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Giant atoms are known for the frequency-dependent spontaneous emission and associated inter-
ference effects. In this paper, we study the spontaneous emission dynamics of a two-level giant atom
with dynamically modulated transition frequency. It is shown that the retarded feedback effect of
the giant-atom system is greatly modified by a dynamical phase arising from the frequency modu-
lation and the retardation effect itself. Interestingly, such a modification can in turn suppress the
retarded feedback such that the giant atom behaves like a small one. By introducing an additional
phase difference between the two atom-waveguide coupling paths, we also demonstrate the possibil-
ity of realizing chiral and tunable temporal profiles of the output fields. The results in this paper
have potential applications in quantum information processing and quantum network engineering.

I. INTRODUCTION

Spontaneous emission is a basic and important pro-
cess that arises from the interaction between an excited
quantum system and the surrounding environment [1-
3]. This process is typically irreversible and thus plays
a negative role in quantum information processing, e.g.,
leading to the so-called quantum decoherence effect. On
the other hand, controlling the spontaneous emission of
an open quantum system has great significance for many
applications, such as quantum switch engineering [4—
9], high-frequency coherent light generation [10, 11],
clock frequency estimation [87], and chiral quantum op-
tics [13, 14]. As a result, the control of spontaneous
emission has attracted a plethora of research interest,
with common strategies including designing the density
of states of the reservoir [15-21], changing the system-
reservoir couplings [22-24], and using strong pulse se-
quences [25-27] or low-frequency coherent fields [28, 29],
to name a few.

Recent advances in waveguide quantum electrody-
namics demonstrate that a single quantum emitter can
be coupled to the waveguide field at multiple separate
points. In this case, the spontaneous emission of the
emitter can be significantly modified, depending on both
the transition frequency of the emitter and the spacing
distances between different coupling points [30]. Such
a new quantum optical paradigm is referred to as “giant
atoms” [31], whose size can be much larger than the wave-
length of the field. In this case, the propagation phases
of the field between different coupling points should be
considered, since they play a vital role in determining
the spontaneous emission of the emitter. This resembles
a small atom in front of a mirror [23, 32-36], which can
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be mapped to a giant one with two identical coupling
paths. However, giant atoms typically allow for more in-
triguing interference effects and advanced scattering be-
haviors due to their richer geometries [31]. To date, giant
atoms have witnessed a series of intriguing quantum opti-
cal phenomena, such as decoherence-free atomic interac-
tions [37-39], unconventional bound states [40-44], chiral
quantum optics [42, 45, 46], synthetic dimension manip-
ulation [47], and phase-dependent single-photon scatter-
ings [48-54], and photon storage [55].

In this paper, we consider a two-level giant atom with
modulated transition frequency. If the system is operated
in the non-Markovian regime, where the propagation
time of the field (e.g., photons) between the two atom-
waveguide coupling points cannot be neglected compared
with the relaxation time of the atom, the frequency mod-
ulation imprints a time-dependent modification on the
retarded feedback and thereby changes the spontaneous
emission dynamics of the system. The modification ef-
fect depends on both the concrete form of the frequency
modulation and the propagation time between the two
coupling points. Such a modification tends to disappear
if the system enters the Markovian regime with negli-
gible propagation time. As will be shown below, the
combination of the giant-atom interference effect (i.e.,
frequency-dependent Lamb shift and relaxation rate of
the giant atom due to the interference of the multiple
atom-waveguide coupling paths [30]) and the frequency
modulation not only enables richer non-Markovian dy-
namics, but also shows the possibility of engineering chi-
ral single-photon source with tunable temporal profiles.

