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Abstract: Over the past 30 years mountain pine beetle (MPB) outbreaks have become widespread throughout the western 

US and Canada. MPB attacks leave acres of dead trees that may predispose forest landscapes to large fires. With the use of 

field work and geospatial technology, these outbreaks can be better mapped and assessed to evaluate forest health. This study is 

designed to map and classify bark beetle infestation in Washington's Wenatchee National Forest. Field work on seventeen 

randomly selected sites was conducted using the point-centered quarter method. Recent MPB outbreak areas were classified 
using National Agriculture Imagery Program (NAIP) imagery. A link between MPB attack and forest fires was then quantified 

using MODIS fire data. Lastly, a predictive infestation model was constructed using the following geophysical parameters: 

disturbance indices, Landsat TM5 classification of groundcover as well as vegetation stress using hyperspectral data. Selected 

imagery from the Hyperion sensor was used to run a minimum distance supervised classification in ENVI, in attempt to detect 

the early “green stage” of infestation. This study detected MPB spread and assessed the fire risk related to infestation. 

Keywords: MODIS, Bark Beetle Infestation, GIS, Wildfire, Spectral Indices 

 

1. Introduction 

A legacy of fire exclusion and increased incidence of 

summer drought in the western US has predisposed forested 

landscapes to bark beetle outbreaks [15, 1]. Bark beetles such 

as the mountain pine beetle Dendroctonus ponderosae have 

spread rapidly over the past few decades [24]. Since bark 

beetles kill the tree they infest, increased infestations result in 

an abundance of dead biomass, which may lead to increased 

risk of wildfires [33]. 

From the West Coast through the Rocky Mountains, bark 

beetles have affected more than 41.7 million acres of conifer 

forests [21]. Bark beetles preferentially attack trees that 

showcase two favorable characteristics; nutrient content and 

trunk diameter thickness [32]. These factors are thought to 

attract beetles which then bore into trees and deposit their 

larvae. Bark beetles are most successful when attacking trees 

that have been weakened by disease, drought, smog, previous 

infestations or physical damage. These attacks further 
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weaken the trees, leading to stem deformities, loss of growth, 

and premature mortality [31]. 

The mountain pine beetle (Dendroctonus ponderosae), 

targets ponderosa and lodgepole pines in the western US and 

Canada [10]. Healthy trees secrete resin which contains 

insecticidal and fungicidal compounds. Such compounds 

defend the tree against beetle infestations, immobilizing and 

suffocating the beetles. However, a heavy infestation can 

overwhelm these defenses, especially in weakened trees, 

resulting in sawdust-like shavings around the entrance holes 

(Figure 1), [24]. Prolonged drought can weaken tree defenses 

and make them more susceptible to attack [25]. 

 

Figure 1. Trees produce sap as a defense mechanism when bark beetles 

borough into the tree, creating pitch tubes. 

 

Figure 2. A red phase tree.  

 

Figure 3. A mix of green, red, and gray phase trees. 

Tree infestation is a three-stage process (Figure 3). Green 

attack, the first stage, shows no color change and is therefore 

difficult to detect with remote sensing. During this stage, the 

beetles begin to burrow through the phloem, interrupting the 

nutrient flow. It takes roughly one year to transition to the 

second stage, red attack, which can be detected by satellite 

sensors (Figure 2). The beetle larvae begin to feed on the 

tree’s phloem, starving the tree of nutrients and water, and 

changing the crown from green to yellow to red. Lack of 

water and nutrient flow eventually kills the tree. Gray attack 

is the final stage in which the tree is dead and has lost all 

foliage [32]. 

Ground surveys, remote sensing techniques, and aerial 

detection surveys are the primary methods for monitoring 

bark beetle infestations and wildfires [43]. However, ground 

surveys are costly and time consuming. Satellite remote 

sensing methods have proved to be economical tools for 

detecting forest damage, in areas where bark beetles have 

caused uniform pockets of damage and where fires are 

widespread. However, outbreaks are rarely homogeneous in 

age and tree species, and most outbreaks are not large enough 

to be remotely detected [28]. These factors impair the 

accuracy of remote sensing classification models [18]. As a 

result, it is difficult to understand the magnitude of the 

problem by exclusively examining satellite imagery. Using 

multiple remotely sensed images coupled with ground-based 

validation can be a promising approach to better understand 

this problem. 

