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Abstract We are in the midst of the global pandemic.
Though acute respiratory coronavirus (SARS-COV2)
that leads to COVID-19 infects people of all ages,
severe symptoms andmortality occur disproportionately
in older adults. Geroscience interventions that target
biological aging could decrease risk across multiple
age-related diseases and improve outcomes in response
to infectious disease. This offers hope for a new host-
directed therapeutic approach that could (i) improve

outcomes following exposure or shorten treatment reg-
imens; (ii) reduce the chronic pathology associated with
the infectious disease and subsequent comorbidity, frail-
ty, and disability; and (iii) promote development of
immunological memory that protects against relapse or
improves response to vaccination. We review the possi-
bility of this approach by examining available evidence
in metformin: a generic drug with a proven safety record
that will be used in a large-scale multicenter clinical
trial. Though rigorous translational research and clinical
trials are needed to test this empirically, metformin may
improve host immune defenses and confer protection
against long-term health consequences of infectious dis-
ease, age-related chronic diseases, and geriatric
syndromes.
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Geroscience in a time of global pandemic

The promise of geroscience is that interventions that
target biological aging could fortify organismal resil-
ience and delay the onset or lessen the severity of
multiple age-related diseases en masse. Never has this
promise been more critical than now, in the midst of the
global pandemic. Though acute respiratory coronavirus
(SARS-COV2) infects people of all ages, severe symp-
toms and mortality occur disproportionately in older
adults. In the USA, 8 out of 10 deaths occurred in
persons over the age of 65 years [1], and in Britain,
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persons above age 80 years were ~ 180 fold more likely
to die that those in their 40s [2]. Severity and complica-
tions also increase nonlinearly with age. In China, the
odds of hospitalization at ages 40–49 years were 4.3%
but nearly doubled to 8.2%, for 50–59-year-olds, and
continued to climb for each decade of advancing age up
to 18.4% in persons over the age of 80 years [3, 4].

This trend is not unique to COVID-19. It is well
known that older persons generally have greater suscep-
tibility to infections than younger adults due to age-
related changes in cell-mediated immunity, underlying
chronic disease, and geriatric syndromes [5, 6]. More-
over, the pattern of exponential increase in mortality rate
with age in COVID-19 exhibits a doubling time esti-
mated between 6.6 to 9 years (USA, China, Italy); this is
mirrored by the exponential increase in age-related risk
of mortality from all causes (doubling time of ~ 9 years,
USA), and cause specific which ranges from 4.7 years
(chronic obstructive pulmonary disease, COPD) to
7.1 years (diabetes mellitus, DM) [7]. This suggests
contributions of age-related declines in immune and
inflammatory responses in harmony with systemic
age-related physiologic dysregulation and comorbidity
[3, 8]. Chronically elevated inflammation and dysregu-
lated cell–cell communication constitute examples of
biological hallmarks of aging and represent both con-
tributors to and consequences of varied chronic condi-
tions that are independently associated with increased
COVID-19 vulnerability. For example, the presence of
multiple chronic conditions or comorbidities such as
diabetes, chronic kidney disease, and heart failure are
associated with proinflammatory cytokines and other
biomarkers of biological hallmarks of aging [9–11],
and have been shown to be independently associated
with severe COVID-19 illness and death [12–14] [15,
16].

Therefore, while virus-specific treatments and vac-
cines are critically needed, other complementary strate-
gies are also needed to address increased vulnerability to
severe COVID-19 during this window of vulnerability
as vaccines and antiviral agents are being developed. To
that end, treatment of the biological underpinnings
which render older adults more vulnerable may not only
improve outcomes during this COVID-19 pandemic,
but could also offer benefits in terms of future pan-
demics involving other pathogens, while also impacting
positively the onset and progression of varied acute and
chronic diseases [17]. Geroscience interventions that
target biological aging could decrease risk across

multiple age-related diseases and improve outcomes in
response to infectious disease. This offers hope for a
new host-directed therapeutic approach that could (i)
improve outcomes following exposure or shorten treat-
ment regimens; (ii) reduce the chronic pathology asso-
ciated with the infectious disease and subsequent co-
morbidity, frailty, and disability; and (iii) promote de-
velopment of immunological memory that protects
against relapse or improves response to vaccination
[18, 19] (Fig. 1).

