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Abstract

Background: The study of the prehistoric origins and dispersal routes of domesticated plants is often based on the analysis
of either archaeobotanical or genetic data. As more data become available, spatially explicit models of crop dispersal can be
used to combine different types of evidence.

Methodology/Principal Findings: We present a model in which a crop disperses through a landscape that is represented by
a conductance matrix. From this matrix, we derive least-cost distances from the geographical origin of the crop and use
these to predict the age of archaeological crop remains and the heterozygosity of crop populations. We use measures of the
overlap and divergence of dispersal trajectories to predict genetic similarity between crop populations. The conductance
matrix is constructed from environmental variables using a number of parameters. Model parameters are determined with
multiple-criteria optimization, simultaneously fitting the archaeobotanical and genetic data. The consilience reached by the
model is the extent to which it converges around solutions optimal for both archaeobotanical and genetic data. We apply
the modelling approach to the dispersal of maize in the Americas.

Conclusions/Significance: The approach makes possible the integrative inference of crop dispersal processes, while
controlling model complexity and computational requirements.
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Introduction

Understanding the domestication and the subsequent dispersal

of cultivated plants is fundamental to our comprehension of the

rise of early agricultural societies [1–2]. Such insights may also

have much practical relevance. The initial dispersal of crops is an

important determinant of the geographic distribution of their

genetic diversity. A better understanding of this distribution can

help assist in establishing representative collections of crop genetic

resources, which form the basis of modern crop improvement

[3–4].

Research on plant domestication and crop dispersal is a

multidisciplinary effort with the principal contributions coming

from archaeology and molecular biology [5–6]. The application of

new research techniques has led to the availability of significant

amounts of new data. Retrieval of archaeobotanical remains by

flotation, introduced in the 1960s [7], made it possible to

systematically collect data across archaeological sediments and

sites. Accelerator mass spectrometry (AMS) radiocarbon dating

has been used to accurately determine the age of microscopic

archaeological remains [8], while scanning electron microscopy

(SEM) has improved the taxonomic identification of archaeobo-

tanical remains. The retrieval of phytoliths and starch has also

provided new opportunities for data collection [9]. DNA analysis,

applied to both archaeological crop remains and traditional crop

varieties, has helped to elucidate evolutionary relationships and

trajectories [10–11].

In spite of this increase in the availability and quality of data,

conflicting views persist regarding the evolutionary and geograph-

ical trajectories of crops. The issue does not seem to be data

availability alone. For instance, for Asian rice (Oryza sativa L.),

much genetic and archaeological data are available, yet there is no

consensus regarding where it was domesticated and how it spread

across the Asian continent [12–13]. Sometimes, radical conclu-

sions are drawn from a few new data points without considering

the full body of evidence [14]. Therefore, not only more data are

needed, but also better and different ways to analyze the data in a

comprehensive way. Since crop evolution involves processes at

multiple levels of biological organization, integrative approaches

that link these levels are needed [15]. Linking genes, crops, and

landscapes through a geographical analysis of genetic and

archaeobotanical data is one important way to achieve such

multilevel integration [6]. Geospatial models have an important

role to play in this.
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Spatially explicit models of dispersal are not new to archaeol-

ogy. Models of diffusion have been used to represent the spread of

Neolithic innovations, including pottery, copper metallurgy,

cultivated maize [16], and the Neolithic emergence of agriculture

in Europe [17–20]. These relatively simple models show a good

correspondence with the spatial pattern of radiocarbon-dated

archaeological evidence and what is known about the origins of

agriculture. Also dynamic simulation has been applied to crop

dispersal [21].

In contrast, current methods used for the geographical analysis

of crop genetic diversity are generally not spatially explicit. A

common approach to determine the geographical origin of a crop

is to locate the genetically closest wild progenitor population [e.g.,

22–24]. This type of evidence, although very important, may not

always be conclusive. The ancestral population may have shifted

geographically, it may have become extinct over time, or it may

have been omitted during sampling. The spatial pattern of

intraspecies crop genetic diversity provides independent informa-

tion about the origin of the crop as well as information about the

dispersal routes followed. However, spatial analysis of crop genetic

data is currently mostly done post hoc, for instance, by determining

genetic clusters and plotting these on maps. A spatially explicit

model would be needed to integrate archaeobotanical and genetic

evidence of crop origins and dispersal routes.

In the broader field of phylogeography, the need for further

integration of genetics and geography is increasingly recognized

[25]. Recently, visualization and inference methods based on

phylogenetic trees have been developed [26–28]. Progress has also

been made by combining niche models and coalescent models [29]

and modelling gene flow as random walks in heterogeneous

landscapes [30]. Range expansion, of specific interest here, has

been modelled with spatially explicit simulation [31] and analyzed

by comparing genetic and geographic distances along dispersal

routes [32]. Such methods have not yet been applied to cultivated

plants, however.