II. MODEL AND METHOD

We consider in this paper a two-level giant atom
whose transition frequency w(t) is dynamically modu-
lated in the vicinity of a constant value wg (i.e., |w(t) —
wo| < wp, which justifies the linearized dispersion rela-
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tion of the waveguide employed below). Experimentally,
two-level systems with modulated transition frequencies
can be implemented via, e.g., driven superconducting
qubits [56, 57] or quantum dots [58]. Assuming that the
atom is coupled to the one-dimensional waveguide at two
points = 0 and x = d, the Hamiltonian of the system
can be written as (7 = 1 hereafter)
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where o4 (0_) is the raising (lowering) operator of the
two-level atom; aL (ay) is the creation (annihilation) op-
erator of the waveguide mode with frequency wy and wave
vector k; ¢ is the coupling coefficient between the atom
and the waveguide, which is assumed to be k indepen-
dent and identical at the two coupling points. Note that
in Eq. (1), we have used the rotating-wave approximation
and the spectrum of the waveguide field in the continuum
limit. Moreover, we have introduced an additional phase
difference ¢ between the two atom-waveguide coupling
paths at x = 0 and & = d, which can be achieved ex-
perimentally via a number of artificial methods, such as
dynamically modulating the coupler between the atom
and the waveguide [42, 46, 59-61] and introducing an
optical path difference for opposite directions of photon
hopping [62, 63]. Such a phase difference mimics a syn-
thetic gauge field so that it imprints a momentum kick on
the emitted photons. In this case, the atom-waveguide
interaction and thereby the spontaneous emission of the
atom becomes chiral [64].

It is clear that the total excitation number of the sys-
tem, which is defined by the operator N = fdkalak +
oyo_, is conserved due to [N, H(t)] = 0. Therefore, if
the system is initialized in a single-excitation state, the
state of the system at time ¢ > 0 can be written as
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where ¢ (t) [ce(t)] is the probability amplitude of creat-
ing a photon with wave vector k in the waveguide (of the
atom in the excited state); |G) denotes that the atom is
in the ground state and there is no photon in the waveg-
uide. In this paper, we focus on the spontaneous emission
dynamics of the modulated giant atom, thus the initial
state is always assumed to be [¢(0)) = 04|G), i.e., the
atom is in the excited state and the waveguide is empty
at the initial time. By solving the Schrodinger equation,
one obtains
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Substituting the formal solution of Eq. (4), i.e.,
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into Eq. (3), one arrives at
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Note that we have taken ¢;(0) = 0 in Eq. (5) due to
the initial state |1)(0)) = o7|G) and exchanged the in-
tegration order in Eq. (6) as usual [3]. By assuming
wi & wo+vE = wo+(k—ko)vg [4, 65], where vy (ko) is the
group velocity (wave vector) of the field at frequency wy,
and changing the integration variable as fj;o f(k)dk —

o L)+ (=R dwr /vy = [T (R)+ f(=R)ldve /v,
Eq. (6) becomes
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where I' = 4mg? /v, is the radiative decay rate of the
atom; ¢9 = kod describes a static phase accumula-
tion that exists even without the modulation [66, 67];



T = d/v, is the time delay (propagation time) of pho-
tons traveling between the two coupling points; O(x) is
the Heaviside step function. Note that we have extended
the integration limit of v to (—oo,+00). This is jus-
tified since the intensity of the atomic power spectrum
is concentrated around the bare transition frequency wy
and thus the extended part makes negligible contribu-
tion to the integral [65]. Moreover, the terms contain-
ing sin disappear in the first line of Eq. (7) due to
sin (—kd) = —sin (kd). Clearly, Eq. (7) describes a non-
Markovian dynamics with a retarded coherent feedback.
In contrast to the common situation where the transi-
tion frequency of the giant atom is constant and there
is no additional phase difference between the two cou-
pling paths, the present model has two interesting hall-
marks: (i) the retarded feedback term contains a dynami-
cal phase ¢(t, 7) that is determined by the concrete form
of w(t) as well as the value of 7; (ii) the amplitude of
the feedback term is further modified by the additional
phase difference ¢ in terms of a cosine function. Note
that ¢(t,7) becomes trivial if 7 is exactly zero since in
this case the model reduces to a small-atom system with
d=0.
In the case of w(t) = wy and ¢ = 0, Eq. (7) becomes