Translational interventions in geroscience

Preclinical interventions testing programs show that
biological aging pathways can be therapeutically
targeted. Perhaps, the most robust intervention is caloric
restriction, which has been shown to prolong the
lifespan of experimental animal models such as nema-
todes, flies, and mice [20, 21] and may improve immune
response [22]. In addition, promising pharmacological
and nutraceutical candidates have been identified. In
most cases, median lifespan extension is accompanied
by improved health and ability of preclinical models to
withstand both chronic and acute challenges [23, 24]. A
select subset of these have intriguing effects in humans
on overall health and immune function, including
acarbose [25], and mTORC1 inhibitors rapamycin,
everolimus, and RTB101 [26]. For example, mice treat-
ed with 6 weeks of rapamycin mounted a greater re-
sponse to influenza vaccine than age-matched control
mice [27], and two phase II studies of mTORC inhibi-
tors demonstrated improved antibody responses to an
influenza vaccine and decreased rates of upper respira-
tory tract infections by varied pathogens in healthy
community–dwelling older adults [26, 28]. Phase III
trial of mTORC1 inhibitor RTB101 did not meet its
primary endpoint for prevention of respiratory illness.
However, two new phase I-II trials with mTOR inhibitor
sirolimus are now in progress in hospitalized patients
with COVID-19 pneumonia (NCT04341675 and
NCT04371640) and those with RTB101 in the nursing
home setting (NCT04409327).

A critical obstacle for larger clinical trials and wide-
spread clinical application of any drug targeting aging is
safety, tolerability, and expense. So far, only a select
couple of drugs can overcome these translational bar-
riers. One such drug is metformin. Though metformin
offers modest improvements in lifespan in preclinical
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interventions testing [29], it targets molecular and cel-
lular drivers of aging which may exert positive effects
more broadly on health span. Moreover, metformin (i) is
a generic and relatively inexpensive medication, (ii) has
an excellent safety record for over 5 decades, and (iii)
can be generally well tolerated with long-term use in a
large population of aging adults. Metformin will be
tested in a first-of-its-kind trial designed to create a
regulatory pathway for aging as a target for drug devel-
opment, the phase III multicenter randomized double-
blind placebo-controlled trial Targeting Aging with
MEtformin (TAME) [30, 31]. With recruitment start
coinciding with what is anticipated to be the waning of
the COVID-19 global pandemic, TAME provides an
excellent platform to probe preventive effects on age-
related chronic disease and long-term consequences of
infectious disease and vaccine response in older per-
sons. In light of the recent global pandemic, we provide
a discussion of metformin in immune aging and infec-
tious disease focusing on clinical evidence.

A brief history of metformin and aging

Metformin is a biguanide and is currently the most widely
prescribed oral hypoglycemic medication for type 2

diabetes treatment or prevention prescribed worldwide.
However, its history dates back to the seventeenth centu-
ry, when metformin-like guanidine compounds found in
traditional herbal medicine Galega officinalis were used
to treat conditions like plague, fever, and snake bites.
Metformin was rediscovered in the 1940s, in a search
for antimalarial agents, and in 1949, metformin was found
to be helpful in treating a local influenza outbreak in the
Philippines [32, 33]. Its immune effects were accompa-
nied by the beneficial side effect of lowered blood glucose
in some of the influenza patients. In the 1950s, the physi-
cian Dr. Jean Stern translated this glucose-lowering po-
tential into diabetes treatments, thoughmetformin was not
finally approved by the Food and Drug Administration
(FDA) as an antidiabetic until 1995.

Interest in metformin’s clinical effects beyond glucose
regulation originated from epidemiologic studies, which
observed a reduction in cardiovascular risk and all-cause
mortality in individuals with diabetes treated with met-
formin in the Diabetes Prevention Program (DPP) and
UK Prospective Diabetes Study (UKPDS) [34, 35].
Since then, there is growing interest in metformin’s clin-
ical benefits beyond diabetes (reviewed in [30]) in dis-
eases ranging from gestational diabetes, polycystic ovary
syndrome (PCOS), and human immunodeficiency virus
(HIV)–associated lipodystrophy, to dementia-type

Fig. 1 Geroscience and immune resilience: acute and long-term
health.Metformin use (blue line) initiated prior to acute illness like
COVID-19 (left most panel) may improve resilience resulting in
fewer events like hospitalization (dotted line), briefer recovery

time, and improved return to baseline health compared to non-
use (black line). Greater long-term health effects could be ob-
served as improved response to vaccine and prevention or delay
of age-related diseases and geriatric syndromes
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neurodegenerative disorders and certain cancers in indi-
viduals with and without type 2 diabetes.

