin{equation*}
x=\alpha u_{1}+\beta u_{2}+a_{12}+b_{21} ; \quad \alpha, \beta \in \Phi ; a, b \in \mathfrak{F} ; \tag{1.1}
\end{equation*}
$$

with a nondegenerate alternate bilinear form \langle,$\rangle , and with a ternary product$ \langle, , > defined by

$$
\begin{gather*}
\left\langle x_{1}, x_{2}\right\rangle=\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}-T\left(a_{1}, b_{2}\right)+T\left(a_{2}, b_{1}\right), \tag{1.2}\\
\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\gamma u_{1}+\delta u_{2}+c_{12}+d_{21}, \tag{1.3}
\end{gather*}
$$

where

```
\(\gamma=\alpha_{1} \beta_{2} \alpha_{3}+2 \alpha_{1} \alpha_{2} \beta_{3}-\alpha_{3} T\left(a_{1}, b_{2}\right)-\alpha_{2} T\left(a_{1}, b_{3}\right)-\alpha_{1} T\left(a_{2}, b_{3}\right)+T\left(a_{1}, a_{2} \times a_{3}\right)\),
\(c=\left(\alpha_{2} \beta_{3}+T\left(b_{2}, a_{3}\right)\right) a_{1}+\left(\alpha_{1} \beta_{3}+T\left(b_{1}, a_{3}\right)\right) a_{2}+\left(\alpha_{1} \beta_{2}+T\left(b_{1}, a_{2}\right)\right) a_{3}\)
        \(-\alpha_{1} b_{2} \times b_{3}-\alpha_{2} b_{1} \times b_{3}-\alpha_{3} b_{1} \times b_{2}-\left\{a_{1} b_{2} a_{3}\right\}-\left\{a_{1} b_{3} a_{2}\right\}-\left\{a_{2} b_{1} a_{3}\right\}\),
\(\delta=-\gamma^{\sigma}, \quad d=-c^{\sigma}\),
```

Received by the editors June 29, 1971.
AMS 1969 subject classifications. Primary 5048, 2072; Secondary 1740, 1730.
Key words and phrases. Geometry, collineations, semisimilarities, automorphism group, simple group.
where σ is the permutation $\sigma=(\alpha \beta)(a b)$ with $x_{i}=\alpha_{i} u_{1}+\beta_{i} u_{2}+\left(a_{i}\right)_{12}+\left(b_{i}\right)_{21} \in \mathfrak{M}$. In [2, pp. 399-401], it was shown that
(T1) $\langle x, y, z\rangle=\langle y, x, z\rangle+\langle x, y\rangle z$,
(T2) $\langle x, y, z\rangle=\langle x, z, y\rangle+\langle y, z\rangle x$,
(T3) $\langle\langle x, y, z\rangle, w\rangle=\langle\langle x, y, w\rangle, z\rangle+\langle x, y\rangle\langle z, w\rangle$,
(T4) $\langle\langle x, y, z\rangle, v, w\rangle=\langle\langle x, v, w\rangle, y, z\rangle+\langle x,\langle y, v, w\rangle, z\rangle+\langle x, y,\langle z, w, v\rangle\rangle$,
for $x, y, z, w \in \mathfrak{M}$. We also wish to recall that we have a nondegenerate four-linear form $q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\langle\left\langle x_{1}, x_{2}, x_{3}\right\rangle, x_{4}\right\rangle$ for $x_{i} \in \mathfrak{M}$.

If $\mathfrak{J}^{\prime}=\mathfrak{J}\left(N^{\prime}, 1^{\prime}\right)$ where N^{\prime} is an admissible nondegenerate cubic form with basepoint 1^{\prime} on \mathfrak{S}^{\prime} over a field Φ^{\prime}, if $\mathfrak{R}^{\prime}=\mathfrak{M}\left(\mathfrak{S}^{\prime}\right)$, and if s is an isomorphism of Φ onto Φ^{\prime}, then an s-semilinear mapping W of \mathfrak{M} onto \mathfrak{M}^{\prime} satisfying

$$
\begin{equation*}
q^{\prime}\left(x_{1} W, x_{2} W, x_{3} W, x_{4} W\right)=\rho q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{s}, \quad x_{i} \in \mathfrak{M}, \tag{1.4}
\end{equation*}
$$

for a fixed $0 \neq \rho \in \Phi^{\prime}$ is called an s-semisimilarity of \mathfrak{M} to \mathfrak{M}^{\prime} with multiplier ρ. If $s=1, W$ is a similarity. If $s=1$ and $\rho=1$, then W is a form preserving map. If $\mathfrak{M}=\mathfrak{M}^{\prime}$, we denote the group of semisimilarities (respectively, similarities, form preserving maps) by $\Gamma=\Gamma(\mathfrak{M})$ (respectively, $G=G(\mathfrak{M}), S=S(\mathfrak{M})$).

Lemma 1. An s-semilinear map W of \mathfrak{M} onto \mathfrak{M}^{\prime} is an s-semisimilarity with multiplier ρ if and only if $\rho=\lambda^{2}, \lambda \in \Phi^{\prime}$, and $\left\langle x_{1} W, x_{2} W, x_{3} W\right\rangle^{\prime}=\lambda\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle W\right)$, for $x_{i} \in \mathfrak{M}$. In this case, $\left\langle x_{1} W, x_{2} W\right\rangle^{\prime}=\lambda\left\langle x_{1}, x_{2}\right\rangle^{s}$.

Proof. If W is an s-semilinear map of \mathfrak{M} onto \mathfrak{M}^{\prime}, we may define an s^{-1}-semilinear map W^{*} of \mathfrak{M}^{\prime} onto \mathfrak{M} by

$$
\begin{equation*}
\left\langle x W, y^{\prime}\right\rangle^{\prime}=\left\langle x, y^{\prime} W^{*}\right\rangle^{s}, \quad x \in \mathfrak{M}, y^{\prime} \in \mathfrak{M}^{\prime} . \tag{1.5}
\end{equation*}
$$

If W satisfies (1.4), then $\left\langle x_{1} W, x_{2} W, x_{3} W\right\rangle^{\prime} W^{*}=\rho^{s^{-1}}\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ for $x_{i} \in \mathfrak{M}$. By (T1) we have $\left\langle x_{1} W, x_{2} W\right\rangle^{\prime s-1}\left(x_{3} W W^{*}\right)=\rho^{s-1}\left\langle x_{1}, x_{2}\right\rangle x_{3}$. Hence, $x W W^{*}=\lambda^{s-1} x$ where $\lambda \in \Phi^{\prime}$ is given by $\lambda\left\langle x_{1} W, x_{2} W\right\rangle^{\prime}=\rho\left\langle x_{1}, x_{2}\right\rangle^{s}, x_{i} \in \mathfrak{M}$. Now $\lambda\left\langle x_{1} W, x_{2} W\right\rangle^{\prime}$ $=\lambda\left\langle x_{1}, x_{2} W W^{*}\right\rangle^{s}=\lambda^{2}\left\langle x_{1}, x_{2}\right\rangle^{s}, x_{i} \in \mathfrak{M}$, so $\rho=\lambda^{2}$. We see

$$
\begin{aligned}
\left\langle x_{1} W, x_{2} W, x_{3} W\right\rangle^{\prime} & =\rho\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle W^{*-1}\right)=\rho \lambda^{-1}\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle W\right) \\
& =\lambda\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle W\right), \quad x_{i} \in \mathfrak{M} .
\end{aligned}
$$

Conversely, if $\left\langle x_{1} W, x_{2} W, x_{3} W\right\rangle^{\prime}=\lambda\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle W\right)$, then (T1) yields

$$
\left\langle x_{1} W, x_{2} W\right\rangle^{\prime}\left(x_{3} W\right)=\lambda\left\langle x_{1}, x_{2}\right\rangle^{s}\left(x_{3} W\right)
$$

and

$$
\left\langle x_{1} W, x_{2} W\right\rangle^{\prime}=\lambda\left\langle x_{1}, x_{2}\right\rangle^{s}
$$

Clearly,

$$
\begin{aligned}
q^{\prime}\left(x_{1} W, x_{2} W, x_{3} W, x_{4} W\right) & =\left\langle\left\langle x_{1} W, x_{2} W, x_{3} W\right\rangle^{\prime}, x_{4} W\right\rangle^{\prime} \\
& =\lambda^{2} q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{s}
\end{aligned}
$$

for $x_{i} \in \mathfrak{M}$ as desired.