The objective of this study was to map the extent of the 

bark beetle infestation in the Okanogan-Wenatchee National 

Forest in northern Washington State. We used a suite of 

ground-based and remotely sensed datasets to: (1) map an 

ongoing MPB outbreak and train MPB classifications of 

satellite imagery with field data; (2) analyze the relationship 

between bark beetles and forest fires by comparing the 

previously determined infestation sites with locations of 

known fires; and (3) predict future outbreak areas based on 

disturbance indices and hyperspectral satellite data. Through 

field work and, remote sensing image analysis and an 

understanding of the incipient phase, this study identifies 

specific present and future regions of MPB outbreaks [32, 

34].  
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The study area is Washington’s Okanogan-Wenatchee 

National Forest and is located directly south of the Canadian 

border and east of Cascades National Park in central 

Washington State (Figure 4). Field sites were located within a 

4 km radius of 48.09 latitude and -120.19 longitude. 

Vegetation within the forest is variable, with small shrubs and 

grasslands covering the lower elevations. Mid-elevation 

vegetation primarily consists of ponderosa pine (Pinus 

ponderosa) and Douglas fir (Pseudotsuga menziesii) [36], 

while lodgepole pine (P. contorta), Engelmann spruce (Picea 

engelmanii), and subalpine fir (Abies lasiocarpa) [26] 

dominate higher elevation forests above 1,800 meters.  

 

Figure 4. Our study site was located in Washington State, directly above 

Lake Chelan. 

Climate is characterized by moderate temperatures 

during the summer and occasional sub-zero temperatures 

during the winter months [22]. Recent droughts in 2001 and 

2005 are characterized by decreased seasonal precipitation. 

Mean annual precipitation ranges from 30 to 230 

centimeters [39]. In recent years, the region experienced 

prolonged droughts in 2001 and 2005 and a number of 

severe wildfire years. The Deer Point Fire of August 2002 

burned stands on the south western edge of our study 

region. The Tripod Fire burned in excess of 70,820 hectares 

of the Okanogan wilderness, ranking as one of the largest 

fires in Washington State over the past 50 years. Before 

American settlement, Washington’s surface fires decreased 

the long-term threat of running crown fires by reducing the 

fuel bed [23]. These fires reduced competition for site 

resources among surviving trees, shrubs, and herbs. Large 

extant dry forests no longer appear as they did. Modern 

landscapes are homogeneous and set up for severe, large 

fire and insect disturbance events [16]. 

2. Methodology 

2.1. Bark Beetle Infestation Detection 

2.1.1. Field Work 

A field study was conducted in June of 2010 to classify 

forest stands in various stages of attack. This classification 

established a base to quantitatively determine percent 

infestation and, provided a means to accurately assess 

satellite data. Seventeen sampling units were measured, each 

within one of the following categories—severe (red-attack or 

gray-attack), moderate, and not attacked. Sampling sites were 

randomly generated, located in polygons derived from known 

MPB outbreak areas in 2009 Forest Service Aerial Surveys 

[40]. Selected sites were at least 90 meters and no farther 

than 500 meters from established roads. 

The center of each sampling unit was located using a real-

time differential correction on a Trimble GPS unit. Each 

coordinate was checked using a Garmin ETrex Vista Hcs 

handheld GPS. Units are 60x60 meters, each consisting of 12 

subplots spread across a grid [7]. Subplots consist of three 

columns spread an equidistant 15 meters apart, with four rows 

spread at various distances; 10 meters from the northern edge 

to the first row, 12.5 meters to the second row, 15 meters to the 

third, 12.5 meters to the fourth, and 10 meters to the southern 

edge (Figure 4). A laser range finder was utilized to measure 

the distance from subplot center to the sampled tree. The point-

center quarter method [30] defines each subplot, in which the 

four geographical bearings (north, east, south and west) tagged 

which trees to sample (Figure 5). Measurements taken at each 

tree included diameter at base height (DBH), distance from 

sub-plot center, tree species, percent red attack, percent gray 

attack, and presence of pitch tubes or noticeable resin 

secretions. This dataset chronicles tree density, species 

composition, and percent of trees attacked, displaying three or 

more pitch tubes. Further measurements were noted at each 

plot for percent groundcover, percent understory coverage, and 

percent over-story coverage.  