Metformin attenuates hallmarks of biological aging

Metformin has emerged as a leading candidate in clin-
ical trials in aging and age-related acute and chronic
diseases given its cellular effects which are distinct from
its effects on glucose metabolism in diabetics. Kulkarni
et al. [36] recently reviewed metformin’s effects on the
biological hallmarks of aging, with supporting evidence
from C. elegans, drosophila, and rodents. Metformin
acts through a few widely accepted cellular and molec-
ular mechanisms that are highly interdependent and
implicated metformin’s downstream effects on immune
response, chronic diseases, and geriatric syndromes
(Table 1). Chief among these cellular mechanisms are
metformin’s actions on the mitochondrion as a weak
inhibitor of complex I of the mitochondrial electron
transport chain, activation of the energy sensor AMP–
activated protein kinase, inhibition of mTORC1, and
regulation of inflammatory cytokine signaling [30, 36].
Converging evidence also implicates lysosomes [37],
gut microbiome [38], and epigenetic modulation as
mediators of metformin’s actions on biological aging
[39, 40]. Importantly, metformin is not proposed to exert
action by any one single or distinct mechanism but
through multiple mechanisms. Moreover, it is precisely
this plurality of pleiotropic cellular effects that makes
metformin a valuable tool to achieve downstream ef-
fects on immunoprotection, and multiple age-related
diseases and geriatric conditions.

Mechanisms: metformin in immune response
and inflammation

Metformin also exerts actions in immune modulation
and inflammatory response, lending resilience to infec-
tious diseases and acute respiratory illnesses (Fig. 2,
Table 2). Metformin’s interference with key immuno-
modulatory mechanisms are both dependent and inde-
pendent of its effects on improving in metabolic param-
eters. Several mechanisms may underlie metformin’s
effects on immune resilience and responses to infectious
disease; however, it is important to note that the effects
of metformin on the immune system are dependent on
the pathological context (reviewed in [41]). In the con-
text of some cancers, metformin has been shown to be
immunostimulatory with a shift favoring M1

mac r o p h a g e p o l a r i z a t i o n o v e r t h e mo r e
antiinflammatory M2 [42, 43] and increased antigen-
specific T cell responses coupled with decreased immu-
nosuppressive T regulatory cells [44, 45]. However, this
shift towards an immunostimulatory phenotype seems
specific to pathological immunosuppressive conditions
such as cancer. Conversely, in most other situations,
metformin is able to quell aberrant inflammation and
promote antiinflammatory pathways. Indeed, in the con-
text of wound healing, metformin induces M2 polariza-
tion [46]. Additionally, during autoimmune diseases
[47], graft-versus-host disease [48] and others more
proinflammatory conditions, metformin is able to in-
crease T regulatory cells and decrease T helper (Th)17
cells [47–49], an effect likely partially mediated by
AMPK activation [50]. Moreover, metformin treatment
in uninfected mice increases in vitro T cell IFN-γ re-
sponses as well, indicating that metformin treatment has
the ability to modulate immune cells independent of
current infections and potentially improve responses to
future pathogens [51]. For coronaviruses, the timing of
type I IFN production is critical to infection outcome: an
early burst of type I IFN leads to protection, but a delay
in IFN production causes an inability to control viral
replication or pathogen spread, leading to cellular dam-
age of airway epithelia and the lung parenchyma and an
eventual lethal inflammatory cytokine storm [52]. Thus,
metformin has the potential to improve the initial type I
IFN response that is crucial for coronavirus immune
responses and prevent or reduce cellular damage from
exaggerated, prolonged inflammatory responses.

Indeed, metformin’s effect on immune responses to
chronic pathogen exposures or challenges, as well as
general states with elevated inflammation, tends to be
overall immunosuppressive and antiinflammatory (Fig.
2). This dysregulated immune signaling is particularly
relevant to SARS-CoV-2, which causes exaggerated
and aberrant host immune responses that are uniquely
challenging in persons of advanced age [53]. This ‘cy-
tokine storm’ of perpetuating proinflammatory signal-
ing loops is thought to lead to acute respiratory distress
syndrome and poorer outcomes, especially in older
adults [54, 55]. Metformin improves the immune re-
sponse and reduces inflammation by promoting the
formation of M2 macrophages and T regulatory and
CD8 memory T cells [56], and may prevent the differ-
entiation of monocytes to macrophages via an AMPK-
dependent inhibition of STAT3 [57]. In the face of
chronic infection or disease, metformin also reduces
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genes encoding for cytokines associated with inflamma-
tion response by suppression of tumor necrosis factor-α
(TNF-α) dependent NF-κB signaling and expression of
interleukin (IL)-6 (IL-6), IL- β (IL-1β), MCP-1 (CCL2
chemokine ligand 2), CXCL5, and IP-10 (CXCL10)
[51, 58, 59]. Collectively, this results in lower levels of
circulating proinflammatory cytokines, and in a recent
report in older persons with T2DM, the reduction in
proinflammatory signaling was associated 5-year all-
cause mortality risk [60]. Furthermore, metformin treat-
ment diminished LPS-induced acute lung injury [61],
suggesting that metformin may be able to reduce the
cytokine storm-like response and prevent exaggerated
lung damage due to SARS-CoV-2 as well. In addition,
metformin can induce autophagy and facilitate
phagosome-lysosome fusion and induces phagocytosis
of neutrophils, which points to a role for metformin in

killing or containing pathogens, controlling inflamma-
tion, and activating innate and adaptive immune re-
sponse in the host [62].

