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Abstract 

Statistical analyses from exoplanet surveys around low-mass stars indicate that super-Earth and 

Neptune-mass planets are more frequent than gas giants around such stars, in agreement with 

core accretion theory of planet formation. Using precise radial velocities derived from visual and 

near-infrared spectra, we report the discovery of a giant planet with a minimum mass of 0.46 

Jupiter masses in an eccentric 204-day orbit around the very low-mass star GJ 3512. Dynamical 

models show that the high eccentricity of the orbit is most likely explained from planet-planet 

interactions. The reported planetary system challenges current formation theories and puts 

stringent constraints on the accretion and migration rates of planet formation and evolution 



Manuscript author version 

4 
 

models, indicating that disc instability may be more efficient in forming planets than previously 

thought. 

One Sentence Summary 

A Jupiter-mass planet found orbiting the low-mass star GJ 3512 favours a scenario of formation 

by disk instability. 

Main Text 

Almost 4000 exoplanets have been discovered to date, but only about 10% are orbiting low-mass 

M dwarf stars, in spite of this stellar type being the most numerous in the Galaxy. This 

observational bias is largely a consequence of the intrinsic faintness of M dwarfs at visual 

wavelengths, where most exoplanet searches have been conducted. Statistical studies, based on 

radial-velocity and transit surveys (1, 2), yield estimates between 1 and 2.5 planets per M dwarf, 

most of them in the Earth- and Neptune-mass regime (3). Only a few Jupiter-mass planets have 

been found to orbit late-type stars (4, 5). This is consistent with the core accretion theory of 

planet formation (6, 7), which predicts a low abundance of gas giants orbiting such stars. 

Alternative theories, such as disc instability, may explain the formation of gas giant planets in 

high-mass protoplanetary discs (8, 9). Microlensing survey results (10, 11) indicate that gas giant 

planets may be more abundant at larger distances from their host stars, where transit and radial 

velocity surveys are less sensitive. This would be in agreement with exoplanet formation 

scenarios suggesting that the occurrence of gas giant planets may increase beyond the snow line 

(the distance from the star beyond which volatile compounds could condense) of protoplanetary 

discs, but it is not yet clear if discs around late-type stars have sufficient material and survive 

long enough to form such massive planets (6, 12). The CARMENES exoplanet survey (13) aims 

to answer this open question by searching for exoplanets around M-dwarf stars using a dual 

channel high-resolution spectrograph operating in the visible and near-infrared wavelength 

ranges. Entering its fourth year of survey, CARMENES is now able to detect planets that reside 

beyond the snow line of their host stars, which is closer for late-type M dwarfs. Therefore, the 

radial velocity signals of planetary companions are larger and the orbital periods shorter (from a 

few hundred days). 

GJ 3512 (LP 90-18) is a high-proper motion late-type star included in the CARMENES survey 

whose basic properties are summarised in Table 1. It is classified as an M5.5 main-sequence star, 
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with a mass of about 0.12 M
!
, and the Gaia mission provides a trigonometric distance of 9.489 

pc (14). Stellar properties, i.e. mass, radius, effective temperature, luminosity, and metallicity, 

were computed from the spectroscopic observations using the same procedures developed for 

other CARMENES survey stars (15). The first routine observations of this target showed a clear 

trend in radial velocities, which prompted an increase in the observational cadence. Over the past 

two years we have secured full coverage of a large-amplitude radial velocity periodic 

modulation. Fig. 1 shows the radial velocity curve derived from the visual and near-infrared 

channels of the CARMENES instrument. A Keplerian model provides parameters in agreement 

for both wavelength channels, confirming that the variability is consistent with a planet 

interpretation. A simultaneous fit yields a planet with a minimum mass of 0.463!!.!"#
!!.!"" Jupiter 

masses in an eccentric (e=0.4356±0.0042) orbit with a period of 203.59 days. The residuals of 

the best fit were inspected for additional variability, showing a significant long-term trend in the 

data, also visible in both wavelength channels. Adding a second-order polynomial to the 

Keplerian motion significantly improves the radial velocity fit with respect to a linear model. 

This indicates that the residual radial velocities could be the reflex radial velocity of a second 

object with a period longer than ~1400 days. Therefore, we finally adopted a two-planet 

Keplerian model as the best fit to the data, assuming a circular orbit for the poorly-constrained, 

long-period signal (see Fig. 1 and 16). No further significant signals are identified in the dataset. 

Table 1 lists the parameters of the final fit, along with the orbital and planetary properties 

derived for GJ 3512 b and the constraints for the candidate GJ 3512 c. The uncertainties are 

computed using standard Markov Chain Monte Carlo (MCMC) procedures (17) and considering 

68% credibility intervals.  

GJ 3512 is a moderately magnetically-active star showing emission in the Hα line (18). 

