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A germanium hole spin qubit
Hannes Watzinger1, Josip Kukučka1, Lada Vukušić1, Fei Gao 2, Ting Wang2, Friedrich Schäffler3,

Jian-Jun Zhang2,4 & Georgios Katsaros1

Holes confined in quantum dots have gained considerable interest in the past few years due

to their potential as spin qubits. Here we demonstrate two-axis control of a spin 3/2 qubit in

natural Ge. The qubit is formed in a hut wire double quantum dot device. The Pauli spin

blockade principle allowed us to demonstrate electric dipole spin resonance by applying a

radio frequency electric field to one of the electrodes defining the double quantum dot.

Coherent hole spin oscillations with Rabi frequencies reaching 140MHz are demonstrated

and dephasing times of 130 ns are measured. The reported results emphasize the potential of

Ge as a platform for fast and electrically tunable hole spin qubit devices.
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S
pins in isotopically purified Si have shown record coherence
times1 and fidelities2 making them promising candidates for
scalable quantum circuits3. One of the key ingredients for

realizing such circuits will be a strong coupling of spins to
superconducting resonators4. This has been recently achieved for
Si by dressing electrons with synthetic spin-orbit coupling5,6. Ge,
on the other hand, with its strong and tunable spin-orbit cou-
pling7–10 could be an alternative material for the realization of
scalable qubits.

In the past few years several studies have addressed the
properties of Ge/Si core/shell nanowires and Ge self-assembled
nanocrystals8,11–13. Here, we study hut wires (HWs), Ge nano-
wires monolithically grown on Si. They have a triangular cross
section with a width of about 20 nm and a height of about
2 nm14–18. As has been very recently reported16, holes localized in
Ge HWs are of almost pure heavy-hole (HH) character making
them thus an appealing system for hosting hole qubits with long
dephasing times19.

In this work we demonstrate the ability to capture holes in
double quantum dots (DQDs) fabricated from Ge HWs. We
make use of the Pauli spin blockade (PSB)20 mechanism and the
electric dipole spin resonance (EDSR) technique in order to
demonstrate the addressability of single holes. By varying the
duration of the radio frequency (RF) burst, Rabi oscillations with
frequencies higher than 100MHz are observed. Finally, Ramsey
fringes-like measurements reveal dephasing times of 130 ns, twice
the dephasing time reported for holes in Si21.

Results
Double quantum dot and Pauli spin blockade. A schematic and
a scanning electron micrograph of a typical DQD device are shown
in Fig. 1a, b, respectively. In a first step, we probe our DQD by
applying a source-drain voltage VSD and measuring the resulting
current I to test our DQD device. Thereby, we vary the voltages
VG1 and VG2 tuning the electrochemical potentials of our dots. The
low temperature measurements reveal the formation of quantum

dots (QDs) below the deposited top gates, presumably due to
strain22. Therefore, the two gates (with voltages VG1 and VG2) are
already sufficient to fully define and operate the DQD. The stability
diagram of the DQD device A showing characteristic bias trian-
gles23 is depicted in Fig. 1c. For comparison, a representative
measurement of two bias triangles from the second device B is
shown in Fig. 1d. Due to the fairly low mutual capacitance24 of
about 1 aF the triangles are merged already at relatively low bias
voltages. The base of the triangle marks current flowing through
the ground states. The parallel lines within the triangles denote
transport through excited states. Energy level separations of up to
~1meV and a relative lever arm ΔVG1/ΔVG2= 0.7 are observed23.
Since the two top gates G1 and G2 are very close to the HW, a
relatively strong coupling is obtained, leading to large gate cou-
plings of α1= 0.62 eVV−1 and α2= 0.43 eVV−124.

In order to realize a spin 3/2 qubit in the DQD devices we rely
on PSB as a spin-selective read-out mechanism25,26. PSB occurs in
a (1, 1)→ (2, 0) or an equivalent (2N−1, 2N−1)→ (2 N, 2N−2)
charge configuration (Fig. 2a), where the first (second) number is
the number of holes in the left (right) dot, respectively. In such a
configuration transport through the DQD is blocked since the
triplet (2, 0) state is lying too high in energy. Reversing the applied
source-drain voltage lifts the blockade. Signatures of PSB were
observed in several bias triangles exhibiting a suppressed leakage
current of the triangle baseline. Two representative direct current
measurements are shown in the left and right panel of Fig. 2b for
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bias voltages of −2mV and+ 2mV, respectively. The corre-
sponding line traces along the detuning direction (white dashed
lines) are plotted below in Fig. 2c. In the blocked configuration
(blue squares, dotted line) the zero-detuning current, indicated by
the black arrow, drops to about 2 pA compared to 10 pA in the
non-blocked case (green triangles, solid line), as expected for
PSB23. The magnetic field dependence of the leakage current in
the blocked configuration is shown in Fig. 2d for an out-of-plane
magnetic field. The clear increase of the leakage current at elevated
magnetic fields is an indication for a spin-orbit induced lifting
mechanism of PSB27,28, though this is expected already at much
lower magnetic fields. At zero magnetic field, no nuclear-spin
induced current peak can be observed23, which indicates a low
hyperfine interaction.