Metformin may also reduce inflammation through
gut microbiota [38, 62]. Multiple studies have shown
that the glucose lowering ability of metformin is partly
mediated through the gut microbiota changes [63–65].
Others have further shown that the antiinflammatory
effects of metformin may also be partly mediated
through the gut microbiota, even in nondiabetic condi-
tions where the pattern of gut microbe changes with
metformin are negatively correlated with a variety of
inflammatory diseases [66]. While the mechanism of
effect on the microbiota is not known, it seems that
metformin may reduce dysfunctional gut permeability
(“leaky gut”) by increasing goblet cell mass and mucin
production [67], and may alleviate gut dysbiosis by

Table 1 Summary of metformin’s mechanisms in attenuating hallmarks of aging. Metformin has been postulated to exert gerotherapeutic
effects through several molecular pathways related to biological hallmarks of aging [36]

Aging hallmarks Metformin’s effects on key targets and pathways

Altered intercellular
communication

• Antiinflammatory response and immunomodulation
↓ pro-inflammatory cytokines (IL-6, IL-1β, CXCL1/2) [59]
↓ NF-κB and IKKα/β signaling [111]
• Regulation of the gut microbiota by altering microbial folate
Anti-inflammatory response via ↑ Akkermansia, ↑ Bacteroides, ↑ Butyricimonas and ↑ Parabacteroides

genera [112, 113]
Methionine restriction [114]

Deregulated nutrient sensing • Direct targeting of key energy sensors and modulation of nutrient sensing pathways
↑ AMPK [37, 115, 116], ↑ SIRT1 [117, 118]
↓ mTORC1 (via ↓ Rad-GTPase, ↑ TSC2, ↑ REDD1) [119–122]
↓ Insulin and IGF-1 signaling [123]

Genomic instability • Genome protective effects with ↑ DNA-damage-like response and ↑ DNA repair and regulation of
ATM-protein kinases [124–126]

Loss of proteostasis • Increased autophagy and rescue of protein misfolding
↑ LAMP-1 and ↑ Beclin-1 [127, 128]
↑ CEBPD-mediated autophagy [129]

Mitochondrial dysfunction • Inhibition of mitochondrial complex I of the electron transport chain
• Lowering mitochondria-induced oxidative stress [130–132]
↓ Endogenous production of ROS [130–133]
• Improved mitochondrial biogenesis via ↑ PGC-1α [134]

Stem cell exhaustion • Improved stem cell rejuvenation capacity [135–137]
• Delayed stem cell aging [138]

Epigenetic alterations • Transcriptional regulation via histone modifications, DNA methylation and miRNAs [40]
Phosphorylation of Histone Acetyl Transferases (HATs)
↓ Class II Histone Deacetylases (HDACs)
↑ DICER1 [139]

Telomere attrition • Reduction of telomere shortening and ↑ telomeric repeat containing RNA (TERRA) [140]

Cellular senescence • Suppression of senescence-associated secretome
↓ p16, ↓ p21 and RNA-levels of SASP hallmarks [111, 139, 141]
↓ β-gal activity and ↓proinflammatory senescence [142]
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increasing Akkermansia muciniphila and short-chain
fatty acid-producing bacteria, such as Bacteroides and
Butyricimonas [68]. Of particular interest, these alter-
ations were still observed in aged obese mice despite the
presence of preexisting age-related microbiota changes
and were correlated with lower IL-6 and Il1β [67] [68].
This suggests that metformin may also be able to miti-
gate exaggerated inflammatory responses via changes in
gut microbiota.

Metformin and resilience to severe infectious disease

COVID-19

The origin and pathogenesis of the acute respiratory
disease caused by the novel coronavirus SARS-CoV2

is increasingly well understood [54]. SARS-CoV2 is an
enveloped nonsegmented positive-sense RNA virus.
The virus gains entrance to host cells through
angiotensin-converting enzyme 2 (ACE2) receptors,
and upon entry the virion releases its RNA in the cyto-
plasm. Translation and replication occur and new vi-
rions are then released from the host cell [69, 70].
However, key to COVID-19 pathogenesis is the atten-
dant explosive and deleterious host immune response
and immunopathogenesis [71]. This cytokine storm, or
cytokine release syndrome, may occur approximately
5–8 days after symptom onset and is associated with
dismal outcomes including ICU care, mechanical venti-
lation, prolonged hospital care, and in some cases,
death. Inflammatory factors elevated during this storm
include IL-6, IFNγ, TNFα, IL-1β, IL-8, MCP-1,
(CXCL10), and lower T cell counts (CD8+ and CD4+