Photometric monitoring of the target conducted from the Sierra Nevada, Montsec, and Las 

Cumbres observatories yielded light curves showing variability with a period of around 87 days 

and with a peak-to-peak modulation of about 3%. Activity indices such as the differential line 

width computed from the spectra (19) also show significant signals around the same period. We 

attribute this variability to modulation caused by the rotation of the star, with a period that we 

estimate to be 87±5 days (16), in agreement with ref. (20), who report a value of ~87 days. The 

relatively long rotation period, and the measured space motions indicate that GJ 3512 is a rather 

old star with a most likely age in the interval 3-8 Ga (16). This is also consistent with its 
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approximately solar metallicity. An explanation of the 204-day radial-velocity variability as 

arising from magnetic activity can be confidently ruled out because this period is not present in 

the activity indicators, because the radial velocity amplitude is larger than expected for a 

moderately-active slow-rotating star such as GJ 3512, and also because no dependence of the 

radial velocity amplitude with wavelength is seen from the visual to the near-infrared.  

Although the orbital inclination is unknown, only values below 2 deg, i.e., an orbit nearly face-

on, would result in an absolute mass above the brown dwarf limit (~13 Jupiter masses) for GJ 

3512 b. This means that the probability of this object being a planetary-mass body is very high 

(>99.9%). Fig. 2 shows the location of GJ 3512 b in the minimum-mass versus host star mass 

plot compared to known planetary systems. It lies in a region of the parameter space 

corresponding to low-mass stars with massive planetary companions, which has not been 

explored in detail because of the faintness of the targets and the very low transit probability in 

wide orbits (<0.5% for GJ 3512 b). GJ 3512 is the lowest mass star with a giant planet detected 

so far by radial velocities, with a minimum mass ratio q ~ 0.0034. This system lies in the 

parameter space region where only the microlensing technique has reported planet discoveries so 

far (10, 21), but the transient nature of the detection and the very large uncertainties of the host 

star masses prevent a deeper individual analysis. The orbital and physical properties of the 

exoplanet GJ 3512 b, as well as of the host star, are determined much more accurately. It is 

interesting to note that GJ 3512 is a twin of the nearby planet-hosting star Proxima Centauri (22), 

with very similar stellar parameters but with completely different planetary architectures. 

Preliminary statistical estimates from the CARMENES survey and the literature indicate that the 

occurrence rate of giant planets in orbits up to a few astronomical units around stars with masses 

below 0.3 M
!

 is about 3%, this value being compatible with microlensing surveys (23).  

The high orbital eccentricity of GJ 3512 b is not expected for a system with only one planet, for 

which the interaction with the stellar disc during migration should lead to a circular or low-

eccentricity orbit. However, planet–planet scattering has been shown to be a possible way of 

explaining the often-large eccentricities of giant planets (7). Given the likely existence of a 

second wide-orbit planet, inferred from the trend in the radial velocity residuals after subtracting 

planet b, we find that a plausible route to the present orbital architecture is that the system 

formed initially with three planets, of which one (with a mass similar to or lower than planet b) 
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was ejected, leaving GJ 3512 b on an eccentric orbit and a large gap between the two surviving 

planets (16).  

Moreover, GJ 3512 b has a very high mass for such a small host star, which, combined with the 

probably high planetary multiplicity at birth, poses a significant challenge for planet formation 

theories. We explored planet formation scenarios around GJ 3512 with the latest pebble accretion 

models (24), without success (16). Formation of a gas giant in this way requires building up a 

large planetary core of at least 5 Earth masses. We show here that this is not possible around 

such a low-mass M dwarf because the migration rate of planets around low-mass stars is high. 

Therefore, planetary seeds move rapidly to the inner edge of the disc. Assuming high disc 

masses is not favoured by the observations (25) but also does not resolve the issue because it 

leads simultaneously to higher accretion and migration rates (16).  Furthermore, allowing for the 

possibility of a longer disc lifetime around low mass stars (26) does not help.  

We note that the total mass of the planets (≳0.5 MJ, >0.005 M★, including at least GJ 3512 b and 

c) is significant compared to the range of disc masses around low-mass pre-main sequence Class 

II M dwarfs (~0.1–10 MJ) (27), implying an extremely high planet formation efficiency. We 

therefore turned to the competing model of planet formation by gravitational instability in the gas 

disc at very young ages, when the disc is still massive relative to the star (Mdisc/M★ ≳ 0.1) (28, 

29). For a range of disc viscosities α and surface densities Σ, the disc is gravitationally unstable 

at radii < 100 au (Fig. 3 and 16). Furthermore, the estimated masses of the fragments formed (30) 

are less than that of Jupiter, which is in line with the mass of GJ 3512 b. Except for 

unrealistically low values of α, the disc fragments at radii ≳10 au, and so the planets must have 

migrated a significant distance from their formation location to their present position. This is not 

a problem given the large mass of the disc with respect to the planet, and it is indeed often seen 

in numerical simulations of disc fragmentation (30, 31). In the region of realistic viscosity α > 

0.01, the disc typically fragments at radii of a few tens of au, and the total disc mass within this 

radius is ~30 MJ. Discs cannot extend too far beyond this fragmentation radius, since the total 

disc mass becomes extremely large (up to 1 M
!
 within 100 au). Thus, the planetary system 

around GJ 3512 favours the gravitational instability scenario as the formation channel for giant 

planets around very low-mass stars.  
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Given the mass ratio between GJ 3512 b and its host star, and the large orbital semi-major axis, 

the Gaia mission will provide further information for this system. Assuming the orbital 

properties reported in Table 1, the reflex motion of the host star is expected to be around 120 