 

Figure 5. An illustration of the point-centered field sampling method [30]. 



 Agriculture, Forestry and Fisheries 2017; 6(1): 34-44 37 

 

2.1.2. Landsat Classification 

Sampling units were used to train classification of MPB 

outbreaks from Landsat Thematic Mapper 5 (TM5) and NAIP 

imagery. Landsat TM 5 is an orbiting sensor that provides 30 

meter spatial resolution [34] images. Ten Landsat TM5 images 

were selected for this study and are representative of summer 

months (June-July) over 2002 to 2009 (http://glovis.usgs.gov/). 

Multiple images allowed multi temporal analyses to be 

performed. All images were radiometrically corrected in 

ERDAS Imagine 9.3 and then converted into reflectance 

values using the surface method [40, 4].  

In order to assess the ability of Landsat to detect red-phase 

trees, an ISODATA unsupervised classification was conducted 

in ERDAS Imagine. LANDSAT data have three bands in the 

visible and one band in the near infrared part of the 

electromagnetic spectrum, enabling detection of land change 

patterns. The unsupervised, rather than the supervised, 

classification technique was chosen because the methodology 

could easily be recreated. For maximum precision of cluster 

building, 100 iterations were used with a convergence 

threshold of 0.995. The band combination of 421 (RGB), 

offers enhanced discrimination of land-water boundaries and 

highlights topographic details which helped to differentiate 

between the classes [9]. Twenty classes were initially specified 

and zero values were ignored in the output. Vegetation classes 

were narrowed to four categories – healthy forest, red-phase 

forest, bare ground and shrublands, and ice [42]. Field work 

and NAIP photography were used to assign the four classes. 

Aerial photography was used to asses to the accuracy of 

the classification. Accuracy assessments in remote sensing 

are performed by selecting a number of points in the 

classified image and checking them against reference data 

such as aerial photos. The binomial probability theory 

equation was utilized to determine the number of points that 

should be selected for the accuracy assessment [19]. The 

equation is defined below: 

2

2

( )( )Z p q
N

E
=                                         (1) 

This was computed where N is the sample size, Z = 2 from 

the standard deviate of 1.96 for the 95% two-sided 

confidence level, p is the expected accuracy for the entire 

map, q = 100 – p, and E is the allowable error [19]. The 

number of random sample locations was computed as 75 

points with an expected accuracy of 75% and a 10% 

allowable error. 

The above equation resulted in 80 points. Using equalized 

random point selection, eighty points were randomly placed in 

the classified image to ensure that each class received exactly 

ten sample points. Then, so that these datasets could be 

referenced, these same points were also placed on the mosaic. 

The mosaic was the true or ‘reference’ dataset against which 

the classification was checked. Once the process was 

complete, the accuracy statistics for each land cover type and 

for the overall classification, which is the combined mean of 

all land cover types, were collectively computed. 

2.1.3. Using NAIP Imagery to Quantify the Infestation 

The National Agriculture Imagery Program (NAIP) 

provides detailed, high resolution images acquired by aircraft 

of the entire United States. As Coggins et al showed digital 

aerial photography is useful for visualizing and quantifying 

the extent of the mountain pine beetle infestation as a result 

of its high spatial resolution. Each NAIP image contains 

spatially detailed ground information, allowing 

differentiation between red and green crowns. Red pixels 

have higher values in the multispectral NAIP imagery than 

do green pixels. A basic algorithm was used to identify red 

crown pixels based on visual inspection of the imagery 

(Equation 4). 
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ERDAS Imagine was used to create a model which runs a 