It is now clear that if W is an automorphism of \mathfrak{M} (i.e. $\left\langle x_{1} W, x_{2} W, x_{3} W\right\rangle$ $\left.=\left\langle x_{1}, x_{2}, x_{3}\right\rangle, x_{i} \in \mathfrak{M}\right)$, then $W \in S(\mathfrak{M})$. We denote the group of automorphisms by Aut (\mathfrak{M}).
We shall now exhibit some semisimilarities of \mathfrak{M} to \mathfrak{M}^{\prime}. If W is an s-semisimilarity of \mathfrak{F} to \mathfrak{F}^{\prime} (with respect to N and N^{\prime}; see [3, p.10]) with multiplier λ, then we define \tilde{W} by

$$
\begin{equation*}
x \tilde{W}=\alpha^{s} u_{1}+\lambda \beta^{s} u_{2}+(a W)_{12}+(\lambda b \hat{W})_{21}, \quad x \text { as in (1.1) } \tag{1.6}
\end{equation*}
$$

where $\hat{W}=W^{*-1}$ and $T\left(x^{\prime} W^{*}, y\right)^{s}=T^{\prime}\left(x^{\prime}, y W\right), x^{\prime} \in \mathfrak{J}^{\prime}, y \in \mathfrak{F}$. An easy calculation using (1.22) and (1.23) of [3] shows

$$
\begin{equation*}
\left\langle x_{1} \tilde{W}, x_{2} \tilde{W}, x_{3} \tilde{W}\right\rangle^{\prime}=\lambda\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle \tilde{W}\right), \quad x_{i} \in \mathfrak{M}, \tag{1.7}
\end{equation*}
$$

so \tilde{W} is an s-semisimilarity with multiplier λ^{2} by Lemma 1.
If $\mathfrak{J}=\mathfrak{J}^{\prime}$, we may define ε by

$$
\begin{equation*}
x \varepsilon=\beta u_{1}-\alpha u_{2}-b_{12}+a_{21}, \quad x \text { as in (1.1) } \tag{1.8}
\end{equation*}
$$

Clearly $\varepsilon^{2}=-1$ and one checks that ε is an automorphism of \mathfrak{M}.
If $c \in \mathfrak{I}=\mathfrak{J}^{\prime}$, we may define t_{c} by

$$
\begin{equation*}
x t_{c}=\alpha u_{1}+\left(\beta+T(b, c)+T\left(a, c^{\#}\right)+\alpha N(c)\right) u_{2}+(a+\alpha c)_{12}+\left(b+a \times c+\alpha c^{\#}\right)_{21} \tag{1.9}
\end{equation*}
$$

for x as in (1.1). We shall show that $t_{c} \in$ Aut (\mathfrak{P}), but first we introduce S_{c} defined by

$$
\begin{equation*}
x S_{c}=T(b, c) u_{2}+(\alpha c)_{12}+(a \times c)_{21} \tag{1.10}
\end{equation*}
$$

for x as in (1.1). Clearly, $S_{c}^{4}=0$, and if Φ is not of characteristic two or three, then $t_{c}=\exp \left(S_{c}\right)=1+S_{c}+\frac{1}{2} S_{c}^{2}+\frac{1}{6} S_{c}^{3}$. One checks that $\left\langle x, u_{1},-c_{21}\right\rangle=x S_{c}$ and $\left\langle u_{1},-c_{21}\right\rangle$ $=0$ for $x \in \mathfrak{M}$. Thus by [2, p. 404], we see that S_{c} is an inner derivation of \mathfrak{M}. It is now clear that t_{c} is an automorphism of \mathfrak{M}, if Φ is of characteristic zero.

A lengthy calculation would verify that t_{c} is an automorphism for arbitrary fields. However, we shall be content to show this for \mathfrak{F} a 27 dimensional exceptional simple Jordan algebra by the following trick. By extending Φ, we may assume that $\mathfrak{J}=\mathfrak{F}\left(\mathfrak{D}_{3}\right)$ where \mathfrak{V} is the split octonion (Cayley-Dickson) algebra. \mathfrak{D} has a basis $x=e_{i}, e_{i} j, e_{i} l,\left(e_{i} j\right) l, i=1,2$, with the involution given by $\bar{e}_{1}=e_{2}, \bar{j}=-\bar{j}, \bar{l}=-l$, and multiplication given by $e_{i}^{2}=e_{i}, j^{2}=l^{2}=1=e_{1}+e_{2}, a l=l \bar{a}, a(b l)=(b a) l,(a l) b=(a \bar{b}) l$, $(a l)(b l)=\bar{b} a$, for a, b either e_{i} or $e_{i} j, i=1,2$. \mathfrak{F} has a basis $a=1[i i], x[i j], x$ as above, and $i<j=1,2,3 . \mathfrak{M}$ has a basis $u_{i}, a_{i j}, i, j=1,2, i \neq j, a$ as above. Using (1.3), one sees that the multiplication table for \mathfrak{M} relative to this basis is integral. The action of t_{c} on \mathfrak{M} given by (1.9) is also integral for c belonging to the basis for \mathfrak{F}. For such a c, the automorphism condition for t_{c} follows from the one in which \mathfrak{D} is the split octonion algebra over the integers, which follows in turn from the one in which \mathfrak{D}
is the split octonion algebra over the reals. Thus, t_{c} is an automorphism, if c belongs to the basis for \mathfrak{F}. Easy calculations show

$$
\begin{gather*}
t_{c} t_{d}=t_{c+d} \quad \text { for } c, d \in \mathfrak{J} \tag{1.11}\\
t_{c} \tilde{W}=\tilde{W} t_{c W} \quad \text { for } c \in \mathfrak{J}, W \in \Gamma(\Im) \tag{1.12}
\end{gather*}
$$

where $\Gamma(\mathfrak{F})$ is the group of semisimilarities of \mathfrak{F}. Since W may be taken to be $\alpha 1$, $0 \neq \alpha \in \Phi$, we see that $t_{c}, t_{d} \in$ Aut (\mathfrak{M}) imply $t_{\alpha c+\beta d} \in$ Aut ($\left.\mathfrak{M}\right)$ for $\alpha, \beta \in \Phi$. Thus, $t_{c} \in \operatorname{Aut}(\mathfrak{M})$ for all $c \in \mathfrak{F}$.