Fig. 2 Metformin alleviates chronic proinflammatory immune
signaling and restores immune response. Metformin’s cellular
mechanisms include weak inhibition of complex I of the mito-
chondrial electron transport chain, activation of the energy sensor
AMP-activated protein kinase, inhibition of the heteromultimeric
protein kinase mTORC1, and suppression of elevated

proinflammatory cytokines production. Converging evidence also
implicates the gut microbiome which further alleviates inflamma-
tion and phagosome-lysosome fusion which induces phagocytosis
of neutrophils to reduce pathogen burden. The collective result is a
dampened broad proinflammatory cytokine signaling and im-
proved immune cell activation
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T lymphocytes) in older adults with severe COVID-19
cases [71–76]. Importantly, elevated levels of the pro-
inflammatory factors are associated severity of COVID-
19 and unfavorable outcomes like acute respiratory
distress syndrome, multiple-organ failure [73, 76]. In-
terestingly, the list proinflammatory cytokines implicat-
ed in the cytokine storm are nearly identical to those
suppressed with metformin administration.

Intriguing epidemiologic evidence indicates a poten-
tial benefit of metformin on COVID-19 health outcomes
(Table 3). In a retrospective analysis of 283 T2DM
patients from Wuhan, China, with confirmed COVID-
19, investigators found no difference in the length of
stay in hospital, but persons taking metformin had sig-
nificantly lower in-hospital mortality (3 of 104, 2.9%)
than those not taking metformin (22 of 179, 12.3%)
[77]. Upon hospital admission, both groups were under
strict glucose control and all received antiviral and sup-
portive treatments including antibacterial and anticoag-
ulants, with no significant differences in treatment. This
report is further supported by an in-review analysis of
de-identified claims data from UnitedHealth of 6256
persons hospitalized with COVID-19 [78]. Women
who had at least 90 days of metformin claims in the
12 months before hospitalization were found to have
~ 21% lower odds of mortality compared with per-
sons with T2DM but without metformin. This asso-
ciation was not observed for men. Though difficult to
quantify, metformin’s immunoprotective effects in
the context of COVID-19 may be masked if fewer
persons taking metformin are being admitted to
hospital.

Importantly, these findings are relevant only in the
context of long-term treatment with metformin prior to
infection. Therefore, these epidemiologic studies do not
generalize to potential actions of metformin adminis-
tered in hospitalized patients with active infection as a
treatment adjuvant. While metformin use is generally
safe, side effects and gastrointestinal discomfort do oc-
cur in a proportion of the population, and it is unknown
what the additional risk of initiating metformin in hos-
pital for those with comorbid or critical conditions upon
admission would be. Basic research coupled with care-
fully controlled clinical trials would be required prior to
translation to the clinic. Moreover, the protective effects
of metformin on health outcomes due to acute infectious
disease must be replicated and confirmed with rigorous
prospective studies with and without overt T2DM. Fi-
nally, emerging evidence supports close investigation of

both potential sexual dimorphism and mediating effects
of metformin on proinflammatory components of the
cytokine storm also require close investigation.

Other respiratory-related infectious disease

Evidence of metformin as a therapeutic strategy in other
infectious diseases and respiratory illnesses is emerging
from a range of experimental designs, model systems,
and pathogens or exposures (Table 2). In a screen of 13
FDA-approved autophagy activators and AMPK mod-
ulators, metformin (i) displayed direct antimycobacterial
effects; (ii) controlled the growth of drug-resistant bac-
terial strains, (iii) increased production of mitochondrial
reactive oxygen species (mROS), and (iv) facilitated
phagosome-lysosome fusion [51, 79]. In mice, use of
metformin monotherapy enhanced ameliorated lung pa-
thology and enhanced host immune responses, and in
combination therapy, metformin enhanced the specific
immune response and the efficacy of conventional
antimycobacterial drugs [51]. Collectively, this confers
host protection and lessens burden of active infection.
For example, retrospective analyses of tuberculosis pa-
tients who were on metformin had fewer pulmonary
cavities, less advanced disease, and lower mortality rate
than those not onmetformin [51, 80].Moreover, in 2416
persons being treated for tuberculosis in Taiwan,
coexisting metformin use was significantly associated
with decreased mortality during treatment; strikingly,
metformin users had similar mortality as patients with-
out T2DM [80].