µas, which is about two times larger than the expected accuracy of Gaia astrometry (32) for G ~ 

13 mag. Actually, the Gaia second data release reports an excess noise in the astrometric five-

parameter fit of 632 µas, which is highly significant and may be partially attributed to the inner 

planetary companion. Assuming that all of the astrometric excess noise is due to the inner planet, 

this provides a lower limit for the inclination and an upper limit for the planet mass of about 8 

deg and ~3.5 Jupiter masses, respectively. Therefore, one can safely exclude any face-on 

configurations where the companion would be considerably more massive than a few Jupiter 

masses or in the brown dwarf regime. Eventually, Gaia astrometry should provide the inclination 

and mass of the inner planet as well as possibly the orbital parameters of the outer companion, 

and their mutual inclination, further constraining planet-planet scattering models. Furthermore, 

the star-planet contrast is estimated to be ~10–7 only (depending on the albedo, inclination, and 

planet size), and is thus potentially imageable with future instruments. This makes GJ 3512 a 

very promising system because it may be fully characterized and thus continue to place stringent 

constraints on accretion and migration processes, as well as on the efficiency of planet formation 

in protoplanetary discs, and the disc-to-star mass ratios. 
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Star parameter Value 

Spectral type M5.5 V 

Mass (M
!

) 0.123±0.009 

Radius (R
!

) 0.139±0.005 

Luminosity (L
!

) 0.00157±0.00002 

Effective temperature (K) 3081±51 

Distance (pc) 9.489±0.008 

Rotation period (d) 87±5 

Space velocities (km s-1) U=−28.80±0.37, V=−51.55±0.17, 

W=1.51±0.30 

Metallicity −0.07±0.16 

Planet parameter Value 

 GJ 3512 b GJ 3512 c 

Orbital period (d) 203.59!!.!"
!!.!" >1390 

Radial velocity semi-amplitude (m s-1) 71.84!!.!"
!!.!" >12 

Eccentricity 0.4356!!.!!"#
!!.!!"# … 

Argument of periastron (deg) 125.49!!.!"
!!.!" … 

Time of periastron - BJD2450000.0 (d) 7745.65!!.!"
!!.!" … 

Minimum mass (M sin i; MJ) 0.463!!.!"#
!!.!""

 >0.17 

Orbital semi-major axis (au) 0.3380!!.!!"#
!!.!!"!

 >1.2 

Minimum astrometric semi-amplitude (α sin i; mas) 0.12753!!.!!!"#
!!.!!!"# >0.15 

Maximum planet angular separation (mas), i = 90 deg 42.2!!.!
!!.!

 >120 

                                                                                     i = 8 deg 51.1!!.!
!!.! >120 

Table 1. Information of GJ 3512 and its planet candidates. We derived fundamental stellar 

parameters of GJ 3512 as in ref. 15. Orbital and planetary parameters, and their uncertainties, are 

determined by calculating the mean values and 68% credibility intervals of the distribution 

resulting from the MCMC run. Only lower limits can be obtained for GJ 3512 c. Complementary 

fitting algorithms, e.g., using a Gaussian Processes framework, were also employed in the 

modelling of the data and yielded compatible results within the uncertainties.  
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Fig. 1. Time-series of radial velocity data and residuals. (A) the radial velocity time-series 

obtained with the CARMENES visual (blue circles) and near-infrared (red squares) channels, 

and the best-fitting Keplerian orbital model (black solid line). (B) the same data and fits after 

removing the signal of the inner planet GJ 3512 b (RVb), showing the radial velocity of the long-

period candidate GJ 3512 c (RVc). (C) and (D) the residuals between the best fitting two-planet 

model and data for the two CARMENES channels. This model includes two Keplerian orbits, 

with the longer-period orbit assumed to be circular with P=2100 days, which yields the best 

likelihood value. Black horizontal lines are guidelines, not fits to the data. Each panel has a 

different vertical scale and horizontal axis is the time of the observations in barycentric Julian 

day (BJD). Calendar years are indicated for reference. 
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Fig. 2. GJ 3512 b minimum planet mass and host stellar mass compared to known 

planetary systems. Data for known exoplanets come from the NASA exoplanet archive. Only 

systems with star and planet mass uncertainties below 30% are displayed (see Fig. S4 for a full 

comparison with all planetary systems). Different exoplanet detection techniques are shown as 

labelled and GJ 3512 b is depicted with an orange star symbol. The planet minimum mass is 

plotted in the case of planets detected by radial velocities and timing. The dashed lines indicate 

different host star-to-planet mass ratios (q) as labelled, and the horizontal dot-dashed line 

corresponds to 10 M⊕. 
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Fig. 3. Planet formation around GJ 3512 through gravitational instability. Gas giant planets 

can form through direct gravitational collapse of the gas disc, if the disc is sufficiently dense. 