We present a novel, integrated approach, which combines

different elements from existing archaeological and genetic

geospatial models. Our approach has at its core a landscape

model that represents the ease of movement through geographical

space. Given the geographical origin of a crop, we derive from the

landscape model different distance measures that can be

quantitatively related to (1) the radiocarbon dates for the first

appearance of the crop in the archaeological record, (2)

heterozygosity of (contemporary) crop samples, and (3) genetic

distances between these samples. The measures are all based on

(randomized) shortest path metrics that can be obtained without

stochastic simulation. This provides greater computational speed,

allowing for the evaluation of alternative locations of crop origins

and of different variables of potential influence on crop dispersal.

We apply the approach to maize dispersal in the Americas.

Although there is still debate about the exact geographical origin

of maize, it is thought to lie in a limited area in southern Mexico,

where its closest wild relatives occur naturally [33]. The spread

beyond this area was exclusively the result of human action.

Introgression from wild Zea mays subspecies into cultivated maize is

‘‘measurable but modest’’ [22,34]. Zea mays ssp. mexicana

contributed an estimated 2.3% of the genomes of maize samples

sympatric to this subspecies [22]. The most probable scenario for

introgression from Zea mays ssp. parviglumis is that it took place early

after divergence and was followed by the gradual isolation of the

taxa [34]. If maize spread out of Mesoamerica after isolation was

completed, this influence is not important. Because of its single

origin and limited geneflow with wild relatives, maize provides a

relatively uncomplicated case compared with other crops and is

therefore particularly suited to evaluate our approach. We

performed a single modelling iteration with a simple model to

demonstrate and evaluate our new modelling approach. In the

final section, we discuss next modelling iterations and possible

extensions of the approach.

Methods

General description of the modelling approach
Landscape model. The initial dispersal of crops is affected

by several geographical factors such as the location of water

bodies, environmental barriers, the suitability of environments to

grow the crop, and prehistoric human population density. To

model the relative influence of different factors, we use

conductance matrices derived from gridded geographic data. In

the conductance matrix, each grid cell is represented by a row with

values indicating the conductance or relative ease of crop dispersal

and gene flow to other cells on the grid. A grid with n cells

produces an n6n cells conductance matrix. Generally, we connect

pairs of spatially adjacent cells, which receive non-zero values in

the conductance matrix, while unconnected pairs of cells receive a

zero. Spatially non-adjacent cells could be connected in the

conductance matrix to represent long-distance ‘leap-frog’

movements. Here, to keep the model simple and following a

number of existing models in archaeology [18–20] and spatial

genetics [30–31], we connect spatially adjacent cells only.

What we call a ‘‘conductance matrix’’ is called a ‘‘weighted

adjacency matrix’’ in graph theory. In this context, however, we

prefer the term ‘‘conductance matrix’’ to avoid confusion, as

adjacency between nodes in the graph derived from the grid does

not necessarily imply spatial adjacency between the cells repre-

sented by the nodes. A further reason for this terminology is that

the ease of transition can be seen as equivalent to conductance in

electrical terms [30,35–36]. Grid cells represent the nodes of a

mesh, each connected to its neighbors by resistors. Conductance is

the reciprocal of resistance (conductance = 1/resistance), which in

turn is equivalent to friction or cost, which are terms more

commonly used in geospatial analysis.

Using conductance matrices has a number of advantages. In

geospatial analysis, least-cost distances are generally calculated

from a cost or friction grid [37]. However, a conductance matrix is

more versatile as it can represent connections between non-

adjacent cells and anisotropy (e.g., the friction from cell i to j being

unequal to the friction from j to i). Also, a conductance matrix can

be used directly to derive distance metrics based on random walks

(see below). Conductance matrices generally contain a large

number of zeros and few non-zero values. Hence, conductance

matrices can be handled as sparse matrices because most values are

zero. Sparse matrices only store (indexed) non-zero values, which

is very efficient memory-wise. Also, fast computational methods

are available for sparse matrices.

Conductance values are determined from the values of the two

grid cells that are connected, using different functions. Simple

functions, such as the average, or functions that require

parameters can be used. The conductance values need to be

corrected for (1) differences between diagonal and non-diagonal

connections between cells if cells are connected in more than four

directions and (2) distance distortions, specifically the decreasing

W-E distance between cell centres on a longitude-latitude grid

when moving from the equator towards the poles. Both issues are

addressed by dividing conductance values by the distances

between the cell centres.

We refer to the final conductance matrix used to calculate the

distance metrics as the landscape model (note that the term
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‘landscape’ does not imply a certain range of geographical extent

or resolution; our landscape model can cover an entire continent).

The landscape model is constructed by combining various

conductance matrices for the selected variables that might

influence crop dispersal. Conductance matrices based on different

variables are combined into a single conductance matrix (giving

each variable a certain weight), which forms our landscape model.