Laboratory studies using cells or model organisms
suggest metformin could be effective against numerous
other pathogens, including Trypanosoma cruzi,
Trichinella spiralis , Staphylococcus aureus

(S. aureus ) , and Pseudomonas aeruginosa

(P. aeruginosa) [81, 82]. Of relevance to COVID-19,
bacterial infections of the respiratory system by
S. aureus and P. aeruginosa are associated with local
(vs. systemic) hyperglycemia, which may be associated
with respiratory tract infections in conditions like chron-
ic obstructive pulmonary disease [83]. Interestingly,
metformin’s effects on airway epithelial tight junctions
[84] and bacterial load are independent of effects on
blood glucose but use an AMPK- and PKCζ-mediated
pathway [84, 85]. Moreover, in a murine Legionella

pneumophila pneumonia model, metformin treatment
improved survival of mice, which was associated with
a significant reduction in bacterial number in the lung,
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which was mediated by mitochondrial ROS production
and AMPK signaling and enhanced macrophage bacte-
ricidal activity [86]. Epidemiologic evidence are con-
flicting (Table 3); some studies show a net benefit of
metformin use on outcomes like 30-day mortality in US
veterans hospitalized with pneumonia [87], whereas a
population-based Taiwanese case-control study failed to
demonstrate a preventive effect of metformin on hospi-
talization for pneumonia in persons with T2DM and
COPD [88]. Clinical trials are needed to bridge the
promising preclinical evidence and epidemiologic evi-
dence. A planned small randomized crossover placebo-
controlled trial will explore effects on airway glucose

and bacterial growth in nondiabetic persons with COPD
(NCT03651895); however, trials with follow-up time
sufficient to capture a broad range of respiratory-
related outcomes may be necessary.

Chronic viral infections

Insights can also be drawn from metformin use in the
context of chronic viruses, such as liver targeting hepa-
titis B virus (HBV) and hepatitis C virus (HCV), and
human immunodeficiency virus (HIV). HBV and HCV
are among the leading causes of liver disease. In HBV,
approximately 90% of infections are acute, whereas

Table 3 Epidemiologic studies of metformin use in infectious disease

Reference Population Disease status Comparator Follow-up Outcome Effect size (95% CI)

COVID-19

Luo [77] China
N = 283

COVID-19
+T2DM

Non-use Retro In hospital mortality OR 0.23

Bramante [78] USA,
women

n = 3302

COVID-19
+T2DM

Non-use Retro In hospital mortality OR 0.792 (0.640,
0.979)

US, All
N = 6256

COVID-19
+T2DM

Non-use Retro In hospital mortality OR 0.904 (0.782,
1.045)

Other respiratory illness

Degner [80] Taiwan
N = 2416

TB
+T2DM

Non-use All-cause mortality HR 0.56 (0.39–0.82)

Mortensen [87] USA, VA
N = 7424*

Pneumonia
+T2DM

Non-use Case-control In hospital mortality OR 0.80 (0.72–0.88)

Yen [88] Taiwan
N = 20,644*

COPD
+T2DM

Non-use Case-control
5 years

Hospitalized
pneumonia

HR 1.17 (1.11–1.23)

Nonrespiratory infectious disease

Chen [167] N = 135 Chronic HCV
+HCC

Non-use Retro 5-year survival rate HR 0.24 (0.07–0.80)

Chen [70] Taiwan
N = 71,824

HBV Non-use 9 years All-cancer HR 0.82 (0.75–0.90)

Chen [70] Taiwan
N = 71,824

HBV Non-use 9 years All-cause mortality HR 0.56 (0.39–0.82)

Nkontchou [168] France
N = 100

HCV
Cirrhosis

Non-use 5 years Incident HCC HR 0.19 (0.05–0.99

Nkontchou [168] France
N = 100

HCV
Cirrhosis

Non-use 5 years Liver-related mortality HR 0.22 (0.05–0.99)

Romero-Gomez
[159]

Spain
N = 123

Chronic HCV Placebo 72 weeks SVR 52.5% (v. 42.2% Pl)

Sharifi [161] Iran
N = 140

Chronic HCV Placebo RCT,
24–48 weeks

SVR 75% (v. 79% Pl)

Yu [160] China
N = 98

Chronic HCV Placebo 72 weeks SVR 59.2% (v. 38.8% Pl)

COVID-19 Novel coronavirus-19, HBV hepatitis B virus, HCV hepatitis C virus, HCC hepatocellular carcinoma, T2DM type 2 diabetes
mellitus, Retro retrospective cohort, PL placebo, SVR sustained viral response, RCT randomized clinical trial

*Cases and controls matched
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10% progress to chronic infection. Metformin-mediated
decreases in hepatitis B surface antigen (HBsAg) levels
in culture supernatants and in cell lysates and may work
synergistically with other antivirals [89]. This will be
tested in a randomized placebo-controlled trial in nondi-
abetic persons with chronic HBV: an investigative team
in Chinawill examine the addition of 24-weekmetformin
to ongoing standard HBV treatment entecavir on cumu-
lative rate of HBsAg loss (NCT04182321). Trials on
long-term disease outcomes are have not been conducted,
but a population-based cohort study of 71,824 HBV-
infected patients in Taiwan showed that metformin use
was chemoprotective; patients on metformin had a lower
incidence of all-cancer, not just HBV-related liver cancer
(adjusted hazard ratios, HR 0.75 (95% CI, 0.67–0.84))
[90]. This is interesting because with chronic viral expo-
sure some of metformin’s protective effects may extend
beyond the direct long-term health consequences of
HBV. HCV, like SARS-CoV 2, is a ribonucleic acid
(RNA) virus. HCV poses a serious health threat across
all ages, but those over the age of 65 years now account
for a large portion of all chronic hepatitis C infections in
the USA and have the highest rate of hepatitis C-related
deaths [91]. In patients with HCV and T2DM,
metformin’s effects on sustained viral response (SVR)
are mixed (reviewed in [81]). However, overall metfor-
min is associated with benefit on liver injury and reduces
the rate of incident hepatocellular carcinoma [92], possi-
bly by activating type I INF signaling against HCV via
activation of AMPK.