Here we show the formation prospects as a function of the disc’s surface density at 1 au (Σ), and 

viscosity parameter (α). In the white region to the left, the disc is gravitationally stable out to 100 

au. The colour scale and white contours show the minimum fragment mass in Jupiter masses 

(30), which would form at the inner edge of the unstable region. In the white region to the right, 

accretion rates are unphysically high (33). The red line marks the lower limit on α that 

gravitational instability itself would generate through turbulence. Hence, nearly all 

gravitationally unstable discs with realistic surface densities and accretion rates generate 

fragments in the mass range of the GJ 3512 planets. For reference, the minimum-mass solar 

nebula surface density value is around 1700 g cm-2 (34). 
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Supplementary Materials for 
 

A giant exoplanet orbiting a very-low-mass star challenges planet formation 
models 

 
Materials and Methods 

Spectroscopic observations and analysis 

GJ 3512 was included in the list of targets of the CARMENES exoplanets survey (13) in late 
2016. It was observed with the visual (5200-9600 Å) and near-infrared (9600-17100 Å) channels 
of the CARMENES spectrograph installed at the 3.5-m telescope at the Calar Alto Observatory 
(Almería, Spain) from December 2016 until May 2019, with an average cadence of 4 days, and 
30-minute exposure times. The SERVAL (19) routine was used to obtain radial velocities for 
each échelle order and also several indices that can be used as stellar activity indicators. In this 
work we have made use of the radial velocities computed both from the visual (VIS) and the 
near-infrared (NIR) channels, for which a perspective (secular) acceleration of ~0.37 m s–1 a–1 is 
already corrected. Instrumental effects identified in CARMENES data, such as night-to-night 
offsets, are corrected using the large sample of stars observed (35), although the magnitude of 
such corrections is much smaller than the radial velocity variability of GJ 3512. 

 

A total of 145 and 143 radial velocity epochs, provided in Tables S1 and S2, are available for GJ 
3512 in the VIS and NIR channels, respectively. The median internal precision of the VIS data is 
about 2.5 m s–1. In the NIR channel, several spectral orders (most of them in the ~1.2 µm band) 
contain very little radial velocity information (18). Radial velocities determined using those 
orders are therefore prone to systematics caused by telluric line contamination or unmasked 
detector defects. We carefully inspected the spectral orders to be used for radial velocity 
calculation. We tested various combinations of orders and selected the combination that 
minimized the radial velocity scatter of the full CARMENES M-dwarf sample. A total of 19 of 
the 55 available orders were used to achieve the best possible precision, obtaining a radial 
velocity curve in agreement with that of the VIS channel, with a median internal precision of 
about 7.1 m s–1. 

 

Radial velocity measurements were modelled using Keplerian orbits by maximization of the 
likelihood function (36). VIS and NIR data were fitted both individually and simultaneously. A 
jitter parameter was added in quadrature to the error bars of each dataset to account for an 
additional noise term as usually done in this context (37). We started with a single-planet 
Keplerian fit that reproduced reasonably well the large-amplitude radial velocity variability. 
However, a long-term trend was observable in the residuals. As a first approximation, we added 
a linear term to the fit, which improved the likelihood value by Δ ln L ~ 124. We subsequently 
considered a second order polynomial for the fit that increased the significance even further (Δ ln 
L ~ 185), indicating the presence of some curvature and therefore a tentative long-period signal. 
For this reason, we finally performed a recursive periodogram search (38) to constrain the 
properties of this additional signal in the data by fitting simultaneously a Keplerian function with 



 

 

2 
 

a period of approximately 204 days and a sinusoidal function. Table S3 lists the properties of the 
different fits obtained. Fig. S1 displays the recursive periodogram as a function of the period of 
the long-term signal, and the derived properties of the outer object (i.e., radial velocity semi-
amplitude, minimum mass and semi-major axis). The time span of the observations is not 
sufficient to determine this period, but the periodogram reveals that the data are consistent with a 
signal of period above ~1400 days. This makes this long-term trend consistent with a second 
object with a mass in the range between a Neptune-like planet and a brown dwarf, and semi-
major axis between ~1 and ~10 au. High-resolution imaging taken during the definition of the 
CARMENES input catalogue (39) and also available in the bibliography (40) and the inspection 
of the high-resolution spectra to look for the possibility of the system being a spectroscopic 
binary exclude a stellar companion. 

 

To check the consistency between the VIS and NIR radial velocities, individual fits were also 
obtained. The resulting parameters are listed in Table S4. The parameters of GJ 3512 b are 
consistent within the uncertainties in all cases. The long-period trend is less constrained in the 
case of the NIR radial velocity data due to larger uncertainties. However, the two-planet solution 
is still statistically more significant than a single Keplerian function, and the radial velocity semi-
amplitude and the long-term trend are consistent for both wavelength channels. This favours the 
hypothesis of an additional planet in the system rather than the trend being caused by stellar 
activity. However, given the limited time baseline, we cannot fully exclude that part of the 
variation may be be caused by a long-period activity cycle, albeit there is no evidence in the 
various indicators.  