¢e(t) = —=Tce(t) — Tee(t — T)€i¢0®(t -7), (9)

which recovers the dynamic equation of a common giant
atom that has been well studied previously [66, 67]. In
this case, the retardation effect simply postpones the on-
set of the giant-atom interference effect determined by
the value of ¢y. For example, the atom exhibits par-
tial decay (i.e., exponential decay at the initial stage and
inhibited decay for t > 7) if ¢9 = (2m + 1)7 (m is an ar-
bitrary integer). This can be seen by solving the Laplace
transformation of Eq. (9) and using the final value theo-
rem, which yields ¢.(t — 4+00) = 1/(1+I'7) in this case.
In particular, when 7 = 0, the spontaneous emission of
the giant atom is completely inhibited, implying that the
atom is in a dark state in this case. This phenomenon is
however different from the subradiance behaviors of mul-
tiple small atoms [68, 69]. While the latter is a collec-
tive effect and occurs with specific initial conditions, the
inhibited spontaneous emission of a single giant atom is
only related to the phase accumulations between different
coupling points. Such a dark state cannot be obtained if
mod(p, ) # 0, since the retarded feedback (whose am-
plitude is proportional to cos¢) cannot exactly cancel
the instantaneous decay of the atom in this case.

IIT. CONTROLLABLE SPONTANEOUS
EMISSION

In this section, we consider a simple cosine-type mod-
ulation

w(t) = wo + acos (Ot + 0) (10)
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FIG. 1. Dynamic evolutions of atomic population probability
P.(t) with (a) ¢o = (2m + 1)7 and (b) ¢o = 2mm. Panels
(a) and (b) share the same legend. The vertical dotted lines
correspond to the moment ¢ = 7 that the atom feels the re-
tarded feedback. Other parameters are x =1, 0 =0, o =0,
and 7' = 0.2 (except for indicated).

around the background frequency wg, where «, €2, and 6
are the amplitude, frequency, and initial phase of the
modulation, respectively. In this case, the dynamical
phase ¢(t,T) can be written as

o, 7) = ¢o + x[sin (U + 0) —sin (U — Q7 +0)] (11)

with x = a/Q the modulation depth [70]. It is clear from
Eq. (11) that the spontaneous emission dynamics of the
giant atom can be controlled by tuning €2, x, and 6. To
study the non-Markovian retardation effect, we consider
a finite time delay (I'7 = 0.2) that is nonnegligible com-
pared with the relaxation time of the atom. Moreover,
we assume ¢ = 0 tentatively in order to highlight the
effect of the frequency modulation. We will discuss the
influence of the additional phase difference ¢ on the spon-
taneous emission dynamics of the atom at the end of this
section and on the output fields of the model in the next
section.

We first focus on the influence of the modulation fre-
quency and plot in Fig. 1 the dynamic evolutions of the
atomic population probability P.(t) = |c.(t)|? for dif-
ferent values of Q. For ¢y = (2m + 1)m, as shown in
Fig. 1(a), the cosine-type modulation markedly modifies
the dynamics of the atom. When Q7 = 2n7 (n is an-
other arbitrary integer that is in general unequal to m),
the spontaneous emission of the atom is inhibited after
t = 7, just as it would be in the absence of the modulation
(see the coincident blue solid and yellow dashed lines). As
Q7 approaches (2n — 1), the decay of the atom tends
to be exponential-like but with a slight oscillation. This
can be well understood from Eq. (11): when Q7 = 2nm,
o(t,7) = ¢o becomes time independent as if there is no
modulation; for other cases of Qr # 2nm, ¢(t,7) changes
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FIG. 2. (a, b) Dynamic evolutions of atomic population prob-
ability P.(t) with different values of x and ¢o. Panels (a) and
(b) share the same legend. (c) P.(t = 2/TI") as a function of x
for ¢o = 2mm. (d) Dynamic evolutions of atomic population
probability P.(t) with different values of 6 and ¢o = 2mn. We
assume @ = 0 in panels (a)-(c) and x = 1 in panel (d). The
vertical dotted lines in (a), (b), and (d) correspond to t = 7
as those in Fig. 1. Other parameters are 7" = 0.2, Q/I" = 5,
and ¢ = 0.