Metformin is a first-line medication for management
of T2DM and insulin resistance in persons living with
HIV, but metformin may have a role in HIV pathogen-
esis as well [93, 94]. Dysregulated metabolism is impli-
cated in the relationship between viral proteins, immune
activation, and inflammation in persons infected with
HIV, and is hypothesized to dampen the protective
innate and adaptive arms of immunity [95]. In persons
living with HIV and T2DM in Botswana, metformin use
is associated with improved CD4 lymphocyte count
recovery [96]. An independent study in China suggests
metformin inhibit NF-κB/p65 phosphorylation to sup-
press CD54 expression on CD4+ T cells, which is
associated with disease progression in persons living
with HIV [97]. In a recent 24-week pilot study involving
12 virally suppressed HIV-infected individuals without
T2DM who were randomized to metformin or observa-
tion, metformin reduced CD4 T cell exhaustion as mea-
sured by negative immune checkpoint receptors (NCR)

such as programmed cell death protein-1 (PD1) and T
cell immunoreceptor with Ig and ITIM domains
(TIGIT) [98]. Other trials are planned including a pilot
trial in nondiabetic HIV-infected persons to evaluate
metformin’s effect on various virological assays, in-
flammation, and disease outcomes (NCT02659306)
[99, 100]; follow-up trials will be needed to uncover
common mechanisms and best drug combinations
[101]. Additionally, an emerging hypothesis posits that
metformin may improve gut microbiota composition,
which could reducing inflammation and mitigate risk
of nonAIDS comorbidities [62, 102, 103].

Vaccine response

In 2014, it was reported that an mTORC1 inhibitor
increased antibody titers to flu vaccination in 218
healthy elderly subjects [28]. Whether metformin im-
proves vaccine response in nondiabetic older adults
remains an active area of exploration. Recent reports
are mixed. For example, a 2017 study measured in vivo
and in vitro influenza vaccine responses in newly diag-
nosed treatment naïve T2DM patients and patients tak-
ing metformin for at least 3 years. Ongoing metformin
use was associated with recovered B cell function and
vaccine response compared with those who were just
recently diagnosed with T2DM. Moreover, metformin
administered in vitro reduced B cell intrinsic inflamma-
tion and increased antibody responses in B cells harvest-
ed from the recently diagnosed T2DM patients, resulting
in B cell function similar to patients already taking met-
formin [104]. In contrast, a recent cross-sectional study or
67 older adults showed reduced antibody responses to
influenza vaccination quantified by virus neutralizing Ab
(VNA) titers and immunoglobulin (Ig) isotypes to H1N1
and H3N2 in the 11 metformin users compared with
nonmetformin users [105]. Clinical trials in nondiabetic
older adults are needed to resolve these seemingly dis-
crepant results of observational studies in order to evalu-
ate metformin as a potential adjuvant to boost response to
vaccine. Two noteworthy studies on metformin and
vaccine response in nondiabetic older adults are under-
way (Table 4). A pilot investigation is ongoing to deter-
mine whether metformin can improve the immune re-
sponse to the pneumococcal conjugate vaccine (PCV-
13) in older adults and if this effect is mediated by the
gut microbiota (NCT03713801). An independent ongo-
ing pilot trial will evaluate metformin’s effect on both
cellular and humoral influenza vaccine responses, in
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healthy nondiabetic, nonprediabetic older adults
(NCT03996538). While many COVID-19 vaccines are
under development, it is important to note that the re-
sponse to vaccines is also diminished with aging. Thus,
these trials will be important to elucidate potential mech-
anisms to enhance protective responses in older adults if/
when a COVID-19 vaccine becomes available.

Geroscience: from acute care to long-term health

and prevention

Evaluating intervention effects on comorbidity and re-
silience to acute challenge is even more critical in the
aftermath of COVID-19. The lowered overall resilience
of older COVID-19 patients is easily observed in the
high incidence of fatalities, hospitalizations, and poten-
tial for long-term complications in patients with ad-
vanced ages. These outcomes are associated with or
exacerbated the prevalence of age-related disease, co-
morbidity, frailty, and loss of endogenous protective
and repair mechanisms.