 

Stellar activity indices are also retrieved from the CARMENES spectra and they are provided in 
Table S5. We searched for signals in the periodograms of the flux ratio of the Hα line, the 
differential line width and the chromatic index (19) of the VIS channel data. Fig. S2 shows the 
time-series and the likelihood periodograms of the radial velocities, the residuals of the best-
fitting two-planet solution and the spectral indices. The periodogram of the radial velocity 
residuals shows peaks around ~92 and 340 days, although of low significance, which could be 
related to stellar activity and window aliases. We modelled the radial velocity data using 
Gaussian Process algorithms (41, 42) to consider correlated noise. The resulting orbital 
parameters are consistent within the uncertainties with those reported in Tables 1 and S3.  A 3-σ 
clipping procedure was applied to data from activity indices to remove outliers because some of 
these observations could be affected by flaring events. No significant signals above the 
significance level of Δ ln L > 15 (~0.1% FAP) are found at the ~203-day period. Interestingly, 
the differential line width index shows a significant signal at a period of 88.8 days that is 
consistent with the rotation period derived from photometry. 

 

Photometric monitoring 

To better compare photometric and radial velocity variability signals due to stellar activity we 
obtained photometry contemporaneous with the CARMENES observations from different sites. 
The target was observed with the robotic 0.8-m Joan Oró telescope at the Montsec Astronomical 
Observatory (Lleida, Spain) using the standard Johnson-Cousins R band from December 2017 to 
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May 2019. A total of 161 epochs were obtained using the MEIA2 instrument, a 2k×2k Andor 
CCD camera. Each epoch consisted in two to three blocks of observations with 15 s exposure 
time separated by few hours. These observations were combined to obtain a single nightly 
measurement to have the same cadence for all photometric data. This dataset was separated in 
two seasons to avoid any systematic caused by an intervention in the telescope in between. 

 

We also collected photometric data in the Johnson V, R, and I bands, and in the V and R bands 
with the T150 (1.5-m) and T90 (0.9-m) telescopes at Sierra Nevada Observatory (SNO, Granada, 
Spain), respectively. Both telescopes are equipped with similar CCD cameras VersArray 2k×2k 
(43). The observations with the T150 telescope were collected at 21 different epochs between 
February and May 2018. Each epoch typically consisted of 20 observations of 100 s, 50 s, and 20 
s in the V, R, and I bands, respectively, per night. The observations with the T90 telescope 
correspond to 33 epochs in the period October 2018 to January 2019. Each epoch usually 
consisted of 20 individual exposures of 150 s and 120 s in the V and R bands, respectively. A 
number of nearby and relatively bright stars within the frames were selected as check stars in 
order to choose the best ones to be used as reference stars. The same set of reference stars was 
chosen for both telescopes.  

 

Finally, photometric observations of GJ 3512 were obtained in the I’ band with the 40-cm 
telescopes of Las Cumbres Observatory (LCO) at the Teide site. The observations yielded 16 
different epochs in the interval between 5 and 28 March 2018. We typically acquired 60 
individual exposures of 40 s in each epoch. Relative photometry of GJ 3512 was obtained with 
respect to several reference field stars of similar brightness. 

 

Photometric measurements are provided in Table S6 and Fig. S3 shows the photometric time-
series and their likelihood periodograms. There is a clear modulation of ~15 mmag and several 
signals are above the significance level of Δ ln L > 15 (~0.1% FAP) for the different datasets. 
Assuming a sinusoidal modulation, the TJO first-season data are best fitted using a ~100-day 
period, while for the second season roughly significant signals at ~87 and ~42 days (after 
subtraction of the first signal) are present. On the other hand, the SNO data results in a period 
estimate of ~44 days for T90 observations, while a non-significant signal at ~73 days is present 
in T150 data. The different periods, which are close to the 2:1 ratio, may indicate an evolving 
spot pattern on the surface of the star, with active regions at opposite longitudes. LCO data do 
not show any clear signal due to the short time span of the observations. In order to combine all 
the datasets corresponding to the same photometric band, we first removed a mean value from 
each light curve and we then computed zero point offsets for each SNO T150 and T90 R band 
datasets with respect to TJO first and second seasons, respectively, and LCO I’ band dataset with 
respect to SNO T150 I band data, by averaging the observations corresponding to the same night. 
The combined datasets yield significant periods at ~44 and ~84 days in the V band, ~87 and ~42 
days in R band, and ~74 days in the I band data. Fitting a zero point between the two seasons of 
observations for V and R band datasets produces similar results. Therefore, we conclude that the 
rotation period of GJ 3512 is probably around ~87 days, which agrees very well with the signal 
found in spectroscopic activity indicators such as the differential line width. From the combined 
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R band light curve, we can estimate a rotation period of 87 ± 5 days, with the uncertainty 
estimated from the width of the periodogram peak. 

 

GJ 3512 was also observed by the MEarth (44) and SuperWASP (45) surveys. MEarth 
observations span between October 2008 and June 2017, including 3400 epochs and a dispersion 
of ~8 mmag. The likelihood periodogram of the datasets shows a peak at ~80 days but with a 
semi-amplitude modulation of only 3 mmag, much smaller than those obtained from other 
observations and consistent with the value reported in ref. 20. Interestingly, the two most densely 
sampled seasons, between October 2008 and June 2009 (131 nights) and September 2012 and 
June 2013 (165 nights), show variability with a period of ~41 and ~75 days and semi-amplitudes 
of ~5.5 and ~3 mmag, respectively, in agreement with the values reported above. This indicates 
that the spot pattern on the photosphere of the star varies over time and that the modulation 
caused by spots is currently more apparent than 5-10 years ago. On the other hand, SuperWASP 
data only comprise 16 nights of observations between March 2007 and April 2008 with a 
dispersion of about 0.1 mag, which is not useful for our analysis. 