periodically in time due to the cosine-type modulation.
Moreover, as shown in Fig. 1(b), one can tune the dy-
namics of the atom between the superradiant-like form
(arising from the constructive interference between the
two atom-waveguide coupling paths; see the blue solid
and yellow dashed lines) and the typical exponential form
(the giant-atom interference effect never takes place for
T — 00; see the gray solid line) in the case of ¢y = 2mm.
Note that 7 = 0 (d = 0) corresponds to a small atom
as well, but in this case the atomic decay rate is twofold
(i.e., 4I") due to the constructive interference between the
two overlapped coupling points.

A recent work [71] has shown that by modulating the
atom-waveguide coupling strengths, it is also possible to
control the spontaneous emission dynamics of a giant
atom. Indeed, both the frequency and coupling mod-
ulation schemes require the system to be in the non-
Markovian regime and the atomic dynamics exhibit sim-
ilar behaviors when considering cosine-type modulations
in these two cases. From this point of view, frequency
modulations provide an alternative wisdom for control-
ling the spontaneous emission dynamics of a giant atom.
For some platforms, however, modulating the atomic fre-
quency is much easier than altering the interaction be-
tween the atom and the waveguide (such as natural atoms
coupled to the evanescent fields of optical fibers). More-
over, it is challenging to introduce modulations precisely
to all the coupling paths of the giant atom, especially
when the number of the coupling points is very large.
Nevertheless, as will be shown below, there is a limita-
tion on the effect of the present scheme.

It can be seen from Eq. (11) that the modulation ef-
fect is strongly influenced by the modulation depth Y.
If x is very small, the modulation effect is limited be-

cause the dynamical part of ¢(t,7) changes within the
finite range [—2yx, 2x]. This is also why the spontaneous
emission of the atom cannot be further boosted (sup-
pressed) in Fig. 1(a) [Fig. 1(b)]. In view of this, we
examine in Figs. 2(a) and 2(b) the evolutions of P,(t)
for Q7 = (2n + 1)m and different values of x. When
¢o = (2m+ 1)7, as shown in Fig. 2(a), the atom exhibits
a nearly linear decay for small x (see, e.g., the blue solid
and red dot-dashed lines) and an exponential-like decay
for large x (see, e.g., the green dotted and yellow dashed
lines). This suggests a way to engineer richer sponta-
neous emission dynamics for quantum emitters. Simi-
larly, when ¢y = 2mm as shown in Fig. 2(b), the atomic
decay can be further suppressed upon increasing y prop-
erly. In Figs. 2(a) and 2(b), we have concentrated on
the situation of x € [0,2], in which the modulation ef-
fect shows a monotonic behavior with the increase of x.
However, it is no longer the case if we further increase the
value of . As shown in Fig. 2(c), the atomic population
P.(t = 2/T") exhibits a damped oscillation as x increases
and the maximum is found around x = 2. Such a non-
monotonic behavior can be understood from the Jacobi-
Anger extension of the dynamical phase factor, which will
be discussed in detail below. Moreover, Fig. 2(d) shows
that the spontaneous emission of the atom is quite insen-
sitive to the modulation phase 6. Tuning 6 only leads to
a slight phase shift for the oscillating evolution curve.

Before proceeding, we would like to point out that the
modulation effects shown above tend to disappear as the
time delay 7 decreases gradually. This can be seen again
from Eq. (11): ¢(t,7) = ¢p if 7 is much smaller than
the other timescales. In view of this, the controllable
spontaneous emission here is closely related to the non-
Markovian retardation effect arising from the giant-atom
structure. Moreover, our scheme is quite different from
that in Ref. [72], where a structured reservoir with a nar-
row band is required in order to suppress the spontaneous
emission of a modulated small atom. In our scheme the
spectrum of the waveguide modes can be very broad and
flat.