We now list two more identities which may be checked directly. The second is an analogue of Hua's identity (see [5, p. 144]).
(1.13) $\varepsilon \widetilde{W}=(\hat{W})^{\sim} \lambda \varepsilon$, for $W \in \Gamma(\mathfrak{M})$ with multiplier λ.
(1.14) $\varepsilon t_{c} \varepsilon t_{c}-1 \varepsilon t_{c}=-N(c)^{-1}\left(U_{c}\right)^{\sim}$, for $c \in \mathfrak{F}$ with $N(c) \neq 0$.
2. The geometry and collineations. We denote by $\Pi(\mathfrak{R})$ the set of $0 \neq x \in \mathfrak{M}$, x as in (1.1) with

$$
\begin{gather*}
a^{\#}=\alpha b, \quad b^{\#}=\beta a, \quad N(a)=\alpha^{2} \beta, \quad N(b)=\alpha \beta^{2}, \\
T(a, b)=3 \alpha \beta, \quad V_{a, b}=2 \alpha \beta 1 . \tag{2.1}
\end{gather*}
$$

We say $x \in \Pi(\mathfrak{M})$ is an element of rank one.
Lemma 2. If $x \in \Pi(\mathfrak{P})$ and $\varphi=t_{c}, \tilde{W}, \varepsilon$, or $\lambda 1$, where $c \in \mathfrak{F}, W \in \Gamma(\mathfrak{F}), 0 \neq \lambda \in \Phi$, then $x^{\varphi} \in \Pi(\mathfrak{M})$.

Proof. We may assume that the field Φ is infinite. The set $S=\{x \in \mathfrak{M} \mid x$ as in (1.1) with $\alpha \neq 0 \neq \beta \in \Phi, a \neq 0 \neq b \in \mathfrak{J}\}$ is open in the Zariski topology on \mathfrak{M} and $\Pi \cup\{0\}$ is closed. Hence $\Pi^{\varphi} \cup\{0\}$ is also closed and $\Pi^{\varphi} \cap S$ is dense in $\Pi^{\varphi} \cup\{0\}$. Thus, we need only show $\Pi^{\varphi} \cap S \subseteq \Pi \cup\{0\}$. If $x \in S$ with $a^{\#}=\alpha b$ and $b^{\#}=\beta a$, then $x \in \Pi$, since $u^{\# \#}=N(u) u, T\left(u, u^{\#}\right)=3 N(u), V_{u, u^{\#}}=2 N(u) 1$ for $u \in \mathfrak{F}$. Thus, if $x^{\prime}=\alpha^{\prime} u_{1}+\beta^{\prime} u_{2}+a_{12}^{\prime}+b_{21}^{\prime}=x^{\varphi}$ for $x \in \Pi$, we need only show $\left(a^{\prime}\right)^{\#}=\alpha^{\prime} b^{\prime},\left(b^{\prime}\right)^{\#}=\beta^{\prime} a^{\prime}$. These follow by direct calculation from the definitions and (1.1), (1.1a), (1.1b), (1.21), and (1.22) of [3].

If $\Gamma^{\prime}(\mathfrak{M})$ (respectively, $G^{\prime}(\mathfrak{M})$; Aut' (\mathfrak{M})) denotes the group generated by t_{c}, $\tilde{W}, \varepsilon, \lambda 1$ where $c \in \mathfrak{I}, W \in \Gamma(\mathfrak{I}), 0 \neq \lambda \in \Phi$ (respectively, $W \in G(\mathfrak{F}) ; W \in S(\mathfrak{F}), \lambda=1$), then $\Gamma^{\prime}(\mathfrak{M}) \subseteq \Gamma(\mathfrak{M}), G^{\prime}(\mathfrak{M}) \subseteq G(\mathfrak{M})$, and Aut' $(\mathfrak{P}) \subseteq$ Aut (\mathfrak{M}) by (1.7). From now on, we shall assume $\mathfrak{F}=\mathfrak{G}\left(\mathfrak{D}_{3}, \gamma\right)$, a reduced exceptional simple Jordan algebra (see [6]).

Lemma 3. If $x \in \mathfrak{F}$, then the following are equivalent:

(a) x is of rank one.
(b) $\langle\mathfrak{M}, x, x\rangle=0$ and $\operatorname{dim} \mathfrak{M}_{x}=\operatorname{dim} \mathfrak{M}_{u_{1}}$ where $\mathfrak{M}_{x}=\{y \mid\langle\mathfrak{M}, y, x\rangle=0, y \in \mathfrak{M}\}$.
(c) $x^{\varphi}=\alpha u_{1}$ for some $\varphi \in \mathrm{Aut}^{\prime}(\mathfrak{M}), 0 \neq \alpha \in \Phi$.

Proof. Since u_{1} is of rank one, we have (c) implies (a) by Lemma 2. Since $\left\langle\mathfrak{M}, u_{1}, u_{1}\right\rangle=0$ and $\operatorname{Aut}^{\prime}(\mathfrak{R}) \subseteq \operatorname{Aut}(\mathfrak{M})$, we see that (c)implies (b).
We shall next show that if $0 \neq x \in \mathfrak{M}$ with x as in (1.1), then after replacing x by
x^{φ} for some $\varphi \in \operatorname{Aut}^{\prime}(\mathfrak{M})$, we may assume $\alpha \neq 0$ and $a=0$. First, we shall get $\alpha \neq 0$. If $\alpha=0$ and $\beta \neq 0$, apply ε. If $\alpha=\beta=0$, then one of a or b is nonzero, and by applying ε, we may assume $b \neq 0$. Since the elements $0 \neq c \in \mathfrak{F}$ with $c^{\#}=0$ span \mathfrak{J}, we may find such a c with $T(b, c) \neq 0$ and replace x by $x t_{c} \varepsilon$ to get $\alpha \neq 0$. If $\alpha \neq 0$, replacing x by $x t_{-\alpha^{-1} a}$ allows us to assume $\alpha \neq 0$ and $a=0$ as desired.

If (a) holds, we may normalize x as above so $\alpha \neq 0$ and $a=0$. Since $T(a, b)$ $=3 \alpha \beta$ and $V_{a, b}=2 \alpha \beta 1$, we see $\beta=0$. Also, $a^{\#}=\alpha b$ implies $b=0$, so $x=\alpha u_{1}$ and (c) holds.

If (b) holds, we again normalize x so $\alpha \neq 0$ and $a=0$. The condition $\langle y, x, x\rangle=0$ for all $y=c_{12}, c \in \mathfrak{J}$, yields $(\alpha \beta+T(a, b)) 1=2 V_{b, a}$. Hence, $\beta=0$.

If $y=\rho u_{1}+\eta u_{2}+r_{12}+s_{21}, \rho, \eta \in \Phi ; r, s \in \mathfrak{F}$, then using (1.3) one checks that $y \in \mathbb{M}_{x}$ if and only if $\eta \alpha-T(r, b)=0, s+\rho b=0, s \times b=0, V_{b, r}=0$ (since $V_{b, r}=0$ implies $V_{r, b}=0$ and $2 T(b, r)=T\left(1 V_{b, r}\right)=0$; and $\{s c b\}=T(s, c) b+T(c, b) s-(s \times b)$ $\times c, c \in \mathfrak{F}$). Thus, $\mathfrak{M}_{u_{1}}=\left\{\rho u_{1}+r_{12} \mid \rho \in \Phi, r \in \mathfrak{F}\right\}$ and $\operatorname{dim} \mathfrak{M}_{u_{1}}=28$. If $b \neq 0$, then $y \in \mathfrak{M}_{x}$ implies $\eta=\alpha^{-1} T(r, b), s=-\alpha^{-1} \rho b$ where $V_{b, r}=0$ and $2 \rho b^{\#}=0$. Since y depends linearly on the choice of ρ and r, and since $\operatorname{dim} \mathfrak{M}_{x}=28$, all $r \in \mathfrak{J}$ are possible for y; but $V_{b, r}=0$ for all $r \in \mathfrak{J}$ implies $b=0$ (use (1.35) of [3]), a contradiction. Thus, $x=\alpha u_{1}$.