 

Age estimate 

The non-detection of Li I in the spectra indicates that GJ 3512 is not a very young star. 
Furthermore, its long rotation period points at a rather old age for the system. The observed 
space motions of the star are consistent with GJ 3512 being part of the thin disc population of the 
Galaxy, for which ref. 46 estimates an age in the range 6.8 – 8.2 Ga based on the analysis of 
nearby white dwarfs. Following the method applied to the TRAPPIST-1 planetary system (47), 
we estimate an age in the interval 3 – 9 Ga from the UVW velocities. These are calculated from 
the Gaia proper motions and distance, and from the radial velocity measured using CARMENES 
spectra of +6.2 ± 0.5 km s–1. Current gyrochronology relationships do not extend to stars as cool 
as GJ 3512. If we extrapolate the calibration by (48) to the measured colour index B – V = 1.84 
(49) mag of GJ 3512, we obtain an age in the interval 4 – 7 Ga. We caution, however, that this 
determination can be biased, although the agreement with the method using space motions is 
good. From our analysis, we constrain the age to be likely within 3 – 8 Ga. 

 
Formation models of the planetary system 

Planet formation by pebble accretion. We first consider planet formation in the pebble 
accretion paradigm (50). Here, planetary cores are built up by the efficient accretion of cm-sized 
particles, aided by gas drag; following which, if the core becomes large enough, gas accretion 
leads to growth to Jovian sizes. This formation model has been shown to reproduce well the 
diversity of planets seen around Solar-type stars, with the final mass and orbital radius depending 
on parameters such as the formation site and time of the planetary cores, and the pebble flux 
through the disc (51). Our formation model is adapted from the latest published pebble accretion 
models (24), and considering several host star parameters, in particular, a stellar mass (0.1 M

!
) 

and luminosity (0.1 L
!

) approximately matching GJ 3512’s pre-main sequence properties (52). 
Planetary seeds of 0.01 M⊕ are inserted into the protoplanetary disc at time t0 and radius r0, and 
experience accretion of pebbles and gas as well as migration torques, until the disc dissipates at 3 
Ma (53). The seeds are assumed to have formed directly as large planetesimals from the 



 

 

5 
 

streaming instability or by an earlier phase of growth by planetesimal accretion and pebble 
accretion (54). In Fig. S5 we show the final position and mass of planets formed as a function of 
t0 and r0 for four stellar masses including the adopted values for GJ 3512, with the disc accretion 
rate ∝ M2, starting at an accretion rate of 10–7

 M!
 a–1 (M★/ M

!
)2 at t = 0 and dissipating at an 

accretion rate of 10–8 M
! a

–1 (M★/ M
!

)2 three million years later. As expected, a wide range of 
planets is successfully formed around the more massive stars. However, planetary seeds around 
the 0.1-M

! star experience only modest growth, due to a higher scale-height of the pebble layer 
(lower stellar mass) and a lower pebble column density in these low-mass discs. At the same 
time, migration is faster when the central star is lighter. The result is that cores either remain 
light due to the low pebble accretion rates, if they form far from the star, or migrate rapidly 
towards the inner disc edge before growing appreciably by pebble accretion, if they start further 
in where the growth rate is higher. Besides this model (hereafter model 1), we further explored 
models where the initial gas accretion rate is 3×10–7 M

! a
–1 and the final gas accretion rate is 

either 10–10 M
! a

–1 (model 2) or 2×10–9 M
! a

–1 (model 3) for a stellar host star of 0.1 M
!

. The 
initial total gas masses in these three models are Mdisc = 0.0005 M

!
, 0.009 M

!
, and 0.06 M

!
, 

respectively. The results are shown in Fig. S6. Here we use a logarithmic time axis to emphasize 
the earliest stages of the protoplanetary disc evolution. The yellow line shows the size of the 
protoplanetary disc (which expands in time due to outwards transport of angular momentum), the 
red contours show the Toomre Q parameter for gravitational instability in the gas, while the 
white contours and the background colour show the final position and mass of the planet, 
respectively. Model 3 is gravitationally unstable between approximately 20 and 30 au (the 
approximate outer edge of the disc), but we do not include planet formation by disc instability in 
these models. All the models fail to produce gas giant planets by pebble accretion and gas 
accretion.  