raster NAIP image from a particular year through this 

algorithm. This process was performed with several images, 

but the image used in the accuracy assessment was taken in 

June of 2009 and consisted of two NAIP scenes. It is 

important to recognize that every NAIP image will have 

different threshold values dependent on the quality and time 

of day of the image. The algorithm sets to zero all pixels that 

do not meet the specified characteristics as defined by the 

unique threshold value. Such manipulation permits the 

creation of detailed maps that chronicle the amount of trees 

with red crowns in a given area. With one meter resolution, 

outbreak areas can be calculated based upon the number of 

red pixels in a given area. Again, the binomial probability 

theorem was used to assess the accuracy of the classification. 

 

Figure 6. An illustration of satellite imagery from the MODIS Active Fire 

Product which was used to determine sites of bark beetle infestation in the 

Wenatchee National Forest. 
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2.2. Wildfire Analysis 

Once MPB outbreak areas could be readily identified, 

relationships between bark beetle outbreaks and incidence 

of wildfires could be further examined. The Moderate 

Resolution Imaging Spectroradiometer (MODIS) onboard 

the EOS Terra and Aqua satellites are capable of active fire 

detection and mapping. Terra's orbit around the Earth is 

timed so that it passes from north to south across the 

equator in the morning, while Aqua passes south to north 

over the equator in the evening. Aqua MODIS and Terra 

MODIS are viewing the entire Earth's surface every one to 

two days [3]. Active fire detection maps the flaming front 

of fires at the time of the satellite overpass and is possible 

because radiant energy increases with temperature, 

producing a high contrast between fire pixels and cool 

surrounding non-fire pixels. 

Hawbaker, et al. found MODIS active fire data to be 

nearly 82% accurate. MODIS detected every fire larger than 

2638ha. Regionally (East, Great Plains and Western US) [35] 

cloud cover effects on Terra or Aqua fire detections were 

most pronounced in the Eastern seaboard. Cloud effects were 

minimal in the Western US [14]. This could explain why 

MODIS fire detection rates are highest in the West. Thus, the 

Washington study site is ideal for MODIS data. 

MODIS Terra and Aqua data were acquired from the Land 

Processes Distributed Active Archive Center (LPDAAC, 

http://edcdaac.usgs.gov/modis/dataproducts.asp). MODIS 

active fire pixels were overlaid atop the classified 2009 NAIP 

imagery (Figure 6). The previously derived algorithm 

(Equation 4) was used to determine outbreak areas. The area 

covered includes the region south of Lake Chlean in the 

original NAIP image. All detected fires in the study area 

were considered either bark beetle or non-bark beetle related. 

Reference fires were considered bark beetle related if at least 

one MODIS active fire pixel occurred within 1 km of the 

edge of an infested site. No buffers were applied to the fire 

pixels. An unpaired T-test was then used to quantify the 

relationship between bark beetle infestation and wildfires. 

This process was repeated with NAIP images and MODIS 

data ranging from 2002 to 2010. 

2.3. Early Detection/Mitigation 

2.3.1. Using Landsat and MODIS to Create Disturbance 

Index Archives 

This study hypothesized that areas experiencing an 

ecological disturbance are more susceptible to bark beetle 

infestation. A combination of MODIS and Landsat satellite 

imagery were used to generate disturbance indices in the 

Okanogan-Wenatchee National Forest from 2002 to 2009 

(Table 1). If this theory regarding ecological disturbances can 

be proven, forest managers can then focus their preventative 

measures on disturbed areas.  

Table 1. Satellite indices used to map stress in Wenatchee and Okanogan Forests. 

Satellite Indices  

Truncation Name Index Satellite / Sensor Description Reference # 

Landsat DI 
Landsat 

Disturbance Index 
DI = Brightness - (Greenness + Wetness) Landsat 

tasseled cap based 

disturbance 

Healey et al., 

2005 
1 

MODIS DI Disturbance Index 

 

Terra& Aqua/ MODIS 
vegetation & 

temperature stresses 

Mildrexler et 

al., 2007 
2 

 

The purpose of the disturbance index is to measure 

vegetation stress that results from any number of natural or 

human-induced causes such as forest fires or forest insect 

infestations [11]. The disturbance index exemplifies the 

contrast between healthy forest stands and bare ground. 