We are now in a position to define a "geometry" from \mathfrak{M}. If $x \in \Pi(\mathfrak{M})$, let $\hat{x}=\{\alpha x \mid 0 \neq \alpha \in \Phi\}$ and let $\mathscr{P}(\mathfrak{R})=\{\hat{x} \mid x \in \Pi(\mathfrak{P})\}$. Define \hat{x} incident to \hat{y} (denoted $\hat{x} \mid \hat{y})$ if $R(x, y)=0$, where $z R(u, v)=\langle z, u, v\rangle, u, v, z \in \mathfrak{M}$; and define \hat{x} connected to \hat{y} (denoted $\hat{x} \simeq \hat{y}$) if $\langle x, y\rangle=0$. Since $\langle x, y\rangle 1=R(x, y)-R(y, x)$ and since $\langle u R(x, y), v\rangle+\langle u, v R(y, x)\rangle=0$ (see (2.7) of [2]), we see that $\hat{x} \mid \hat{y}$ implies $\hat{y} \mid \hat{x}$ and $\hat{x} \simeq \hat{y}$.

If $\mathfrak{J}^{\prime}=\mathfrak{S}\left(\mathfrak{D}_{3}^{\prime}, \gamma^{\prime}\right)$, if $x \in \Pi(\mathfrak{M})$, and if W is a semisimilarity of \mathfrak{M} onto $\mathfrak{M}^{\prime}=\mathfrak{M}\left(\mathfrak{F}^{\prime}\right)$, then $x W$ satisfies condition (b) of Lemma 3, so $x W \in \Pi\left(\mathfrak{M}^{\prime}\right)$. Thus, we may define a map $\ulcorner W\urcorner$ of $\mathscr{P}(\mathfrak{R})$ onto $\mathscr{P}\left(\mathfrak{R}{ }^{\prime}\right)$ by $\hat{x}\ulcorner W\urcorner=(x W)^{\wedge}$. It is clear that W is a collineation in the sense $\hat{x} \mid \hat{y}$ if and only if $\hat{x}\ulcorner W\urcorner \mid \hat{y}\ulcorner W\urcorner$ and $\hat{x} \simeq \hat{y}$ if and only if $\hat{x}\ulcorner W\urcorner$ $\simeq \hat{y}\ulcorner W\urcorner$. If H is a subgroup of $\Gamma(\mathfrak{M})$, then we denote the image of H in the collineation group of $\mathscr{P}(\mathfrak{P})$ under $W \rightarrow\ulcorner W\urcorner$ by $P H$. The kernel of $W \rightarrow\ulcorner W\urcorner$ in $\Gamma(\mathfrak{M})$ is easily seen to be $\{\alpha 1 \mid 0 \neq \alpha \in \Phi\}$.

One checks immediately from (1.3) that $\hat{x} \mid \hat{u}_{1}$ if and only if $x=\alpha u_{1}+a_{12} \in \Pi(\mathfrak{P})$, $\alpha \in \Phi, a \in \mathfrak{F}$. Hence, $\hat{x} \mid \hat{u}_{1}$ and $\hat{x} \simeq \hat{u}_{2}$ if and only if $x=a_{12}$ and $a \in \Pi(\mathfrak{F})$, where $\Pi(\Im)=\left\{0 \neq a \in \mathfrak{J} \mid a^{\#}=0\right\}$. Similarly, $\hat{x} \mid \hat{u}_{2}$ and $\hat{x} \simeq \hat{u}_{1}$ if and only if $x=b_{21}$ and $b \in \Pi(\mathfrak{F})$. If $a \in \Pi(\mathfrak{I})$, we shall set $a_{*}=\left(a_{12}\right)^{\wedge}$ and $a^{*}=\left(a_{21}\right)^{\wedge}$. Using (1.1) and (1.2), we see $a_{*} \simeq b_{*}$ and $a^{*} \simeq b^{*}$ always hold, $a_{*} \simeq b^{*}$ holds if and only if $T(a, b)=0$; each of $a_{*} \mid b_{*}$ and $a^{*} \mid b^{*}$ hold if and only if $a \times b=0$; while $a_{*} \mid b^{*}$ if and only if $V_{b, a}=0$ (since $V_{b, a}=0$ implies $V_{a, b}=0$ and $T(a, b)=0$), for $a, b \in \Pi(\mathfrak{J})$. Hence, $\left\{a_{*}, b^{*} \mid a, b \in \Pi(\Im)\right\}$ may be identified with $\mathscr{P}(\Im)$ as defined in [3, p. 32] (with a slight change of notation). Moreover, if $W \in \Gamma(\mathfrak{I})$ so $\tilde{W} \in \Gamma(\mathfrak{M})$, we see that if we abuse notation and set $\ulcorner W\urcorner=\ulcorner\tilde{W}\urcorner$, we get $a_{*}\ulcorner W\urcorner=(a W)_{*}$ and $a^{*}\ulcorner W\urcorner=(a \hat{W})^{*}$ for $a \in \Pi(\Im)$, which agrees with the action of $\Gamma(\Im)$ on $\mathscr{P}(\mathfrak{F})$ given in [3, p. 32].

Lemma 4. P Aut' (\mathfrak{P}) is transitive on
(a) $\hat{x} \in \mathscr{P}(\mathfrak{P})$.
(b) $\hat{x}, \hat{y} \in \mathscr{P}(\mathfrak{M})$ with $\hat{x} \notin \hat{y}$.
(c) $\hat{x}, \hat{y} \in \mathscr{P}(\mathfrak{P})$ with $\hat{x} \simeq \hat{y}, \hat{x}+\hat{y}$.
(d) $\hat{x}, \hat{y} \in \mathscr{P}(\mathfrak{R})$ with $\hat{x} \mid \hat{y}, \hat{x} \neq \hat{y}$.

Proof. Lemma 3 yields (a). In the remaining cases we may assume $y=u_{2}$ and x is as in (1.1). In case (b), $\langle x, y\rangle \neq 0$ implies $\alpha \neq 0$, and we may assume $\alpha=1$. The condition $x \in \Pi(\mathfrak{M})$ yields $a^{\#}=b$ and $N(a)=\beta$. Hence, $x=u_{1} t_{a}$. Since $u_{2} t_{a}=u_{2}$, we are done in this case. In case (c), $\alpha=0$ and $a \neq 0$. If $\beta \neq 0$, then $b^{\#}=\beta a$ implies $b \neq 0$. One may choose $c \in \Pi(\mathfrak{F})$ with $T(b, c)=-\beta$. Replacing x by $x t_{c}$, we may assume $\alpha=\beta=0$ and $a \neq 0$. If $b \neq 0$, then $a, b \in \Pi(\mathfrak{I})$ and $a_{*} \mid b^{*}$ since $V_{a, b}=0$. By [3, Lemmas 3.6 and 3.3] we know that there exists $c_{*} \mid b^{*}$ with $c_{*} \nmid a_{*}$, and that we may choose c such that $a \times c=-b$. Replacing x by $x t_{c}$, we may assume $\alpha=\beta=0, b=0$, and $a \neq 0$ (since $V_{b, c}=0$ implies $T(b, c)=0$). Since $P S(\mathfrak{F})$ is transitive on points of $\mathscr{P}(\mathfrak{F})$, we may choose $W \in S(\mathfrak{I})$ such that $\hat{x}\ulcorner W\urcorner=a_{*}\ulcorner W\urcorner=e_{*}$, where $e \in \Pi(\mathfrak{F})$ is fixed. Since $u_{2} \tilde{W}=u_{2}$, we are done in this case. In case (d), we have $\alpha=0$ and $a=0$. Since $\hat{y} \neq \hat{x}$, we see $b \neq 0$. We may choose $c \in \Pi(\Im)$ with $T(b, c)=-\beta$ and replace y by $y t_{c}$ to assume $\alpha=\beta=0, a=0, b \neq 0$. Since $P S(\mathfrak{F})$ is transitive on lines of $\mathscr{P}(\mathfrak{F})$, we may choose $W \in S(\mathfrak{I})$ with $\hat{y}^{\ulcorner } W^{\urcorner}=b^{*}\left\ulcorner W^{\urcorner}=e^{*}\right.$, where $e \in \Pi(\mathfrak{I})$ is fixed. This completes the proof of the lemma.