 

Planetesimal accretion. In the previous section on planet formation by pebble accretion we 
assumed that planetesimal accretion did not contribute to the growth of the cores. Here we 
include also planetesimal accretion (55). We assume that 1% of the initial gas column density 
profile is converted to planetesimals of 100 km in radius early on. The planetesimal accretion 
rate is calculated from the model in ref. 56 describing how a migrating protoplanet accretes a 
fraction of the planetesimals that it plows through. In Fig. S7 we show again models 1, 2, 3, as 
described in the previous section, but now including planetesimals. Clearly, planetesimals do not 
contribute noticeably to the nominal model where the gas column density is low and hence the 
initial planetesimal population of relatively low mass. However, for the two dense protoplanetary 
disc models (model 2 and model 3), planetesimal accretion leads to the formation of gas-giant 
planets that end up migrating very close to the host star (in contrast to the companions of 
GJ 3512). The reason why planetesimal accretion is important lies in our assumption that the 
young, compact protoplanetary disc converts about 1% of its local mass to planetesimals. 
Model 3 initially forms 150 M⊕ of planetesimals out to 20 au; scaling this to a solar-mass star 
corresponds to the conversion of 1500 M⊕ of dust to planetesimals. This is a debatable 
assumption for GJ 3512. The central star has solar metallicity and that was likely the case for the 
protoplanetary disc as well. Triggering planetesimal formation by the streaming instability 
requires a minimum of 1.5–2% mass loading of pebbles in the gas (57). Such metallicity levels 
could occur near ice lines (58) and by late photoevaporation of gas (59). It is possible that stars 
of very high metallicity could experience an early transformation of the dense, circumstellar gas 
to a population of planetesimals, but such a scenario is likely not relevant for the metallicity of 
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GJ 3512. On the other hand ref. 60 showed that planetesimal formation in trapping mode, when 
the local pebble flux controls the planetesimal formation in traps like zonal flows and vortices, 
has no such severe metallicity constraints and furthermore forms planetesimals in the inner 
nebula from pebbles at larger distances, thus the local planetesimal to gas ratio can be much 
larger than the original dust to gas ratio. Yet, the mentioned models were performed for solar 
type stars and it still has to show how this prediction will translate to M-dwarfs. We therefore 
conclude that current core accretion models (either pure pebble accretion or combined pebble 
and planetesimal accretion) have severe difficulties to explain GJ 3512.  

 

Planet formation by gravitational instability. Given the conclusions in the previous section, 
we turn to the alternative scenarios and consider that the planet orbiting GJ 3512 could have 
formed by spontaneous gravitational fragmentation of the gas disk (31). We work with an 
analytical disc model (61) and include active heating from the disc’s viscosity and passive 
heating from the luminosity of the central star, additionally imposing a minimum temperature of 
10 K to account for heating from other stars in the birth cluster. We construct a grid of such disc 
models, varying the viscosity parameter α and the mass accretion rate dM/dt. We take as an 
upper limit on the accretion rate 10–4 M

!
 a–1, the upper limit measured for embedded Class I 

young stellar objects (62) and FU Orionis objects (63). Numerical simulations show that a 
gravitationally unstable disc generates an α of 0.01 – 1 (64). For each disc, over radii from 0.1 to 
100 au, we calculate Toomre’s stability parameter Q = 3αcs

3/(G dM/dt), where cs is the sound 
speed and G the gravitational constant (31). Q decreases outwards in these disc models, and 
when Q ≲ 1 the discs become gravitationally unstable and fragment. The mass that should be 
taken by these fragments, which undergo gravitational collapse to form giant planets directly, is 
disputed in the literature, and we use the analytical scaling of ref. 30, which agrees with some 
numerical simulations (65). These are the masses shown in Fig. 3, and they encompass the 
observed minimum mass of GJ 3512 b.  

 

Planet formation by prompt fragmentation of the molecular cloud. Since GJ 3512 b stretches 
the limits of the core accretion as well as the disc fragmentation scenarios, one could consider a 
third formation mechanism, namely prompt fragmentation of a filament in the natal molecular 
cloud. This would be analogous to the formation of binary and triple stars, but again with 
extreme parameters, including a mass ratio q < 0.01. Simulations of star formation in clusters do 
not produce such systems (66); therefore, this formation channel cannot be considered likely. 

 

System formation by capture. Given the challenges of forming such massive planets around 
this star, we also considered the scenario where the planets were captured by GJ 3512 during a 
close encounter with another star in its birth cluster (67). However, this scenario can be ruled out 
for several reasons. First, capture of planet by a star requires a flyby pericentre ≲ 3 times the 
planet's semi-major axis, or around 1 au for GJ 3512 b. Flybys this close are rare, with a rate of 
~10–4 M a–1 in a young cluster (68). Second, capture rates by low-mass stars are lower (67), and 
even capturing two planets is considerably less likely than capturing only one. Finally, the 
observed eccentricity of ~0.43 is fairly low for captured planets (67). 
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Early dynamical evolution of the planetary system 