Disturbance index images were generated for each year 

between 2002 and 2009 based upon the original reflectance 

images—brightness, greenness and wetness. Indices were 

then extracted in ArcGIS 9.3 to calculate average pixel 

values [12]. Coordinate points from the original seventeen 

field sites were layered atop each vegetation index from each 

given year, and 2x2 pixel values were averaged.  

Wildfires often result in charred barren earth. This feature 

can be detected with a disturbance index. The first index was 

created using Landsat TM5. The tasseled cap (TC) procedure 

was used to create a vegetation index that measures three 

vegetation dimensions—brightness, greenness and wetness 

[8]. In remote sensing the tasseled cap is used to convert 

readings [15] in a set of channels into composite values or 

weighted sums. One of these weighted sums measures 

roughly the brightness of each pixel [12]. A disturbance 

index was calculated based upon tasseled cap images from a 

single date [20].  

MODIS data were used to create another Disturbance 

Index (DI). A prolonged disruption of natural forest functions 

results in an ecological disturbance. MODIS is adept at 

detecting natural disturbances in the form of wildfires, 

storms, or floods, and human-induced disturbances such as 

agricultural clearing and altering of stream channels. Many 

of these disturbance events will change ecosystem 

productivity and resource availability on large scales. When 

the Land Surface Temperature (LST) and Enhanced 

Vegetation Index (EVI) contribute anomalies, the MODIS DI 

is effective at identifying disturbance. Further, the index 

better represents the normal ecological condition with the 

addition of further annual mean-maximum values in the 

denominator [27].  

MODIS data were obtained from the Oak Ridge National 

Laboratory Distributed Active Archive Center (ORNL DAAC) 

website (http://daac.ornl.gov/MODIS/). Data from years 2002 

through 2009 were compiled from the DAAC server. 

Seventeen data sets were requested—one set for each sampling 

unit. As delineated by Mildrexler et al. (2007), LST and EVI 

were used to create the MODIS Disturbance Index (Table 1, 

 

maxmax

maxmax

/
/

/

x x 
EVILST

EVILST

EVILST
DI =
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Equation 2). LST data is gathered from the Aqua/MODIS 

eight-day composite daytime sensor. EVI data is gathered from 

the Terra/MODIS 16-day composite sensor. Both indices were 

cross-referenced with NOAA’s archive of weather data to 

determine if disturbed areas were also moisture stressed. Both 

Landsat and MODIS indices generated two separate series of 

disturbance maps from years 2002 to 2009. These maps were 

overlaid with and compared to NAIP images from each 

corresponding year, using the same methodology as was 

described in section ‘II Wildfire Analysis.’ 

Two statistical tests were then run to compare mortality 

with satellite disturbance indices and contrasting adjacent 

years’ indices. An ANOVA test was run on the data from 

2002 to 2009. The purpose is to find a correlation between 

percent mortality and the indices, so that a model predicting 

future mortality may be created. The ANOVA compared 

units were separated into four categories: 0-25% gray, 25-

50% gray, 50-75% gray and 75-100% gray. Unpaired student 

t-tests were run on significant years to observe the 

differences. The second set of statistical tests compared 

adjacent years’ indices to see if there was an increase or 

decrease in value from year to year. We used 2-sample t-tests 

to compare the index values from each yearly pair.  

2.3.2. Satellite Image Processing—Hyperspectral Detection 

of the Green Phase 

Research has shown that Landsat TM5 is successful in 

detecting the red and gray phases of bark beetle attack, but 

not the green phase [41]. One goal of this study aimed at 

determining if Hyperion is able to differentiate between the 

green phase and healthy trees.  