The complexity of the landscape model can vary, depending on

the number of conductance matrices (i.e., weight parameters) and

the number of parameters required by the function(s) used to

determine the values in each of the conductance matrices.

Given a certain geographical origin of crop dispersal and a

landscape model, we can predict the movement of crops in

geographical space and, consequently, the age of archaeobotanical

crop remains, heterozygosity, and genetic distances between crop

populations. The following sections discuss the construction of

predictor variables from the landscape model and the model-

fitting procedure. The modelling approach requires measures of

goodness-of-fit between the landscape model on the one hand and

the archaeobotanical and genetic data on the other. To derive

these measures, we use and adapt elements of existing modelling

approaches in both archaeology and geographical genetics.

Modelling crop remain radiocarbon ages. We use a

variant of existing spatial diffusion models in archaeology for the

post-domestication diffusion of crops [16–20]. Given a landscape

conductance matrix and the location of the putative cradle area of

the crop, we calculate the least-cost distance to all archaeological

site locations for which we have dated prehistoric crop remains,

following [18]. These distances are then used as a predictor of the

arrival date of the crop at those sites. The earliest dates for each

area are the most relevant, as these are indicative of the

introduction of the crop to that area, while later dates

correspond to local expansion of the crop within the area or to

a failure to detect earlier crop remains. To focus our analysis on

the sites with the oldest crop remains rather than the average age

for a given area and to avoid defining discrete areas, we use

quantile regression [38]. Quantile regression is used for regression

on a quantile (t), like the median (t= 0.5). By setting t to a

relatively extreme value (t.0.75), we increase the influence of the

oldest sites in the analysis. Quantile regression is robust in dealing

with skewed distributions and outliers, which makes it especially

suited to our approach, which precludes checking error

distributions and removing outliers. We use the pseudo-R2 of

quantile regression, R1, as the goodness-of-fit [39].

Modelling heterozygosity. Dispersal is expected to leave a

mark on the diversity within and between populations. During

the expansion of humans out of Africa and spread across the

world, each time generally small groups split off to occupy new

areas, taking with them only a portion of the alleles from their

original population. As a result, human populations show a

regular decline in heterozygosity from Africa to the southern tip

of South America [32]. For crops, a similar effect is to be

expected. In grain crops, mostly whole infructescences are

selected for seed. This reduces the number of maternal parent

plants and hence the effective population size. If seed lots are

relatively small, genetic bottlenecks occur. In established

traditional farming systems, pollination between fields and seed

mixing tend to counteract the resulting loss of alleles and

maintain diversity levels [40–41]. During range expansion,

however, seed lots are taken into new territory, beyond the

reach of these diversity-restoring processes. Also, seed quantities

during crop expansion may have been limited by several causes.

If crop expansion was due to human migration, such migration

movements may have been motivated by push factors like

marginalization or persecution. If so, migrants may have arrived

with few resources, including seeds. If crop expansion was a

process of cultural exchange, hunter-gatherers with no agricultural

experience or farmers adopting a new crop were the ones who took

the crop further into new territory. Therefore, cultivation in these

new locales must often have been precarious and experimental in

nature, possibly leading to small seed lots and low crop plant

survival rates. Therefore, we think it is reasonable to expect a loss of

diversity during crop dispersal, resulting in a declining gradient of

crop diversity from the origin.

Like for crop remain ages, the least-cost distance from the origin

of the crop should therefore be a good predictor for heterozygosity

levels. Here, for simplicity, we determine the cost distance to

predict heterozygosity from the same landscape model as we use

for crop remain ages. This assumes that the loss of diversity due to

genetic bottlenecks through each area is proportional to the time it

took to cross these areas. This may not be realistic. The intensity of

genetic drift is related to population size, which may change over

time and among agricultural systems. Also, the number of

bottlenecks over a given distance may differ. See below, under

Discussion–Next modelling iterations, for a refinement of this aspect of

the approach.

Selection, introgression from wild populations, as well as recent

founder effects and subsequent hybridization may all confound the

spatial pattern of heterozygosity. However, as long as the pattern is

mainly due to the initial wave of dispersal and not to subsequent

long-distance gene flow events or introgression from wild relatives,

the net effect of these subsequent demographic events will be to

decrease heterozygosity locally. If this is the case, the upper limit of

heterozygosity will be largely determined by the least-cost distance

from the crop origin. Heterozygosity levels that fall short of this

maximum will have undergone more recent drift or selection.

Only the upper limit of heterozygosity contains information about

prehistoric crop dispersal. This problem is similar to the one

encountered with the crop remain age data, where we are also

primarily interested in the highest values of each area. Therefore,

the quantile regression approach introduced above can be used for

heterozygosity as well.