It has been shown that a common giant atom described
by Eq. (9) enables periodic population revivals in the
deep non-Markovian regime (i.e., I't > 1), with adja-
cent revivals equally spaced by 7 [67, 73]. This non-
Markovian effect, however, can be markedly suppressed
by the cosine-type frequency modulation. In Fig. 3, we
demonstrate the long-time evolutions of P, (t) with large
enough 7 and different modulation parameters. Hav-
ing in mind that the modulation effect disappears when
Q1 = 2nm, here we take Q7 = (2n + 1)7 as an example.
In Fig. 3(a), the atom shows evident population revivals
in the absence of the modulation (i.e., x = 0), but the
revivals tend to fade as the modulation depth x grows.
This can be understood from the dynamical phase fac-
tor F' = explid(t, 7)], which dynamically modifies the re-
tarded feedback term as shown in Eq. (7). The evolutions
of the real part of F' with different values of x are plotted
in Fig. 3(b) (the imaginary part of F' shows similar evolu-
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FIG. 3. (a, ¢) Dynamic evolutions of atomic population prob-
ability Pe(t) with (a) different values of modulation depth x
and (c) different values of modulation frequency Q. The inset
in panel (c¢) depicts Pe(t = 11/I") versus 2 for fixed x. (b, d)
Dynamic evolutions of the real part of the dynamical phase
factor Re(F') with (b) different values of modulation depth x
and (d) different values of modulation frequency 2. We as-
sume /I' = 0.57 in panels (a) and (b) and xy = 0.5 in panels
(c) and (d). Panels (a) and (b) [(¢) and (d)] share the same
legend. Other parameters are o = 2mm, 7[' = 10, 6 = 0, and

p=0.

tions, which are not demonstrated here). For small y, the
dynamical phase factor F' changes slowly within a small
range that is away from zero. For large x (with € remain-
ing invariant), however, the retarded feedback term (with
the prefactor F') oscillates rapidly with a nearly vanish-
ing average contribution, such that the model behaves
like a small atom with negligible population revivals. In
view of this, the result in Fig. 3(a) shows the possibility
of protecting quantum emitters from unwanted environ-
ment backactions and controlling the non-Markovianity
of the quantum dynamics [35, 74].

Moreover, we would like to interpret this result using
the Jacobi-Anger expansion of the dynamical phase fac-
tor, i.e.,

F = exp(igg)exp|2ix sin (2t)]

+oo
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where Q7 = (2n + 1)m and # = 0 have been assumed
and Jy(x) is the Bessel function of the first kind. Equa-
tion (12) shows that the influence of the dynamical phase
factor becomes negligible if y is large enough because all
Jq(x) are small for y — +oo. This is also why in Fig. 2(c)
the modulation effect exhibits a non-monotonic behavior
as x increases. For other cases of Q7 # (2n + 1)7 and
0 # 0, the expansion of F' becomes more complicated but
the asymptotic behavior is similar.

We also plot in Fig. 3(c) the evolutions of P.(t) in the
deep non-Markovian regime with two very different val-
ues of Q, i.e., Q/I' = 5.57 and 80.37. The two evolution

curves show good agreement, illustrating that the popu-
lation revivals cannot be eradicated by using larger mod-
ulation frequency (here we fix the value of x by changing
« and €) simultaneously, otherwise y should decrease as
Q increases, leading to negligible modulation effects for
large enough ). This can be understood again from the
evolutions of Re(F') shown in Fig. 3(d): the dynamical
phase factor oscillates faster with higher modulation fre-
quency, yet its average contribution is almost unchanged.
Although we have used Q7 = (2n + 1)x in Figs. 3(c) and
3(d), the conclusion here also holds for other values of
Q7 # 2nm. This can be seen from the inset in Fig. 3(c),
where P, (t = 11/T") changes slightly with  in a periodic
manner.