Electric dipole spin resonance. We now add an RF electric field
on top of the static voltage applied to one of the two top gates.
Such can rotate one of the spins and thus lift PSB. This is
achieved via the EDSR mechanism29. An RF electric field applied
to one of the two gates of the DQD (here G1) can cause oscil-
lations in the position of the confined hole wave function
(Fig. 3b). Such an oscillation in combination with a constant
applied magnetic field leads to spin rotations in systems with
strong spin-orbit coupling23. In order to induce such continuous
wave spin rotations the driving frequency of the RF electric field
has to be equal to the Larmor frequency f0= |g|μBB/h, where g is
the g-factor for a certain magnetic field orientation, μB is the Bohr
magneton and h is Planck’s constant.

Figure 3a shows a pair of bias triangles for positive and
negative bias voltages from the third measured device C. The hole
number in each dot is estimated to be about 11 (Supplementary
Fig. 1). Compared to device B the width of the gates for this
device was increased from about 60 nm to about 120 nm in order
to reduce the spatial confinement of the hole wave function and
therefore increase the EDSR response. The black circle in the
lower panel of Fig. 3a indicates the position at which the EDSR
measurement shown in Fig. 3c was performed. From the slope of
the resonance line a g-factor of ~2 can be extracted.

By changing the direction of the magnetic field the slope of the
EDSR line is changing due to the direction dependence of the g-
factor. Each of the g-factor values shown in Fig. 4a was extracted
from a linear fit through several points along the respective
resonance line. The g-factor values show a strong anisotropy in

good agreement with earlier experimental findings for HH
states16.

Dependence of T�
2 on the magnetic field direction. EDSR does

not only lift PSB, but also allows the extraction of a lower limit for
the hole spin dephasing time T�

2 . In order to extract this lower
bound for T�

2 , the power P of the applied RF signal was varied. At
high power, the EDSR width is power broadened (see also Sup-
plementary Note 3). However, for measurements taken in an out-
of-plane magnetic field the width is saturating at values of about
−18 dBm, as can be seen in Fig. 4b. Therefore, a lower bound for
the dephasing time of ~33 ns can be extracted using the relation
T�
2 ¼ 2

ffiffiffiffiffiffiffiffiffiffi

lnð2Þ
p

=ðπωÞ, where w is the full width at half maximum
(FWHM) of the resonance peak at a certain RF power30. For HH
states it has been predicted that the direction of the applied
magnetic field has a strong influence on the dephasing times19.
Indeed, optical measurements of hole spins confined in GaAs self-
assembled QDs have shown very long dephasing times31. In order
to obtain such longer dephasing times, the external magnetic field
needs to be aligned perpendicular to the direction of the Over-
hauser field, which for HH states is perpendicular to the growth
plane19. By repeating the EDSR measurement for an in-plane
magnetic field and an RF power of −14 dBm (see Supplementary
Fig. 4), we obtain a lower bound of 68 ns for the dephasing time.

Coherent spin oscillations and two-axis control. In order to
demonstrate coherent control over the hole spin state, a voltage
signal is applied to G1 as can be seen in Fig. 5a. The system is
initialized in the triplet state. When in CB, an RF burst of varying
duration is applied. For a π-pulse the hole spin will flip leading
thus to a singlet (1, 1) state. The system is then brought back into
the PSB region for spin read-out and the hole can tunnel to the
singlet (2, 0) state leading to an enhanced current. By linearly
increasing the duration of the RF burst, oscillations of the
detected current can be observed (Fig. 5b). As expected, the
period of the Rabi oscillations decreases with increasing power of
the RF burst (Fig. 5c). Rabi frequencies approaching 140MHz are
observed (Fig. 5d). They are faster than what has been predicted
for Ge nanocrystals32 and than those reported for the InSb
electron spin qubit which showed 8 ns dephasing time33.

To measure the inhomogeneous dephasing time T�
2 , a Ramsey

experiment was performed. A periodic voltage signal was applied
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to G1 as shown in Fig. 6a. Two π
2-pulses, separated by τwait during

which the qubit can freely evolve and dephase, were applied
during the manipulation interval. For each value Δf the current
oscillates as a function of τwait (Fig. 6b). From the decay time of
these oscillations, average dephasing times exceeding 130 ns were
measured (Fig. 6c, d). The ratio of T�

2 to τπ for an RF power of 11
dBm is ~18 which is 35 times smaller than the highest value
reported for electron spins in isotopically purified Si2, but just a
factor of two compared to electron spins in natural Si34. Due to
the limited visibility in our experiment caused by the small
current flowing through the DQD, it was not possible to extend
τwait further than 160 ns. This prohibited the investigation of
longer T�

2 , possibly arising for parallel magnetic fields as shown in
Fig. 4b.