Preprocessed Landsat images from 2002 and 2003 were 

used to train Hyperion data. Previous studies have shown that 

there is a twelve-month period to reach 90% red phase from 

an initial 100% green phase [41]. Using this information, a 

supervised minimum distance classification was run on the 

Landsat images, searching for green and red trees. This 

classification used predefined “regions of interest,” or ROIs, 

specific to each year, containing purely green pixels in 2002 

and red pixels in 2003. The 2002 and 2003 Landsat 

classifications were then overlaid to find pixels classified in 

each year. Forty-six pixels were found and defined as green 

phase ROIs. The spectra of both green phase and non-green 

phase pixels were graphed and compared to determine what 

bands fluctuate with the green phase. Two supervised 

spectral angle mapper classifications were run on the 

Hyperion image, using twenty merged green phase ROIs per 

classification. We compared the two classified images, 

looking for a correlation between classified pixels. An 

accuracy of 50% or higher indicates success [38]. 

3. Results 

3.1. Landsat Classification  

The classification achieved an overall classification score 

of 80%. However, the classification was only 39.53% 

accurate in detecting red and grey-phase forest (Figure 9). 

Healthy forest, ice and water bodies were identified with 

greater than 90% accuracy. Accuracy was calculatsed using 

the ERDAS Imagine accuracy assessment tool. 

3.2. NAIP Red Phase Algorithm 

NAIP imagery was successful in detecting the extent of the 

red phase with an accuracy of 96%. Accuracy was measured 

in ArcGIS by random selection of points located within red 

tree clusters. This estimates error of commission, but not 

omission. The total acreage of the study region shown above 

is 38,481,540 square meters (Figure 7). In 2006, red phase 

trees covered 146,188 square meters. By 2009, this number 

rose to 4,151,500 square meters.  

 

Figure 7. A depiction of red phase trees in aerial photos. 
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3.3. MODIS Fire Analysis 

MODIS detected fires from 2002 to 2010 were directly 

related to bark beetle infested areas. Over 70% of MODIS 

fire pixels occurred on prior-year crown morality pixels. This 

suggests that the presence of infestation dramatically 

increases the likelihood of a sizable forest fire. Fire Radiative 

Power (FRP) was also recorded. (FRP) is a measure of the 

rate of radiant heat output from a fire. The data were 

recorded as Aqua MODIS or Terra MODIS fire pixels. When 

measured individually, Aqua and Terra were less accurate 

(Table 2). Aqua generally outperformed Terra. Detection 

rates also increased with fire size. Possibly this is because 

heavy fuels in western fires [13] may continue to combust 

after the fire front has passed. 

Table 2. Yearly correlation of MODIS fire data and Bark Beetle attack. 

 More Confident Sensor Fire Radiative Power (FRP):  P Value  

2002 Aqua (A) A fires are 2% stronger than T fires 0.1162 

2003 Aqua  A fires are 18% stronger than T fires 0.4239 

2004 Aqua A fires are 19% stronger than T fires 0.1719 

2005 Terra (T) T fires are 18% stronger than A fires 0.1859 

2006 Aqua A fires are 16% stronger than T fires 0.0006 

2007 Aqua A fires are 5% stronger than T fires 0.3886 

2008 Aqua A fires are 43% stronger than T fires 0.1771 

2009 Aqua Outliers 0.1010 

2010 Terra A fires are 22% stronger than T fires 0.2444 

 

3.4. Disturbance Indices 

Disturbed areas correlated with infestation seen in NAIP 

aerial photos (Table 3). These indices acted like change 

indices that were particularly sensitive to drought. Each 

highlighted p value in Table 3 signifies a correlation with 

bark beetle infestation. Within the study region, the two 

disturbance indices were also statistically different from one 

another in year-to-year comparisons. The years with the 

greatest differences were 2002 to 2003, 2004 to 2005, and 

2006 to 2007. 2002 and 2006 had greater levels of vegetation 

and a lower disturbance index than their respective 

consecutive years. This data correlates to the drought in 2003 

(-2.75 and below) [37]. 

Table 3. Year to Year Comparisons for Five Indices. 