Modelling genetic distances. During dispersal, the genetic

divergence between populations is due to the progressive isolation

of populations as their trajectories split. The earlier trajectories

split, the more genetic divergence is to be expected. On the other

hand, populations that share a large part of their trajectory will

undergo a common loss of alleles (alleles which may continue on

pathways in other directions from the origin) and have a higher

degree of common ‘surfing’ alleles, which have emerged at

intermediate locations [42]. Both effects will lead to a higher

genetic similarity between populations that share a longer

trajectory from the origin.

Ramachandran et al. predicted genetic distances between

human populations with distances along dispersal routes out of

Africa through waypoints [32]. This gave better results than

predictions with direct geographic distances between the sampled

populations (as in an isolation-by-distance model). The distance

via migration waypoints corresponds to the divergent part of the

prehistoric migration trajectories of each pair of populations.

Hence, genetic distances between human populations reflect their

migration history and arguably the same is the case for crops. We

extend this approach in two ways: (1) using a grid-based landscape

model, as described above, thus obviating the need for discrete

waypoints, and (2) taking into account not only the divergent part

of trajectories, but also the length of the shared part. Again, we

assume that genetic drift during crop dispersal was constant in

time.

Domesticated Plant Dispersal
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During crop dispersal, the first varieties to reach a new place will

have more probability to be taken further than varieties that arrive

there later. Hence, the dispersal route of individual alleles will be

close to the shortest (least-cost) path from the origin location to the

location of the sampled population. However, there will also be

movements of sideward gene flow along the expansion front that

will canalize genes towards parallel paths, bringing in a random

element. Random walks can be modelled with analytical methods,

using the analogy with electrical current, to avoid repeated

simulations to determine probabilities [35–36]. Random walk

distances are useful to model genetic distances in heterogeneous

landscapes for gene flow in an equilibrium situation [30]. However,

gene flow during range expansion is intermediate between a least-

cost path and a random walk. This could be represented with

randomized shortest paths, which allow varying the degree of constraint

to the least-cost path, changing the value of h [43]. Parameter h can

be varied between 0 (random walk) and ‘ (shortest path). A

randomized shortest path is also somewhat longer than the shortest

path, but in this context, the correlation between the two types of

distances is high and tends to 1 when h approaches ‘.

For a given origin, destination, conductance matrix, and a value

for h, we calculate the net number of times of transition over each

cell connection, i.e., the number of transitions not reciprocated by

transitions in the opposite direction. We take this to correspond to

the probability of passage (P) of the forward movement of an allele

during the wave of expansion. With a given origin, we calculate

the matrix P for each sample location. Each transition probability

matrix Pa represents the stochastic trajectory from the origin to

point a. The probability that two different trajectories (Pa and Pb)

coincide in connections between cells can be calculated by

multiplying the two matrices:

Pjoint~Pa
:Pb ð1Þ

Pjoint is a matrix with the probabilities of joint passage for each cell

connection. Likewise, to determine to what extent connections

between cells are part of the divergent part of the trajectories, we

calculate the probability that the most probable trajectory crosses a

cell connection and the least probable trajectory fails to do so. If

this probability exceeds the probability that the least probable

trajectory crosses the cell, there is enough asymmetry between the

trajectories to consider the cell connection as part of the divergent

part of the trajectory:

Pdisjunct~max 0,max Pa,Pbð Þ: 1{min Pa,Pbð Þð Þ{min Pa,Pbð Þð Þ ð2Þ

Figure 1 illustrates these calculations by showing the transition

probabilities by cell. We multiply the obtained matrices Pjoint and

Pdisjunct with the resistance matrix, R. (Here, we determine R as

the reciprocal of the conductance matrix of the landscape model,

but see below under Discussion–Next modelling iterations for an

extension to this.) We then sum the values of the whole matrix.

Overlap~
X

Pjoint
:R ð3Þ

Divergence~
X

Pdivergent
:R ð4Þ

We repeat this procedure for all pairs of sample locations. The two

obtained variables, path overlap and path divergence, can be

compared with the pairwise genetic distances using regression

methods.

Fitting the model. Using the computational strategies

outlined above, we can derive from the landscape model

different distance measures that relate to crop remain age,

heterozygosity, and genetic distances. We use multiple-criteria

optimization to evaluate how well our model can explain the

archaeobotanical and genetic observations. Multiple-criteria

optimization is an underutilized technique with interesting

applications to detect conflicts between model structure and

patterns in the data [44].

Multiple goodness-of-fit values are determined by regression of

the predictors against the archaeobotanical and genetic data. A

genetic algorithm optimizes two or more goodness-of-fit measures

through an iterative search of the best parameter values and origin

coordinates. The outcome of this optimization is a Pareto front of

solutions. Pareto solutions are those for which improvement in one

goodness-of-fit dimension can only occur with the worsening of at

least one other goodness-of-fit dimension. The shape of the Pareto

front gives a good indication of the degree of convergence or

conflict between the two datasets, given the model structure. A

pointed, convex front (seen from the cloud of possible solutions) is

evidence for convergence around the same solution. Inspecting the

parameters and origin coordinates of the different solutions can

provide insights into the source of the conflict and thus help in

improving the model structure.