We shall need the following result about $\mathfrak{S}\left(\mathfrak{D}_{3}, \gamma\right)$.
Lemma 5. If W is an s-semilinear map of $\mathfrak{F}=\mathfrak{S}\left(\mathfrak{D}_{3}, \gamma\right)$ to itself such that for $a \in \Pi(\Im)$ there is $0 \neq \lambda_{a} \in \Phi$ with $a W=\lambda_{a} a$, then $W=\lambda 1$ for some $0 \neq \lambda \in \Phi$.

Proof. We may assume $\mathfrak{J}=\mathfrak{S}\left(\mathfrak{D}_{3}\right)$ and $\lambda \hat{e}_{1}=1$. If $u \in \mathfrak{D}$ and $0 \neq \mu \in \Phi$, then $x=\mu e_{1}+\dot{\mu}^{-1} n(u) e_{2}+u[12] \in \Pi(\Im)$. Since $e_{1} W=e_{1}$ and $e_{2} W=\lambda_{e_{2}} e_{2}$, we see that $u[12] W=\xi_{1} e_{1}+\xi_{2} e_{2}+\lambda_{x} u[12]$ where $0 \neq \lambda=\lambda_{x}$ is independent of u and

$$
\begin{gather*}
\lambda \mu=\mu^{s}+\xi_{1} \quad \text { for } 0 \neq \mu \in \Phi \tag{2.2}\\
\lambda \mu^{-1} n(u)=\left(\mu^{-1} n(u)\right)^{s} \lambda \hat{e}_{2}+\xi_{2} \quad \text { for } 0 \neq u \in \Phi \tag{2.3}
\end{gather*}
$$

If Φ has two elements, then $\lambda_{a} \neq 0$ implies $\lambda_{a}=1$ for all $a \in \Pi(\mathfrak{F})$. Since $\Pi(\mathfrak{F})$ generates \mathfrak{F} under addition, $W=1$. If $0 \neq \mu_{1}, \mu_{2} \in \Phi$, with $\mu_{1} \neq \mu_{2}$, then (2.2), with $\mu=\mu_{1}, \mu_{2}, \mu_{1}-\mu_{2}$, gives $\xi_{1}=0$. Thus, $\mu=1$ yields $\lambda=1$ and hence $s=1$. Similarly, (2.3) yields $\xi_{2}=0$ and $\lambda \hat{e}_{2}=1$. Thus, W is linear and $e_{2} W=e_{2}, u[12] W=u[12]$ for $u \in \mathfrak{D}$. Similarly, $e_{i} W=e_{i}, u[i j] W=u[i j], u \in \mathfrak{D}, i \neq j=1,2,3$ and $W=1$.

Theorem 1. If $\mathfrak{F}=\mathfrak{G}\left(\mathfrak{D}_{3}, \gamma\right)$ and $\mathfrak{M}=\mathfrak{M}(\mathfrak{F})$, then $\Gamma(\mathfrak{R})$ (respectively, $G(\mathfrak{M})$; Aut (\mathfrak{P})) is generated by $t_{c}, \tilde{W}, \varepsilon, \lambda 1$ where $c \in \mathfrak{F}, W \in \Gamma(\mathfrak{I}), 0 \neq \lambda \in \Phi$ (respectively, $W \in G(\Im) ; W \in S(\mathfrak{J}), \lambda=1)$.

Proof. Using the notation preceding Lemma 3, we need only show that $\Gamma(\mathfrak{M})$ $\subseteq \Gamma^{\prime}(\mathfrak{M}), G(\mathfrak{R}) \subseteq G^{\prime}(\mathfrak{P})$, and Aut $(\mathfrak{M}) \subseteq A u t^{\prime}(\mathfrak{P})$. If $W \in \Gamma(\mathfrak{P})$, then $\ulcorner W\urcorner$ is a collineation of $\mathscr{P}(\mathfrak{R})$, and by Lemma $4(b)$ there is $W_{2} \in A u t '(\mathfrak{R})$ with $\hat{u}_{i}\left\ulcorner W^{\prime}\right.$
$=\hat{u}_{i}\left\ulcorner W_{2}\right\urcorner, i=1$, 2. Since $\left\ulcorner W W_{2}^{-1\urcorner}\right.$ induces a collineation of $\mathscr{P}(\mathfrak{F})$, we may apply the fundamental theorem of octonion planes (see [3, p. 40]) to find $W_{3} \in \Gamma(\mathfrak{I})$ such that $\left\ulcorner W_{3}\right\urcorner$ agrees with $\left\ulcorner W W_{2}^{-1\urcorner}\right.$ on $\mathscr{P}(\mathfrak{F})$. Since $u_{1} W W_{2}^{-1} \tilde{W}_{3}^{-1}=\lambda u_{1}$ and, by Lemma 5, $a_{12} W W_{2}^{-1} \tilde{W}_{3}^{-1}=(\eta a)_{12}, a \in \mathfrak{F}$, for some $0 \neq \lambda, \eta \in \Phi$, we may set $W_{1}=\lambda^{-1} \eta W_{3}$ to get $W^{\prime}=W W_{2}^{-1} \tilde{W}_{1}^{-1} \lambda^{-1}$ satisfying $x W^{\prime}=\alpha u_{1}+\rho \beta u_{2}+a_{12}+(\mu b)_{21}$ for some fixed $0 \neq \rho, \mu \in \Phi, x$ as in (1.1). (Note: W^{\prime} is linear on \mathfrak{J}_{12} and hence on all of \mathfrak{M}.) If $\alpha=\beta=1$ and $a=b=1$, then $x W^{\prime} \in \Pi(\mathfrak{R})$ which implies $\rho=\mu=1$ by (2.1). Hence, $W^{\prime}=1$ and $W=\lambda \tilde{W}_{1} W_{2}, \quad 0 \neq \lambda \in \Phi, W_{1} \in \Gamma(\mathfrak{I}), W_{2} \in$ Aut $^{\prime}(\mathfrak{M})$. Clearly, $\Gamma(\mathfrak{M}) \subseteq \Gamma^{\prime}(\mathfrak{M})$.

If $W \in G(\mathfrak{M})$, then W_{1} must be linear so $G(\mathfrak{M}) \subseteq G^{\prime}(\mathfrak{M})$. If $W \in$ Aut (\mathfrak{M}), then $\lambda \tilde{W}_{1} \in$ Aut (\mathfrak{R}). If $W_{1} \in G(\mathfrak{J})$ has multiplier ρ, then $1=\left\langle\lambda u_{1} \tilde{W}_{1}, \lambda u_{2} \tilde{W}_{1}\right\rangle=\lambda^{2} \rho$. Set $c=(\lambda-1) e+1 \in \mathfrak{F}$ where $e \in \mathfrak{F}$ is a primitive idempotent. Since $c^{\# \#}=\lambda c$, we see that $N(c)=\lambda$ and $U_{c} \in G(\mathfrak{I})$ with multiplier $\lambda^{2}=\rho^{-1}$. By (1.14), we see that $\lambda^{-1}\left(U_{c}\right)^{\sim}$ \in Aut (\mathfrak{M}). But $\lambda \tilde{W}_{1} \lambda^{-1}\left(U_{c}\right)^{\sim}=\left(W_{1} U_{c}\right)^{\sim} \in$ Aut (\mathfrak{M}) since $W_{1} U_{c} \in S(\mathfrak{I})$. Thus, $\lambda \tilde{W}_{1} \in \operatorname{Aut}^{\prime}(\mathfrak{M})$ and $\operatorname{Aut}(\mathfrak{R}) \subseteq \operatorname{Aut}^{\prime}(\mathfrak{M})$.