Before moving to the next section, we would like to
briefly discuss the influence of the additional phase dif-
ference ¢ on the spontaneous emission dynamics of the
atom. It can be seen from Eq. (7) that the feedback term
is modified by ¢ in terms of a cosine function: the am-
plitude of the feedback term is proportional to I" cos ¢ in
this case. In other words, such a phase difference alters
the effective decay rate of the giant atom rather than in-
troducing any new physics to the decay dynamics. When
mod(p,2m) # 0, the results above can be recovered by
tuning other parameters such as the atom-waveguide cou-
pling strengths (the amplitude of the retarded feedback
term can differ from that of the instantaneous decay term
if the coupling strengths at the two coupling points are
different [71]). However, as will be seen in the next sec-
tion, such a phase difference enables an effective chiral
interaction between the atom and the waveguide field
and thereby leads to chiral output fields.

IV. CHIRAL AND TUNABLE OUTPUT FIELDS

In experiments, the spontaneous emission of the (gi-
ant) atom can be examined by measuring the output
fields at the ports of the waveguide. In view of this,
it is convenient to transform the field amplitude cg(¢) to
real space via

c(x,t) = \/% /dkck(t)e“”, (13)

whose square modulus can be measured by a photon de-
tector placed at position x. To derive the real-space field
amplitude in Eq. (13), we rewrite Egs. (3) and (4) as
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Substituting the formal solution of ¢(t), i.e.,
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into Eq. (13), one has
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where wy, = wo + (k — ko)vg has been used again. If the
photon detector is located at the right side of the giant
atom, i.e., z =d+1 (I > 0), we have

ler(t)] = le(z =d + 1, 1) =

ZWH%@G@ )
+ %0t e (T — 1)O(I — T)} }

On the other hand, if the detector is located at the left
side of the atom, i.e., x = —[, we have

LG

+ 0= (I — 1)O(I — T)] ‘

leL(®)] = le(z = =1, )| =
(19)

In Egs. (18) and (19), we have assumed ¢ = t — /v,
and ¢y = kod — wod/vy = ¢9 — woT. Note that v, =
(Owy, JOk) | k=k, # wo/ko and thereby ¢g # wot if wy is
not exactly proportional to |k| [65]. However, we have
checked that the main results in this section also hold
even if g9 = wor (i.e., wy = |klvg [75-77]). According
to Egs. (18) and (19), the output fields should be asym-
metric (i.e., the spontaneous emission of the atom should
be chiral) if the additional phase difference ¢ is not an
integer multiple of 7.

We first examine the evolutions of the left and right
output intensities |cr,(t)|? and |cr(t)|* versus the renor-
malized time ¢ — 7 with different values of ¢ and x (for
t < 0, the emitted photon cannot be detected, while for
0 <t < 7, the output fields are always symmetric and
exhibit no modulation effect since the retarded feedback
has not come into effect). Asshown in Figs. 4(a)-4(c), the
output fields are symmetric (achiral) if ¢ = 0, otherwise
the output fields become chiral with the chiral effect be-
ing more evident if mod(p, 2m) = mod(¢y, 27w). The out-
put fields exhibit oscillating temporal profiles due to the
cosine-type modulation [34]. The case without modula-
tion is demonstrated in Fig. 4(d), where the right output
is nearly inhibited and the left one shows an exponen-
tially damped profile. Moreover, as shown in Figs. 4(d)-
4(f), the modulation depth x plays an important role
for harnessing the profiles of the output fields without
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FIG. 4. Dynamic evolutions of the left and right output in-
tensities (in units of T'/2v,) versus t — 7 with different values
of modulation parameters (cosine-type modulation). We as-
sume x = 1 in panels (a)-(c) and ¢ = 7/2 in panels (d)-(f).
Other parameters are ¢o = (2m + 1)m, ¢y = (2n + 1/2)7,
7T = 0.2, /T = 57, and 0 = 0.

affecting the chirality. We point out that changing the
modulation phase 6 leads to a slight shift of the profiles
along the time axis (not shown here), which provides an
additional tunability of the output fields.