Application
Computational implementation. The data analysis was

done in R, a free and open-source computer program and

language for data analysis [45]. The examples can be replicated

with the script and data provided as Supporting Information. Basic

geographic grid manipulation and calculations were done with

functions from R package (plug-in) raster [46]. The creation of

conductance matrices from grid data, their manipulation, and the

calculation of geographic distance measures were supported by

functions in gdistance [47]. Package gdistance makes use of sparse

matrices [48]. Methods to analyze distance matrices and calculate

genetic distances are implemented in gdistanalyst [49]. We used the

R package mco for the multi-criteria optimization [50], which

implements the algorithm NSGA-II [51]. An R script to replicate

the procedure is available as Supplementary Information (file S1).

Landscape model. We modelled maize dispersal and

diversity with a simple landscape model. We used a grid of 0.5

by 0.5 degree resolution, covering the study area. Grid cells were

connected in eight directions (queen’s case) to form conductance

matrices. The area of origin was modelled as a single cell, which

could be anywhere on land. The landscape model includes only

information about the shape of the landmass to keep our example

as simple as possible, but additional variables could be added (see

Discussion). The landmass grid is included as Supplementary

Information (file S2).

The conductance of between-cell connections on land was set

to 1. The conductance of major water bodies was modelled with a

decay function and a weight relative to the conductance of the

landmass (p1), following [20]. Conductance decays with the

distance away from the coast (�dd , the average distance from

the coast of cell i and j) with a constant decay rate (p2, the

conductance half-value distance). Conductance over water bodies

was calculated as

Tij~p1
:2{�dd=p2 ð5Þ

We symmetrically normalized the water body conductance

matrix [52]. All conductance values (land and water) were
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divided by cell-to-cell distances (i.e., distances between cell

centres) in order to correct for the differences between diagonal

and straight distances between cells and to correct for variations

in spherical distances between cells.

Archaeobotanical data. We limited the analysis to

macrobotanical remains of maize, which at the moment is the

only type of archaeological remains of this crop for which there is a

somewhat complete coverage of the Americas. Radiocarbon dates

were derived from [53] and supplemented with a number of

additional dates from other publications (Supplementary

Information, file S3). We calibrated the raw dates with OxCal

[54], using IntCal04 [54] for the Northern Hemisphere and

ShCal04 [56] for the Southern Hemisphere. In the tropics, we

took a weighted average of the two median values, the weights

depending on the latitude of the sample location. Outside the

tropics, we used the corresponding median values. In a small

number of cases, uncalibrated dates were not available and

published calibrated dates were used directly.

Genetic data. We used genetic data from [22] on 193 maize

landrace accessions from across the Americas, based on one plant

per sample and 99 SSR markers. We calculated the heterozygosity

for all samples and used the logarithm of the shared proportion of

alleles as the genetic distance between the samples. As we

reorganized the data, in order to replicate the procedure, we

supply it here as Supplementary Information (files S4 and S5).

Model fitting and evaluation. We first optimized the

landscape model with (1) the age of the archaeobotanical crop

remains and (2) the heterozygosity of contemporary maize

samples. For a number of the Pareto solutions obtained, we then

evaluated the goodness-of-fit with (3) the genetic distances. We

choose this setup in two rounds to reduce computation time and to

test the performance of our new path overlap and divergence

metrics independently. The path overlap and divergence metrics

should predict the genetic distances well if the modelling approach

is coherent.

In the first round, the goodness-of-fit was determined with

quantile regression, setting t to 0.8 for both radiocarbon age and

heterozygosity. Since the archaeobotanical data were highly

unequally spread with an especially high density of observations

in Colorado, New Mexico, and Arizona, we weighted each

Figure 1. Example of trajectory overlap and divergence calculation for two populations. Both populations are from South America (point
locations A and B). The origin of the crop is in Mexico. A. Probability of passage from origin to location a. B. Probability of passage from origin to
location b. C. Overlap of the trajectories. D. Divergence of the trajectories.
doi:10.1371/journal.pone.0012060.g001
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observation by 1/number of observations within a radius of

100 km from that observation (including the observation itself).

Hence, an observation with one neighbour within 100 km distance

received the weight 0.5, while an isolated observation was

weighted as 1.

We optimized with a population of 200 during 60 generations.

Further improvements after 200 generations were minimal and

solutions showed a regular pattern. We selected for further analysis

a subset of nine representative Pareto solutions. We calculated

path overlap and divergence based on these solutions for various

values of h. We evaluated the correspondence between path

overlap/divergence and genetic distances with linear permuta-

tional regression with 999 permutations [57].

Results

We obtained a set of Pareto solutions that were overall similar.