In order to demonstrate an alternative two-axis qubit rotation,
a similar pulse scheme as before was applied, but for this
experiment the phase difference Δϕ between the two π

2-pulses was
swept (Fig. 6e). This phase difference defined the second rotation
axis. Sweeping Δϕ linearly from 0 to 360o causes a sinusoidal

oscillation of the projected spin-up fraction and consequently of
the measured current through the DQD (Fig. 6f).

Discussion
While the obtained results are a first step towards fast hole spin
qubits with longer dephasing times, the measured T�

2 times are
still three to four times lower than those extracted from optical
measurements for hole spins in self-assembled InGaAs QDs31.
Future experiments will focus on the effect of charge noise and
how to radically reduce it. By moving then to isotopically purified
Si and Ge, qubits with long coherence times, limited just by the
spin relaxation time35 should be feasible.

In conclusion, by using PSB in a DQD device we have
demonstrated a Ge hole spin qubit allowing arbitrary rotations
around two axes. Despite the strong spin-orbit coupling, the
obtained T�

2 is higher than that of holes21 confined in QDs
formed in natural Si and just one order of magnitude lower than
that of electrons34. The reported results combined with the pos-
sibility of self-organization36,37 pave the way towards more
complex hole qubit devices.

Methods
Device fabrication. The Ge HWs characterized in this work were grown by solid-
source molecular beam epitaxy (MBE) on 4-inch intrinsic Si(001) wafers in two
different systems. Two different wafers were used for the realization of the three
devices A, B and C, which differ in several growth parameters, as can be seen in
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Table 1. The wafers were dipped in an HF solution before loading into the MBE
chamber. After degassing at 720 °C, a Si buffer layer was deposited. Then 6.7 Å
(6.5 Å) of Ge were deposited on the substrate at 580 °C (545 °C) followed by an in-
situ annealing of 5 h (4 h) at 570 °C (535 °C) for device A and C (device B). The
amount of the deposited Ge is at the critical thickness for the nucleation of three
dimensional hut clusters. At last, the substrate temperature was decreased to 300 °C
and capped with 5 nm (3 nm) Si for device A and C (device B).

Device A and C (device B) were fabricated using a 100 kV (20 kV) e-beam
lithography system. For the source and drain contacts 25 nm Pt (5/25 nm Pd/Al)
were deposited. The gates (3/25 nm Ti/Pt) were evaporated onto an about 6–8 nm
hafnium oxide layer. The oxide was created by atomic layer deposition of 80 cycles

of Tetrakis(dimethylamido)hafnium (Tetrakis(ethylmethylamido)hafnium)/80
cycles of water at 130 °C (150 °C).

Experimental setup. All the measurements were done with low-noise electronics
and in a He-3/He-4 dilution refrigerator at a base temperature of ~40 mK. A
current to voltage amplifier with a gain of 109 was used for the current mea-
surements. All low-frequency lines are filtered at three stages. Pi filters are used at
room temperature, LC filters at the mixing chamber stage and a single stage RC
filters on the printed circuit board (PCB) on which the sample was mounted. High-
frequency signals were applied to the gate G1 through a 20 GHz bandwidth coaxial
line and attenuated by 44 dB from attenuators distributed at the different stages of
the dilution refrigerator. To apply periodic square voltage pulses for fast switching
between the CB and the PSB regime, one channel of an arbitrary wave generator
Tektronix AWG5014C was used. Two other channels were connected to the I and
Q inputs of the R&S SMW200A vector signal generator for the RF burst creation.
Both the RF and the voltage square pulses were merged by a diplexer before
entering the dilution refrigerator. Such a signal was further merged with a DC
signal via a bias tee positioned on the PCB.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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f Current passing through the DQD versus Δϕ. The oscillatory behavior of
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For this experiment the following parameters were chosen: P= 4 dBm,

τburst= 9 ns, τwait= 10 ns, f= 5.887 GHz and an out-of-plane magnetic field

of 122mT

Table 1 Growth and fabrication parameters

Device A Device B Device C

Deposited Ge (Å) 6.7 6.5 6.7
Growth temp. (°C) 580 545 580
Annealing temp. (°C) 570 535 570
Annealing time (h) 5 4 5
Si cap thickness (nm) 5 3 5
Source/drain (nm) Pt 25 Pd/Al 5/25 Pt 25
Gates (nm) Ti/Pt 3/25 Ti/Pt 3/25 Ti/Pt 3/25

Parameters used for the growth and the fabrication of devices A, B and C
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