 MODIS DI T-test Value Landsat DI T-test Value MODIS DI ANOVA Test Value Landsat DI ANOVA Test Value 

2002-2003 Increase p=0.0165* Increase p=3.3e-5* p=0.7100 p=0.9887 

2003-2004 Decrease p=0.0130* Decrease p=1.039e-5* p=0.1858 p=0.2830 

2004-2005 Decrease p=0.0213* Increase p=6.504e-4* p=0.3579 p=0.8470 

2005-2006 Increase p=3.439e-4* Increase p=0.4129 p=0.1707 p=0.3819 

2006-2007 Increase p=0.2523 Increase p=0.0389* p=0.0854* p=0.3902 

2007-2008 Increase p=0.2556 Decrease p=0.0906* p=0.5531 p=0.8265 

2008-2009 Increase p=0.0062* Increase p=0.3190 p=0.8724 p=0.0410* 

* = statistical significance at the 10% level 

 

Figure 8. A chart showing average disturbance index values in the Wenatchee National Forest from 2002 to 2009. 
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2004 proved to have significant vegetation disturbances in 

the form of drought and MPB outbreaks. 2004 had 

significantly lower levels of vegetation yet lower moisture 

stress than 2003. It also showed lower Landsat disturbance 

yet higher MODIS disturbance levels than 2003. Since 2002, 

the MODIS sensor has detected increasing disturbance levels 

at unhealthy sites, especially between 2006 and 2009 (Figure 

8). High mortality sites showed lower Landsat disturbance 

levels, yet higher MODIS disturbance levels. 

3.5. Detection of the Green Phase 

Hyperion satellite imagery classified the green phase, with 

a kappa coefficient of 0.1163, or 11.63%. As the kappa 

coefficient disregards chance agreement, this was a 

significant finding. This finding was supported by comparing 

the spectra of the green phase and healthy trees. 

The green phase had higher reflectance values (by 

approximately 200 µW/(cm^2*sr*nm)) between wavelengths 

of 671nm to 1336 nm (band numbers 32 through 119) 

(Figure 9). In Cheng, et al., 2010, it was found that the green 

phase is characterized by its moisture content between 

wavelengths of 1318 nm and 1322 nm. These findings 

indicate that green phase trees display higher reflectance 

values in the red portion of the spectrum, due to decreased 

chlorophyll content, and in the infrared portion of the 

spectrum, due to decreased water content. 

 

Figure 9. A comparison between the spectral signatures of trees infested with bark beetles and uninfected trees. 

 

Figure 10. A land use classification of Landsat imagery. 

4. Discussion 

Field measurements and NAIP photos were useful for 

training satellite data and determining the extent of mountain 

pine beetle infestation. Classification schemes are an 

effective way to categorize large areas without detailed 

imagery (Figure 10). The Landsat classification had an 

overall accuracy of 80%, yet was only 40% accurate at 

detecting the red phase. This is likely due to the 30x30 meter 

resolution of the imagery and non-homogeneity of the sample 

sites. Non-homogenous sites were often inaccurately 

classified. Inaccurate classifications were the result of border 

pixels and mixed pixels. If a pixel is 60% green phase and 

40% red phase, the classification scheme will display it as 

being entirely green phase. Pixels that occur along the border 

of different classes are also frequently misidentified.  
An algorithm was created to detect the red phase in NAIP 

imagery. This may be used in tandem with hyperspectral 

imagery, such as Hyperion, to improve the accuracy of the 

detection of beetle infestation. The derived NAIP algorithm 

can be readily modified and used to display red phase trees in 

any multispectral NAIP image. With this new algorithm, 

acreage of infested areas can be quickly determined with 

good accuracy. This information can help the forest service 

predict future sites of infestation. 

Of the MODIS imagery, Aqua detected more fires than 
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Terra. The solar diffuser onboard Terra and the response of 

several bands in the visible spectrum has been degrading a 

few percent each year and could explain the discrepancy in 

detection rates [3]. However, the difference in the detection 

rates between the two MODIS sensors is most likely related 

to their overpass timing. Fire activity follows a diurnal cycle, 

often peaking in the afternoon, when weather conditions are 

ideal for burning. Aqua overpasses in the afternoon, making 

it ideal for fire detection.  