We provide the full set of obtained solutions as Supplementary

Information (file S6) and summarize it here (Table 1, Figure 2). In

all solutions, the geographical origins of maize fall in Mesoamer-

ica. The absolute R1 values for the fit with heterozygosity were low

for all solutions, indicating that heterozygosity may be influenced

by recent population bottlenecks and selection. The solutions with

a higher fit for heterozygosity suggest a more northern origin of

maize than those that correspond better to the archaeobotanical

data. A strong source of tension between the archaeobotanical and

genetic data is the conductance of water bodies, with the genetic

data suggesting that water bodies are less conductive than what

would be expected from the pace of dispersal according to the

archaeobotanical data. The solutions with good archaeological fit

have higher half-value distances (p2) than those with a good

genetic fit. Hence, the main effect of the high weight given to

water bodies in the latter solutions is to increase the conductance

along the coast.

Visualizing and comparing the different solutions provides some

additional information. In Figures 3, 4 and 5, we compare two

solutions (A and I) which gave the best fit for the archaeobotanical

and genetic data, respectively (compare with Table 1 and Figure 2).

The effect of the difference in conductance of the coast is clearly

visible when we map the dispersal routes (Figure 3). While in

solution A, there is a slight preference for dispersal along the coast

(Figure 3A), in solution I, dispersal avoids non-coastal areas as

much as possible (Figure 3B).

Figure 4 compares the archaeological outcomes. The archae-

ological data are clearly spatially patterned. The fit of solution A is

fairly good, although the five data points closest to the origin of

solution A are younger than expected (Figure 4B). The major

discrepancies of solution I are in areas near the coast, where ages

are clearly underestimated.

Figure 5 compares the outcomes for heterozygosity. There is a

high degree of variation in heterozygosity values within each

geographical group, yet broad spatial trends are evident. Samples

with extremely low heterozygosity values are present in parts of

North America. A main difference between the two solutions

concerns these samples. In solution A, the prediction of

heterozygosity of these samples is clearly too high (Figure 5B). In

solution I, the prediction differentiates between North American

samples that are closer to the coast, which receive higher values,

and the more inland samples, which receive lower values. The

difference in conductance of water bodies affects the Caribbean

samples to a much lesser extent. In both solutions, heterozygosity

values for samples in the Caribbean are lower than expected (all

are below the regression line).

We used least-squares regression to determine the degree in

which our dispersal model explains the variation in genetic

distances, for different values of h (Table 2). Path overlap and non-

overlap derived from nine representative Pareto solutions were

tested. An R2 of 0.36 to 0.38 was found for solutions F, G, H, and

I. These are also the solutions with the highest fit for

heterozygosity (Table 1). An isolation-by-distance model (using

great-circle distances) on the same data gave R2 = 0.16. All

solutions provided significant predictors of genetic distance

(p,0.001). The two variables had the expected sign (negative for

path overlap, positive for divergence) in all cases, except for path

divergence in solution A and B with h values of 1.5 and 2. In these

cases, the contribution of path divergence was insignificant

(0.02,p,0.26).

Discussion

Application
With a simple model for maize dispersal, we obtained a set of

solutions with similar geographical origins. Multi-criteria assess-

ment revealed the conflict between the archaeological and genetic

datasets and gave clues regarding the possible causes for this

tension. Different solutions can be inspected visually and

Table 1. Representative selection of Pareto solutions.

Solution Area of origin Water bodies Goodness of fit (R1)

Longitude Latitude Relative weight (p1)
Conductance decay
half-value distance (km) (p2)

Archaeobotanical
crop remain ages

Heterozygosity of
contemporary
maize samples

A 284.29 14.22 0.23 5310 0.43 0.05

B 284.34 10.31 0.18 5991 0.42 0.05

C 287.81 13.17 2.03 3065 0.38 0.08

D 287.08 12.63 2.39 3018 0.37 0.08

E 289.11 13.37 2.12 3093 0.39 0.08

F 299.94 17.83 6.10 2631 0.29 0.12

G 2101.58 19.41 7.51 2569 0.27 0.14

H 2102.06 19.91 8.39 2519 0.26 0.15

I 2101.17 19.17 16.17 2347 0.18 0.17

doi:10.1371/journal.pone.0012060.t001
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compared. This allows us to formulate next steps to iteratively

improve the model in a focused way.

One possible explanation of the observed conflict is that, along the

coast, maize was transported over large distances, each movement

causing a single genetic bottleneck, while over land, spread was more

continuous and movements were shorter and alleles were lost each

time seeds passed from hand to hand. Hence, differences between the

genetic outcomes of dispersal over water versus land may partly

explain the observed conflict between the two datasets. However, it

seems more likely that the bottleneck observed in North American

maize is related to geographical factors that are not taken into account

here. The samples with low heterozygosity include Northern flint

varieties. Northern flints are known to constitute a genetically very

separate group [58]. In this case, selection for climate adaptation

seems to have led to a genetic bottleneck that is disproportionate to the

time that it took for these varieties to occupy their area.