Besides the cosine-type modulation discussed above,
one can also consider aperiodic modulations to engi-
neer richer chiral output profiles. For example, we now
consider a linear frequency modulation in the form of
w(t) = wo+Lt, with 8 being the modulation rate and hav-
ing the dimension of Hz?. Although w(t) is not a bounded
function in this case, we limit ourselves to the case of
small § and short evolution time to ensure [t < wy.
Now ¢(t, ) can be written as

o(t,7) = g0+ B (t— ). (20)

Equation (20) shows that the dynamical phase depends
linearly on ¢, with the prefactor determined by both 3
and 7. Therefore we consider in this case a larger 7 to
achieve stronger modulation effects.
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FIG. 5. Dynamic evolutions of the left (a) and right (b) out-
put intensities (in units of I'/2v,) versus ¢ — 7 with differ-
ent values of 8 (linear modulation). Other parameters are
do=(C2m+ 1)m, ¢f = (2n+1/2)7, ¢ = 7/2, and 7T = 1.

Figure 5 depicts the dynamic evolutions of the left and
right output intensities versus ¢ — 7 with different values
of 8. It shows that the chiral temporal profiles of the
output fields can be markedly affected by the modula-
tion rate 8. In particular, the profile of the right output
field can be tuned from an exponential-like shape to a
Gaussian-like shape as 3 changes. Moreover, the overall
intensity of the left (right) output field reduces (grows)
gradually with the increase of 5. As a result, aperiodic
frequency modulations provide richer schemes for tuning
the chirality of the output dynamics.

Finally, we would like to point out that the results in
this section, which arise from the effective chiral atom-
waveguide interaction and appropriate frequency mod-
ulations, are in principle compatible with other chiral
quantum optical mechanisms such as spin-momentum
locking [13, 14], topological reservoirs [44, 78], and syn-
thetic gauge fields [79]. The chirality of our proposal
is tunable in situ [46], which makes it an excellent al-
ternative of chiral quantum interfaces [45]. In analogy
to the giant-atom structures, chiral quantum interfaces
have also been created by engineering composite interac-
tions (containing, e.g., linear and nonlinear interactions)
for small-atom dimers, without breaking the Lorentz
reciprocity of the system [80]. Such systems, however,
might call for simultaneous frequency modulations for
both atoms.

V. CONCLUSIONS

In summary, we have studied the spontaneous emis-
sion dynamics of a two-level giant atom with modulated
transition frequency. We have revealed that the non-
Markovian retardation effect, which stems from the non-
negligible time delay of photons traveling between differ-
ent coupling points, endows the giant-atom interference
effect with a dynamical modification. This thus allows
for controlling the spontaneous emission of the atom, de-
pending on both the concrete form of the frequency mod-
ulation and the value of the time delay. As an example,
we have considered a cosine-type frequency modulation
and studied in detail its influence on the dynamic evolu-
tions of the atomic population. Based on the controllable
spontaneous emission, we have also demonstrated how to
engineer chiral output fields with tunable temporal pro-
files. This can be achieved by introducing an additional
phase difference between the two atom-waveguide cou-
pling coeflicients and using various modulation schemes.

The scenario in this paper can be immediately ex-
tended to situations of a single multilevel giant atom [30,
48, 49], multiple correlated two-level giant atoms [37,
38, 81, 82|, and structured baths [43, 44, 78, 83, 84].
For the latter situation, it is also possible to realize ef-
ficient dipole-dipole interactions resorting to appropri-
ate frequency modulations even if the atoms are de-
tuned from each other [85]. Furthermore, the results in
this paper can be extended beyond the single-excitation
space by, e.g., considering extra coherent pumping for
the atom, which may allow for more exotic quantum
phenomena [86, 87]. Potential applications of our pro-
posal include but are not limited to: (i) providing a new
wisdom for controlling the non-Markovianity of quantum
dynamics (in terms of the controlled atomic population
revivals) and improving the performance of the preex-
isting non-Markovianity quantifiers [35, 74]; (ii) creat-
ing chiral single-photon pulses with highly tunable tem-
poral profiles; (iii) engineering more advanced quantum
switches which are based on the interference between the
atomic spontaneous emission and the propagating field in
the waveguide; (iv) developing quantum simulation tech-
niques based on giant atoms, such as simulations of open
(chiral) many-body systems [38, 45].
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