We shall need the following result on the plane $\mathscr{P}(\mathfrak{F})$.
Lemma 6. If $x_{*}, y_{*} \in \mathscr{P}(\mathfrak{F})$ and $x_{*} \simeq z^{*}$ if and only if $y_{*} \simeq z^{*}$, then $x_{*}=y_{*}$.
Proof. Since $P \Gamma(\mathfrak{I})$ is transitive on points of $\mathscr{P}(\mathfrak{I})$, we may assume $x=e_{1}$, where e_{1}, e_{2}, e_{3} are pairwise orthogonal primitive idempotents for \mathfrak{F}. If \mathfrak{F} is split, then there is a basis for \mathfrak{J} of elements of rank one of the form $z=e_{i}, a_{i}[j k], i, j, k \neq$; $a_{i} \in \mathfrak{O}, n\left(a_{i}\right)=0$. The condition $T(y, z)=0$ if and only if $T\left(e_{1}, z\right)=0$ yields $y \in \Phi e_{1}$, as desired. If \mathfrak{F} is not split, then $\mathscr{P}(\mathfrak{F})$ is a projective plane and $u_{*} \simeq v^{*}$ if and only if $u_{*} \mid v^{*}$ (see [3, p. 50]). Thus, $y_{*} \mid e_{2}^{*}$ and $y_{*} \mid e_{3}^{*}$ implies $y_{*}=e_{1 *}$.

We shall eventually show that every collineation of $\mathscr{P}(\mathfrak{P})$ is in $P \Gamma(\mathfrak{M})$, but first we must demonstrate the following two characterizations of the identity collineation.

Lemma 7. If σ is a collineation of $\mathscr{P}(\mathfrak{P})$ such that σ fixes \hat{u}_{2} and all points incident to \hat{u}_{1}, then σ is the identity.

Proof. We have $\left(\alpha u_{1}+a_{12}\right)^{\wedge}$ and \hat{u}_{2} fixed by σ, for $\alpha \in \Phi, a \in \Pi(\mathfrak{F})$. Since by (1.3) \hat{u}_{1} is the unique point of $\mathscr{P}(\mathfrak{M})$ incident to all $a_{*}, a \in \Pi(\Im), \hat{u}_{1}^{\sigma}=\hat{u}_{1}$. Since σ stabilizes $\mathscr{P}(\mathfrak{F})$ and fixes the points $a_{*}, a \in \Pi(\mathfrak{F}), \sigma$ also fixes a^{*}. Let $y=\gamma u_{1}+\delta u_{2}$ $+c_{12}+d_{21} \in \Pi(\mathfrak{M})$ and let $\hat{y}^{\sigma}=\hat{y}^{\prime}$ where $y^{\prime}=\gamma^{\prime} u_{1}+\delta^{\prime} u_{2}+c_{12}^{\prime}+d_{21}^{\prime}$. If $\delta=0$, then $\hat{y}^{\prime} \simeq \hat{u}_{1}$ implies $\delta^{\prime}=0$. In this case, $d, d^{\prime} \in \Pi(\mathfrak{J})$. The condition $\hat{y} \simeq a_{*}$ if and only if $\hat{y}^{\prime} \simeq a_{*}, a \in \Pi(\Im)$, implies $d^{\prime}=\lambda d$ for some $0 \neq \lambda \in \Phi$ by Lemma 6. If $\delta \neq 0$, then $\delta^{\prime} \neq 0$, and we may assume $\delta=\delta^{\prime}=1$. Then $\hat{y} \simeq\left(\alpha u_{1}+a_{12}\right)^{\wedge}$ if and only if $\hat{y}^{\prime} \simeq\left(\alpha u_{1}+a_{12}\right)^{\wedge}, \alpha \in \Phi, a \in \Pi(\mathfrak{J})$, implies $T(d, a)=T\left(d^{\prime}, a\right), a \in \Pi(\mathfrak{J})$ or $d=d^{\prime}$. In either case, $\hat{y}^{\sigma}=\left(\xi u_{1}+\delta u_{2}+h_{12}+d_{21}\right)^{\wedge}$ for some $\xi \in \Phi, h \in \mathfrak{J}$. In particular, σ fixes all points $\left(\delta u_{2}+d_{21}\right)^{\wedge}$. Using the above argument, for some $0 \neq \rho \in \Phi$, one sees $\hat{y}^{\sigma}=\left(\gamma u_{1}+\rho \delta u_{2}+c_{12}+\rho d_{21}\right)^{\wedge}$. Since $c^{\#}=\gamma d=\rho \gamma d$ and since $c=0$ implies $\gamma=0$ or $y=\gamma u_{1}$ (and σ fixes y in either case), we may assume $c \in \Pi(\mathfrak{F})$. Similarly, we may also assume $d \in \Pi(\mathfrak{Y})$ so $\gamma=\delta=0$ and $c_{*} \mid d^{*}$. If $b \in \mathfrak{F}$ is such that $T(d, b)=T\left(c, b^{\#}\right)$
$\neq 0$, then $\hat{y} \simeq \hat{w}$ implies $\hat{y}^{\sigma} \simeq \hat{w}^{\sigma}=\hat{w}$ where $w=u_{1}+N(b) u_{2}+b_{12}+\left(b^{\#}\right)_{21}$. Thus, $\rho T(d, b)=T\left(c, b^{*}\right)$ and $\rho=1$. To show such a b exists, we choose $c_{2 *} \mid d^{*}$ and $c_{3 *}$ such that $c=c_{1}, c_{2}, c_{3}$ form a three-point (see [3, p. 33]). If $b=c_{1}+c_{2}+c_{3}$, then $T\left(c_{i}, d\right)=0, i=1,2$, and $T\left(c_{3}, d\right) \neq 0$ since $d^{*}=\left(c_{1} \times c_{2}\right)^{*}$. Thus, $T(b, d) \neq 0$. Also, $T\left(c_{1} \times c_{i}, c_{1}\right)=0, i=2,3$, and $T\left(c_{2} \times c_{3}, c_{1}\right) \neq 0$, so $T\left(b^{\#}, c\right) \neq 0$. Replacing b by $T(b, d) T\left(b^{\#}, c\right)^{-1} b$, we get b as desired.

Lemma 8. If σ is a collineation of $\mathscr{P}(\mathfrak{R})$ fixing $a_{*}, a \in \Pi(\Im)$, and $\left(u_{1}+e_{12}\right)^{\wedge}$ for some $e \in \Pi(\Im)$, then σ is the identity.