Figure 3. The dispersal routes of maize in the Americas for two contrasting Pareto solutions. Routes determined with randomized
shortest paths (h= 0.2) and logarithmically scaled. A. Routes of dispersal from origin (circle) to six locations (squares) according to solution A. B.
Routes of dispersal from origin (circle) to six locations (squares) according to solution I.
doi:10.1371/journal.pone.0012060.g003

Figure 2. Pareto solutions obtained by fitting the landscape model with archaeobotanical and genetic data. A. Model fits at the Pareto
front, with selected solutions labeled from A to I. B. Inferred locations of crop origin, with colors and labels corresponding to those of Figure 2A.
doi:10.1371/journal.pone.0012060.g002
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The results also demonstrate a fairly good predictivity of path

overlap and non-overlap metrics for genetic distances. The best of

the obtained goodness-of-fit values are reasonable when consid-

ering the simplicity of our model and values obtained in similar

studies [cf. 59].

Next modelling iterations
The results show that the speed of dispersal does not correspond

linearly to the loss of heterozygosity. Other factors of influence not

included in the current model certainly have importance, like

climatic factors in the case of the Northern flints. However, adding

Figure 4. Crop remain age according to two contrasting Pareto solutions. A. Locations of the archaeobotanical observations with modelled
isochrons (oldest quintile of macrobotanical remains) for solution A. B. Relation between the age of crop remains and the least-cost distance from the
crop origin according to solution A. The colors of the observations correspond to Figure 4A. The line indicates the highest quintile (t= 0.8) predicted
by the model. C. Locations of the archaeobotanical observations with modelled isochrons (oldest quintile of macrobotanical remains) for solution A.
D. Relation between the age of crop remains and the least-cost distance from the crop origin according to solution A. The colors of the observations
correspond to Figure 4C. The line indicates the highest quintile (t= 0.8) predicted by the model.
doi:10.1371/journal.pone.0012060.g004
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more variables to the model will affect dispersal speed and the loss

of heterozygosity equally and will not break their linear

relationship. The discrepancy can only be resolved by relaxing

the assumption that genetic drift was constant in time and

determining (archaeological) ‘‘travel time’’ and (genetic) ‘‘travel

cost’’ separately.

In a next modelling iteration, the model should be expanded to

make this possible. Shortest paths from the origin in the landscape

model should be used to predict crop remain age. Also, the

trajectories from the origin to the genetic samples should be

determined on the basis of the landscape model. However, a

separate genetic conductance matrix should then used to calculate

Figure 5. Heterozygosity according to two contrasting Pareto solutions. A. Locations of the genetic observations with isolines indicating
modelled heterozygosity values (highest quintile) for solution A. B. Relation between heterozygosity and the least-cost distance for solution A. The
colours of the observations correspond to Figure 3A. The line indicates the highest quintile (t= 0.8) predicted by the model. C. Locations of the
genetic observations with isolines indicating modelled heterozygosity values (highest quintile) for solution I. D. Relation between heterozygosity and
the least-cost distance for solution I. The colours of the observations correspond to Figure 3C. The line indicates the highest quintile (t= 0.8)
predicted by the model.
doi:10.1371/journal.pone.0012060.g005
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the cost of these routes in order to predict heterozygosity and

genetic distances. For the path overlap and divergence metrics,

this means that R (resistance) in formulae 3 and 4 is not

determined as the reciprocal of the landscape model, but as the

reciprocal of this genetic conductance matrix. Predictors for

heterozygosity can also be determined with this same matrix. The

parameters to construct the genetic conductance matrix are added

to the multiple-criteria optimization. Otherwise, the approach

remains the same. This extension of the approach would be a

logical next iteration in our modelling exercise.

Next modelling iterations should also make use of additional

information to refine the landscape model. For example,

ecophysiological crop models [60] could be used to predict the

degree in which a crop can grow in a new environment in

combination with paleoclimatic reconstructions [cf. 61]. Insights in

human demography [62] and mobility (e.g., navigation abilities

[21]) could be incorporated as well. Also, the interactions between

different crops (as well as livestock) and their spread as single

agricultural complexes would be important to consider. The

degree of consilience reached by the model, as indicated by the

convexity of the Pareto front, can be used to assess model

improvement, while cross-validation could be used to guard

against overfitting.

Our results make clear that next modelling steps should ideally

incorporate the genetic distances directly into model fitting.

Genetic distances are often easier to obtain than reliable

heterozygosity values and the accuracy of heterozygosity values

is often limited by small sample sizes. For inbreeding crops,

heterozygosity values are not available or meaningful and only

genetic distances can be used. As the repeated computation of path

overlap and divergence is very time-consuming in the current

implementation, reducing computation time is a priority. Parallel

computing approaches can be used at several levels. On the other

hand, it has been found that relatively coarse grids still produce

relatively accurate results [63].