Most importantly, once the immediate challenge of
treating acute cases of COVID-19 have passed, the need
to treat these newly acquired or exacerbated long-term
chronic age-related diseases in our population will be
greater than ever. Efforts to treat the infectious diseases
presenting in our hospitals worldwide are essential. At
the same time, we must also delve deeper to understand
how molecular pathways inextricably linked to biolog-
ical aging, such as mTOR signaling, cellular senes-
cence, insulin/IGF-1 signaling, and AMPK activation,
are linked to immune response. This focus could pro-
vide novel host, as opposed to pathogen-directed thera-
pies to respond to the current pandemic crisis, but more
importantly aid our ability to help those affected by
COVID-19 and its attendant chronic health conse-
quences. Understanding the interaction between aging
biology, viral susceptibility and immune response, and
progression to comorbid chronic disease, frailty, and
disability remains one of the most important biomedical
issues worldwide. Geroscience represents a major stra-
tegic advancement and new therapeutic approach to
considering long-term options for prevention and miti-
gating the anticipated swell in long-term health compli-
cations that will be left in the wake of COVID-19.

Ample evidence links metformin to lower all-cause
mortality and reduced rates of multiple disease of aging,
even in nondiabetic populations [106] [107] and suggest a

broad geroprotective role of metformin. Clinical trials
exploring the effects of metformin in nondiabetic older
adults on gerocentric outcomes are underway [108] or
planned [30, 31]. For example, a placebo-controlled,
double-blinded clinical trial of 2-year metformin treatment
for the prevention of frailty in 120 older adults with
prediabetes is ongoing at University of Texas Health Sci-
ence Center at San Antonio [108]. The TAME trial will
evaluate metformin’s effects on incidence of any new age-
related disease (cardiovascular disease, mild cognitive
impairment/dementia, most cancers, or death) in 3000
older adults without diabetes [30, 31]. Both trials include
collection of biospecimens and a variety of assessment
measures to support ancillary investigations to comple-
ment the primary outcome. For example, in addition to
an FDA-facing clinical disease composite, primary out-
come TAME will include several indices of health span
measures including measures of physical and cognitive
function and frailty assessments, assays for key bio-
markers, and biobanking of biofluids, cells, and feces
for discovery and mechanistic investigations. While nei-
ther randomized controlled trial is designed to evaluate
efficacy of metformin on COVID-19–related outcomes,
they nonetheless represent unique and time-sensitive
resources to the scientific community. These trials coin-
cide with the pandemic, which provides an opportunity
for long-term follow-up and deep phenotyping of older
adults with and without exposure to COVID-19 in the
course of the study and may include smaller subgroups
who are symptomatic vs. asymptomatic. Fresh collec-
tion of peripheral blood mononuclear cells and tissues
included in these trials provide an unprecedented oppor-
tunity for immunophenotyping; investigator-initiated
studies could leverage ongoing trials to examine
metformin’s effects on immune cell activation and in-
flammatory cytokine production. Similar to other ongo-
ing trials or large cohort studies [109, 110], TAME will
include measures to query history, symptoms, and bur-
den of COVID-19 as exploratory assessments. More-
over, TAME’s large sample size could permit explor-
atory investigations on the effects of metformin on age-
related diseases or functional decline in older adults with
or without history of COVID-19, though such explora-
tions would not bear the burden of proof necessary for a
virus-related FDA indication. Other ancillary investiga-
tions could be envisioned to explore metformin’s effects
on immune response to vaccines in older adults once a
vaccine against SARS-CoV2 is developed. Ultimately,
these existing or upcoming clinical trials provides a
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scaffolding for future investigations on long-term health
effects of COVID-19 and metformin’s potential to im-
prove resilience following immune challenge.

Concluding remarks and future

In conclusion, metformin is an attractive tool or probe
for clinical trials targeting aging and to improve host
immune defense and resilience in COVID-19 and infec-
tious disease. Its immunoprotective effects are hypoth-
esized to (i) lessen severity of unfavorable health out-
comes or death in the event of exposure to infectious
disease; (ii) delay or prevent long-term chronic diseases
or conditions which can stem from acute challenges or
viral infections; and (iii) bolster immune response to
vaccine. However, this hypothesis has yet to be rigor-
ously tested. It is time for definitive geroscience trials of
not only metformin but other promising geroprotective
interventions like caloric restriction, mTOR inhibitors,
and senolytics. Trials informed by geroscience will offer
opportunity to investigate intervention effects on vac-
cine response and resilience to age-related chronic dis-
eases and geriatric syndromes and provides a unique
opportunity to advance study of host-immune defense
with implication for recovery from the current pandemic
and unforeseen future challenges.
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