MODIS is effective at identifying large fires, yet errors of 

omission are considerable. MODIS detects less than one 

percent of all fires observed on the ground. This means that 

the problem of bark beetle induced wildfires could be even 

more severe than the results suggest [14]. Previous studies 

have established a relationship between wildfires and bark 

beetle infestations, so the results of this study are not 

unexpected. Jolly et al. suggests that less heat would be 

required to ignite the foliage of MPB attacked trees and thus 

increase crown fire potential in attacked stands. However this 

correlation is still controversial. Other studies attribute the 

increase of fires to rising climates and erosion rates [29]. The 

importance of this study is that it supports the theory of 

infestations being related to forest fires in the Okanogan-

Wenatchee National Forest. 

For the purpose of this study, disturbance indices were 

used to detect patches of dead vegetation that correlate with 

regions of extensive bark beetle infestation. This was 

attempted as a means of early detection. The two disturbance 

indices strongly correlated with moisture stress, and prove to 

be very reliable. The Landsat and MODIS spectral indices 

were fairly accurate in detecting droughts and fires, as 

checked by NOAA’s archive of droughts and wildfires. This 

study is evidence that spectral indices can be used to predict 

future areas of infestation. 

Hyperion is an efficient tool at detecting the green phase. 

The accuracy level can be increased by using field work as 

training data. The Hyperion classification of the green phase 

also had a low accuracy level, with a kappa coefficient of 

0.1163. However, Hyperion was able to detect that the green 

phase in the reflectance in the red and infrared regions of the 

electromagnetic spectrum. The higher reflectance in the red 

region (620 nm to 780 nm) may be due to the reduced 

chlorophyll content of infested trees [2]. Trees with lower 

chlorophyll content tend to reflect rather than absorb red 

wavelengths [43]. Therefore, infested trees will have a higher 

red reflectance level than healthy trees. The higher infrared 

reflectance is caused by decreased water flow to the crown, 

due to the burrowing of the bark beetles [17]. Hyperion’s 

ability to detect the spectral differences between green and 

other phase trees indicates that Hyperion may be used to 

detect the green phase. It may also be a strong predictor of 

the red phase, with its hyperspectral capabilities. Future 

studies should focus on using Hyperion data to more 

accurately classify the incipient green phase. The green phase 

can be accurately detected with extensive field work and high 

resolution NAIP images, both of which can be used to train 

an accurate supervised classification. 

5. Conclusion 

The methodology followed a linear progression of 

detection, fire association and then early 

detection/prevention. Field work, the Landsat classification 

and the NAIP algorithm were used to detect infested sites in 

the study area. These infested sites were then overlaid atop 

MODIS fire data to establish a link between infestation and 

wildfires. Once the link was established, attention then turned 

to mitigation efforts like the spectral indices and Hyperion 

classification. 

Remote sensing is a valuable tool in fire mitigation and 

tracking bark beetle infestation. However, the size of fires 

and infested areas tends to be small relative to satellite 

resolution. Thus, high spatial resolution imagery is optimal. 

Resolution of the aforementioned satellites was sufficient, 

but more detailed imagery would yield better results for the 

spectral indices. The multispectral indices proved to be 

accurate at detecting infestation. This is because moisture 

content, vegetation levels, fire and ecosystem disturbance are 

all related to infestation. Multiple measurements per field 

sampling site would likely yield more significant results. 

Bark beetle infestations are theoretically related to 

wildfires. Predicting future sites of infestation is necessary to 

mitigate the severity of future wildfires. Hyperion data can 

differentiate between the red and infrared portions of the 

spectra of green phase trees and healthy trees. Hyperion, 

therefore, shows promise at detecting the incipient green 

phase, although further research should be done to increase 

the accuracy of Hyperion’s classification of the green phase. 

Through the usage of field work, spectral indices, and NAIP 

imagery, bark beetle infestation can be detected so that any 

necessary mitigation steps can be taken. 
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