Methodological considerations
Choosing appropriate values for t and h is an important issue.

Values for t should be determined taking into account the

magnitude of error or bias in the data. Even so, the best value t is

difficult to determine beforehand. The best value of h is also

difficult to determine beforehand, although reference values may

become available if our approach is applied to various crops and

dispersal processes. Sensitivity analyses could be applied to

determine the influence of these two parameters.

We used least-squares regression to quantify the variance of the

genetic distances the model was able to explain. As with crop

remain age and heterozygosity, bias reduction in genetic distances

could be achieved using quantile regression (giving emphasis to

long genetic distances by setting t to a low value). However, this

would be under the assumption that the bias is mainly due to local

divergence, not to posterior long-distance geneflow or introgres-

sion from wild relatives. For that reason, the quantile regression

approach has limitations when working with contemporary genetic

data. Bias reduction may also be achieved in other ways, for

instance, by selectively removing outliers and introgressed samples.

Also, if genetic data for archaeological crop remains become

available, it should become possible to obtain a clearer genetic

signal of the first wave of dispersal, which would then help to

distinguish it from the changes that occurred after this first wave

(local divergence, foreign introductions, and hybridization). For

maize, long-distance gene flow after the first wave of dispersal

seems to be due to relatively recent (colonial and post-colonial)

migration and trade [64].

Above we have modelled the geographical crop origin as a point

location, but a crop origin may also be modelled as an area with a

certain extent to assess the possibility of a ‘protracted’ domesti-

cation process, in which a crop evolves during a long period,

perhaps several thousands of years, in an extended region, before

spreading to other areas [15]. The approach could also be refined

by adding conductance matrices focusing on long-distance

connections in certain areas. For instance, between (groups of)

islands, the spread of crops may have taken place in less

predictable ways. Transport over sea can be modelled with

separate conductance matrices, each connecting a pair of non-

adjacent cells (or a group of them). Each conductance matrix then

receives a separate weight parameter in the multi-criteria

optimization. Future work should also extend the approach to

address crops with more complex trajectories, involving multiple

origins and hybridization between populations domesticated in

different areas, which would require further methodological

development.

Contribution
The main methodological innovations in our approach are (1)

the use of parameterized landscape conductance matrices to

construct landscape models, (2) the use of quantile regression to

reduce noise in radiocarbon dates of crop remains and

heterozygosity values, (3) the use of multi-criteria optimization

for simultaneous model assessment, and (4) the introduction of

path overlap and divergence as measures to predict genetic

distances. An important strength of our approach is that

parameterization can be done in a fully automated way. There

is no need to force routes through certain waypoints, to determine

landscape conductance a priori or through piecemeal trial-and-

error or to devise complex methods to select the earliest data

points, as was done in studies with similar aims [16–20,31,65].

Different types of geographic distances predictive of archaeobo-

tanical and genetic measures can be derived directly from our

landscape model.

Models with more variables and parameters can be evaluated

with the presented methods and should lead to an increase of one

or more goodness-of-fit values while not deteriorating the other

values. The possibility to incrementally move from a simple initial

model to more complex models, as comprehension of the

processes studied increases, is crucial to successful modelling. It

provides for a modelling approach that is driven by an

Table 2. Proportion of variance explained (R2) by path
overlap and divergence variables for different solutions and
different values of h.

h A B C D E F G H I

0.01 0.19 0.16 0.16 0.16 0.18 0.26 0.35 0.38 0.38

0.1 0.23 0.15 0.20 0.20 0.22 0.36 0.36 0.36 0.31

0.5 0.27 0.15 0.28 0.27 0.29 0.36 0.34 0.35 0.25

1 0.15 0.12 0.28 0.27 0.30 0.32 0.34 0.33 0.22

1.5 0.06 0.05 0.23 0.24 0.25 0.32 0.33 0.30 0.22

2 0.02 0.04 0.11 0.18 0.11 0.33 0.32 0.28 0.22

C. Locations of the genetic observations with isolines indicating modelled
heterozygosity values (highest quintile) for solution I.
D. Relation between heterozygosity and the least-cost distance for solution I.
The colours of the observations correspond to Figure 3C. The line indicates the
highest quintile (t= 0.8) predicted by the model.
doi:10.1371/journal.pone.0012060.t002
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understanding of the dominant processes supported by the data,

while avoiding unnecessary details and computational effort. As

the resulting models would be based on a representation of the

underlying geographical processes, they could be used to predict

levels of biodiversity in unsampled locations and lead to

applications in genetic resources management.
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used in the analysis, from ref. 22. The IDs were corrected to match
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File S5 Plant samples maize SSR data. Excel file with further
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generated by the analysis.
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