Proof. As in the proof of Lemma 7, we see that \hat{u}_{1} is fixed by σ. The condition, $\hat{u}_{2}^{\sigma} \neq \hat{u}_{1}$ implies $\hat{u}_{2}^{\sigma}=\left(\alpha u_{1}+u_{2}+a_{12}+b_{21}\right)^{\wedge}$ for some $\alpha \in \Phi ; a, b \in \mathfrak{F}$. Since $\hat{u}_{2}^{\sigma} \simeq c_{*}$, $c \in \Pi(\Im)$, we see $b=0$ and $a=0, \alpha=0$, by (2.1). Thus, $\hat{u}_{2}^{\sigma}=\hat{u}_{2}$ and $a^{* \sigma}=a^{*}$ for $a \in \Pi(\Im)$, since σ stabilizes $\mathscr{P}(\Im)$ and fixes its points. Since $\hat{x}^{\sigma} \mid \hat{u}_{1}$ and $\hat{x}^{\sigma} \simeq a^{*}$ if and only if $\hat{x} \simeq a^{*}, a \in \Pi(\Im)$, for $x=u_{1}+c_{12}, c \in \Pi(\Im)$, we see that $\hat{x}^{\sigma}=\left(u_{1}+\rho(c) c_{12}\right)^{\wedge}$ for some $0 \neq \rho(c) \in \Phi$. Similarly, $\left(u_{2}+d_{21}\right)^{\wedge \sigma}=\left(u_{2}+\lambda(d) d_{21}\right)^{\wedge}$ for $d \in \Pi(\Im)$, $0 \neq \lambda(d) \in \Phi$. Since there is a norm similarity W of \mathfrak{J}^{\prime} to \mathfrak{F} with $e_{1} W=e$, where e_{1}, e_{2}, e_{3} are the diagonal idempotents of $\mathfrak{J}^{\prime}=\mathfrak{S}\left(\mathfrak{S}_{3}\right)$, we may assume $\mathfrak{J}=\mathfrak{I}^{\prime}$ and $e=e_{1}$, after replacing σ by $\ulcorner W\urcorner \sigma\left\ulcorner W^{-1\urcorner}\right.$. If $T(c, d)=1$, then $\left(u_{1}+\rho(c) c_{12}\right)^{\wedge}$ $\simeq\left(u_{2}+\lambda(d) d_{21}\right)^{\wedge}$ implies $\rho(c) \lambda(d)=1$. Since $\rho\left(e_{1}\right)=1$, we see $\lambda\left(e_{1}+u[1 j]+n(u) e_{j}\right)=1$ for $j=2,3, u \in \mathfrak{D}$. Letting $u=1$, we get $\rho\left(e_{j}\right)=1, j=2,3$. Since $\lambda\left(e_{i}\right)=1, i=1,2,3$, we have $\rho\left(e_{i}+u[i j]+n(u) e_{j}\right)=1$ for all $u \in \mathfrak{D}, i=1,2$, 3. If $x=u_{2}-n(u)\left(e_{k}\right)_{12}$ $+(u[i j])_{21}$ then $x \in \Pi(\mathfrak{P})$ since $N(u[i j])=0$, and $\hat{x}^{\sigma}=\left(u_{2}+\left(v^{\sharp}\right)_{12}+v_{21}\right)$ for some $v \in \mathfrak{F}$. Since $\hat{x}^{\sigma} \simeq a_{*}$ if and only if $\hat{x} \simeq a_{*}$ for $a \in \Pi(\mathfrak{F})$, we see $T(u[i j], a)=0$ if and only if $T(v, a)=0$ for $a \in \Pi(\mathfrak{F})$. Taking $a=e_{i}, e_{i}+s[i j]+n(s) e_{j}, s \in \mathfrak{D} ; i, j=1,2,3$, $i \neq j$, we get $v=\xi u[i j]$ for some $0 \neq \xi \in \Phi$. Choose $s \in \mathfrak{D}$ with $n(s, u)=-1$. Then $\hat{x} \simeq \hat{y}$ implies $\hat{x}^{\sigma} \simeq \hat{y}^{\sigma}=\hat{y}$ for $y=u_{1}+\left(e_{i}+s[i j]+n(s) e_{j}\right)_{12}$. Thus, $\xi n(s, u)=-1$ and $\xi=1$. Hence, $\hat{x}^{\sigma}=\hat{x}$. If $a=\sum \alpha_{i} e_{i}+\sum a_{i}[j k]$ with $a_{k}[i j] \neq 0$ and $a \in \Pi(\mathfrak{F})$, then choose $u \in \mathfrak{D}$ with $n\left(u, a_{k}\right)=-1$. Then $\left(u_{1}+a_{12}\right)^{\wedge \sigma} \simeq \hat{x}$ and $\rho(a)=1$. If $a=\alpha e_{i}$, $0 \neq \alpha \in \Phi$, then what was just proved shows $\rho\left(\alpha e_{i}+\alpha[i j]+\alpha e_{j}\right)=1$ which implies $\lambda\left(\alpha^{-1} e_{i}\right)=1$ and $\rho(a)=1$. Thus, $\rho(a)=1$ for all $a \in \Pi(\Im)$, and σ fixes \hat{u}_{2} and all points incident to \hat{u}_{1}. By Lemma 7, σ is the identity.

TheOrem 2. If $\mathfrak{I}=\mathfrak{F}\left(\mathfrak{D}_{3}, \gamma\right)$ and $\mathfrak{I}^{\prime}=\mathfrak{S}\left(\mathfrak{D}_{3}^{\prime}, \gamma^{\prime}\right)$, then σ is a collineation of $\mathscr{P}(\mathfrak{P}(\mathfrak{F}))$ onto $\mathscr{P}\left(\mathfrak{M}\left(\mathfrak{I}^{\prime}\right)\right.$) if and only if $\sigma=\ulcorner W\urcorner$ for some semisimilarity W of $\mathfrak{M}(\mathfrak{J})$ onto $\mathfrak{M}\left(\mathfrak{F}^{\prime}\right)$.

Proof. By Lemma 4(b), we may assume that $\hat{u}_{i}^{\sigma}=\hat{u}_{i}^{\prime}, i=1,2$. Thus, σ induces a collineation of $\mathscr{P}(\mathfrak{F})$ onto $\mathscr{P}\left(\mathfrak{F}^{\prime}\right)$. By the fundamental theorem of octonion planes (see [3, p. 40]), σ agrees with $\ulcorner W\urcorner$ on $\mathscr{P}(\mathfrak{J})$ for some semisimilarity W of \mathfrak{J} onto \mathfrak{J}^{\prime}. Replacing σ by $\sigma^{\ulcorner } W^{\urcorner^{-1}}$, we may assume $\mathfrak{F}=\mathfrak{J}^{\prime}, \hat{u}_{i}^{\sigma}=\hat{u}_{i}, i=1,2, a_{*}^{\sigma}=a_{*}$, $a^{* \sigma}=a^{*}$, for $a \in \Pi(\Im)$. If $e \in \Pi(\Im)$, then $\left(u_{1}+e_{12}\right)^{\wedge \sigma} \mid \hat{u}_{1}$, and $\left(u_{1}+e_{12}\right)^{\wedge \sigma} \simeq a^{*}$ if and only if $\left(u_{1}+e_{12}\right)^{\wedge} \simeq a^{*}$ imply by Lemma 6 that $\left(u_{1}+e_{12}\right)^{\wedge \sigma}=\left(u_{1}+\rho e_{12}\right)^{\wedge}$ for some $0 \neq \rho \in \Phi$. Replacing σ by $\sigma\left\ulcorner\left(\rho^{-1} 1\right)^{\wedge}\right\urcorner$, we may assume that σ fixes $a_{*}, a \in \Pi(\mathcal{F})$ and $\left(u_{1}+e_{12}\right)^{\wedge}$. By Lemma 8, σ is the identity.
3. Simplicity of P Aut (\mathfrak{M}). The purpose of this section is to prove the following

Theorem 3. P Aut (\mathfrak{M}) is a simple group.
We shall first establish some facts about P Aut (\mathfrak{M}).
Lemma 9. P Aut (\mathfrak{M}) is a primitive permutation group of $\mathscr{P}(\mathfrak{M})$.
Proof. By Lemma 4(a), P Aut (\mathfrak{M}) is transitive. Suppose M_{1}, M_{2}, \ldots is a system of imprimitivity for P Aut (\mathfrak{P}) with $\hat{u}_{1} \in M_{1}$. If $\hat{u}_{1} \neq \hat{x} \in M_{1}$, then either $\hat{x} \neq \hat{u}_{1}$; $\hat{x} \simeq \hat{u}_{1}$ and $\hat{x} \nmid \hat{u}_{1}$; or $\hat{x} \mid \hat{u}_{1}$. By Lemma 4 , we may assume $\hat{x}=\hat{u}_{2}, \hat{x}=e_{1}^{*}$, or $\hat{x}=e_{1 *}$ where e_{1}, e_{2}, e_{3} are orthogonal primitive idempotents for \mathfrak{F}. Let $z=u_{1}+\left(e_{1}\right)_{12}$ and $w=u_{1}+\left(e_{1}+e_{2}\right)_{12}+\left(e_{3}\right)_{21}$, so $z, w \in \Pi(\mathfrak{R})$. If $\hat{x}=\hat{u}_{2}$, then $\hat{z} \neq \hat{u}_{2} \neq \hat{w}$ so $\hat{z}, \hat{w} \in M_{1}$. But $\hat{z} \mid \hat{u}_{1}$ and $\hat{w} \simeq \hat{u}_{1}$ with $\hat{w} \nmid \hat{u}_{1}$, so elements of all three types are in M_{1}, and M_{1} $=\mathscr{P}(\mathfrak{M})$. If $\hat{x}=e_{1}^{*}$, then $\hat{w} \simeq \hat{u}_{1}$ with $\hat{w} \nmid \hat{u}_{1}$ implies $\hat{w} \in M_{1}$. But $\hat{w} \nsucceq e_{1}^{*}$, and we may apply the previous case. If $\hat{x}=e_{1 *}$, then $e_{2}^{*} \mid e_{1 *}$ implies $e_{2}^{*} \in M_{1}$. But $e_{2}^{*} \simeq \hat{u}_{1}$ and $e_{2}^{*} \nmid \hat{u}_{1}$ and we may apply the second case.

We denote by $T(\mathfrak{J})$ the group $\left\{t_{a} \mid a \in \mathfrak{J}\right\}$.
Lemma 10. PT(§) is a normal abelian subgroup of the subgroup H of P Aut (\mathfrak{R}) fixing \hat{u}_{2}.

Proof. $P T(\Im)$ is abelian by (1.11) and fixes \hat{u}_{2} by (1.9). If $\sigma \in H$, write \hat{u}_{1}^{σ} $=\left(u_{1}+a_{12}+\left(a^{\#}\right)_{21}+N(a) u_{2}\right)^{\wedge}$. Replacing σ by $\sigma\left\ulcorner t_{-a}\right\urcorner$, we may assume $\hat{u}_{i}^{\sigma}=\hat{u}_{i}$, $i=1,2$. By the proof of Theorem 2, we have $\sigma=\ulcorner W\urcorner$ for some $W \in \Gamma(\mathfrak{J})$. We see $\left.\sigma^{-1\ulcorner } t_{c}\right\urcorner \sigma=\left\ulcorner\tilde{W}^{-1} t_{c} \tilde{W}\right\urcorner=\left\ulcorner t_{c W}\right\urcorner, c \in \mathfrak{F}$, by (1.12), so $P T(\Im)$ is normal in H.

Set $v_{c}=\varepsilon^{-1} t_{c} \varepsilon$ for $c \in \mathfrak{J}$ so

$$
\begin{align*}
x v_{c}= & \left(\alpha-T(a, c)+T\left(b, c^{\#}\right)-\beta N(c)\right) u_{1} \\
& +\beta u_{2}+\left(a-b \times c+\beta c^{\#}\right)_{12}+(b-\beta c)_{21} \quad \text { for } x \text { as in (1.1). } \tag{3.1}
\end{align*}
$$

A direct calculation verifies, for $u \in \mathfrak{D}$,

$$
\begin{equation*}
t_{e_{1}} v_{u[12]} t_{-e_{1}} v_{-u[12]} v_{n(u) e_{2}}=\left(T_{u[12], e_{1}}\right) \sim \tag{3.2}
\end{equation*}
$$

where in general $T_{a, b}=1+V_{a, b}+U_{a} U_{b}$ (see [3, p. 17]).
Lemma 11. Aut (\mathfrak{M}) is generated by conjugates of $T(\mathfrak{F})$ in Aut (\mathfrak{M}).
Proof. If G is the group generated by conjugates of $T(\mathfrak{F})$ in Aut (\mathfrak{M}), then by (1.14) with $c=1$, we see $\varepsilon=-\left(t_{1} \varepsilon t_{1} \varepsilon t_{1}\right)^{-1}=\left(t_{1} \varepsilon^{-1} t_{1} \varepsilon t_{1}\right)^{-1} \in G$. Since $v_{c} \in G$ for $c \in \mathfrak{J}$, (3.2) shows that $\left(T_{u[12], e_{1}}\right)^{\wedge} \in G$. Theorem 4.7 of [3] implies that conjugates of $T_{u[12], e_{1}}, u \in \mathfrak{D}$, in $S(\mathfrak{F})$ generate $S(\mathfrak{F})$. By Theorem 1, we see $G=$ Aut (\mathfrak{M}).

Lemma 12. P Aut $(\mathfrak{M})=\mathscr{D}(P$ Aut $(\mathfrak{M}))$, the derived group .
Proof. By Lemma 11, we need only show $\left\ulcorner t_{a}\right\urcorner \in D=\mathscr{D}(P$ Aut (\mathfrak{P})), $a \in \mathfrak{J}$. By (1.11), (1.12), the fact that $\Pi(\mathfrak{F})$ spans \mathfrak{F} and the transitivity of $P S(\mathfrak{F})$ on points of $\mathscr{P}(\mathfrak{F})$, we need only show $t_{\alpha e_{2}} \in D$ for all $\alpha \in \Phi$. Since $T_{u[12], e_{1}} \in \mathscr{D}(P S(\Im))$ by Lemma 4.6 of [3], we see by (3.2) that $v_{n(u) e_{2}} \in D$ for all $u \in \mathfrak{D}$. Hence, $t_{n(u) e_{2}} \in D$.

If $\alpha \in \Phi$, there exist $u, v \in \mathfrak{D}$ with $n(u, v)=n(u+v)-n(u)-n(v)=\alpha$. Thus, by (1.11), $t_{\alpha e_{2}} \in D$, as desired.
Proof of Theorem 3. This follows immediately from Lemmas 9, 10, 11, 12 and Lemma 4, p. 39 of [1].

References

1. J. Dieudonné, La géométrie des groupes classiques, 2nd ed., Springer-Verlag, Berlin, 1963. MR 28 \#1239.
2. J. R. Faulkner, A construction of Lie algebras from a class of ternary algebras, Trans. Amer. Math. Soc. 155 (1971), 397-408.
3. -, Octonion planes defined by quadratic Jordan algebras, Mem. Amer. Math. Soc. No. 104 (1970), 1-71.
4. H. Freudenthal, Beziehungen der \mathfrak{E}_{7} und \mathfrak{E}_{8} zur Oktavenebene. IV, Nederl. Akad. Wetensch. Proc. Ser. A 58 (1955), 277-285 = Indag. Math. 17 (1955), 277-285. MR 16, 900.
5. M. Koecher, Über eine Gruppe von rationalen Abbildungen, Invent. Math. 3 (1967), 136-171. MR 35 \#5479.
6. K. McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495-510. MR 39 \#276.

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904