The orbital eccentricities of planets embedded in a disc are usually damped. Planet–planet 
scattering has been shown to reproduce well the eccentricity distribution of observed giant 
exoplanets (7), therefore we present here some possible dynamical histories of the GJ 3512 
system. Because of the possible presence of a second, outer planet, and the fact that an unstable 
two-planet system will end up losing a planet through collision or ejection, we consider systems 
of initially three planets. A moderately large eccentricity of 0.43 cannot be achieved by the 
ejection of too small a planet (69), and so we construct systems of planets in a 2:1:4 mass ratio. 
Other configurations are possible and will be explored in a follow-up study. We set up 1000 
systems where the planets are separated by 3 to 5 mutual Hill radii, close to the 4:2:1 mean 
motion resonance, and integrate their orbits with the RADAU integrator in the MERCURY (70) 
package for 108 years. After this time, 733 of the systems have experienced instability and lost at 
least one planet, 524 possessing two planets at the end of the simulation. Of these, 124 have one 
planet with orbital elements similar to those of GJ 3512 b (a < 0.6 au; 0.33 ≤ e ≤ 0.53). The 
eccentricities and semi-major axes of planets in these systems are shown in Fig. S8. The outer 
planets in these systems typically lie on lower eccentricity orbits between 1 and 2 au and are 
consistent with the long-term trend observed in the data. 
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Table S1. Radial velocity time-series from the CARMENES visual channel spectra. Only a 
subset of the data analysed in this paper is shown here. A machine-readable version of the full 
dataset is available in Data S1. 

 

Barycentric Julian Date, BJD Radial velocity, RV 

(m s
–1

) 

2457752.40306 –89.8±1.7 

2457755.38261 –92.6±2.8 

2457761.47313 –94.1±2.6 

2457788.49993 –43.1±3.6 

2457815.46609 –14.1±2.0 

2457823.56615 –7.2±1.9 

2457833.40010 0.3±2.9 

2457848.36227 16.3±2.0 

2457852.39121 20.2±3.0 

2457856.41314 21.7±2.3 
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Table S2. Radial velocity time-series from the CARMENES near infrared channel spectra. 

Only a subset of the data analysed in this paper is shown here. A machine-readable version of the 
full dataset is available in Data S1. 

 

Barycentric Julian Date, BJD Radial velocity, RV 

(m s
–1

) 

2457752.40244 –84.2±6.1 

2457755.38269 –97.0±6.2 

2457761.47294 –97.1±6.0 

2457788.49882 –55.2±9.1 

2457815.46603 –11.3±6.2 

2457823.56598 –16.8±6.7 

2457833.40043 0.1±7.8 

2457848.36220 9.8±6.2 

2457852.39119 38.6±9.5 

2457856.41301 10.6±5.2 

 
  



 

 

10 
 

Table S3. Parameters of the radial velocity simultaneous fits to VIS and NIR channels. The 
likelihood (L) value of the single Keplerian fit is used as reference (ln L = –1067.51). A long-
period trend is present in the data, but the parameters of the tentative planet GJ 3512 c cannot be 
further constrained, thus only lower limits of the period and radial velocity semi-amplitude, and 
the range of allowed phase differences (θ) with respect to GJ 3512 b periastron passage are 
given. 

  

 Model 

Fit  parameters Keplerian Keplerian+Linear Keplerian+circular 

Pb (d) 204.23±0.32 204.04±0.21 203.59±0.14 

Kb (m s-1) 69.02!!.!"
!!.!" 71.14±0.48 71.84!!.!"

!!.!" 

eb 0.444±0.010 0.4269!!.!!"#
!!.!!"# 0.4356±0.0042 

ωb (deg) 125.6!!.!
!!.! 125.0±1.0 125.49!!.!"

!!.!" 

Tperiastron,b (BJD-2450000.0) 7744.4±1.2 7744.34!!.!"
!!.!" 7745.65±0.50 

Pc (d) … … >1390 

Kc (m s-1) … … > 12 

θ (deg) … … 60 – 90 

 γ (m s-1) VIS −0.76!!.!!
!!.!" 4.6!!.!

!!.! 4.6!!.!
!!.! 

NIR 0.0±1.0 −6.5!!.!
!!.! −6.5!!.!

!!.! 

S (m s-1 a-1) … 12.02!!.!"
!!.!" … 

jitter (m s-1) VIS 7.51!!.!"
!!.!" 4.7!!.!

!!.! 1.38!!.!"
!!.!" 

NIR 9.17!!.!!
!!.!" 5.128!!.!"

!!.!" 4.7!!.!
!!.! 

Fit  quality Value 

ln Lmodel – ln Lkeplerian 0 124.09 187.57 

rms (m s-1) VIS 7.88 4.14 3.27 

NIR 12.71 10.99 10.26 



 

 

11 
 

Table S4. Parameters of the radial velocity fits to the separate and combined VIS and NIR 

data sets. The likelihood value of the single Keplerian fit is used as reference: ln L = –505.21 

(VIS), ln L = –560.43 (NIR) and ln L = –1067.51 (VIS and NIR simultaneously). The long-
period trend is detected in the VIS channel radial velocity data, while the NIR data fit likelihood 
is only marginally better than for a single Keplerian fit. Only lower limits of the period and radial 
velocity semi-amplitude, and the range of allowed phase differences (θ) with respect GJ 3512 b 
periastron passage are given. 

 Data set  

Fit  parameters VIS NIR VIS+NIR 

Pb (d) 203.61±0.14 203.29±0.37 203.59±0.14 

Kb (m s-1) 71.50!!.!"
!!.!" 74.1±1.1 71.84!!.!"

!!.!" 

eb 0.4337±0.0044 0.451±0.013 0.4356±0.0042 

ωb (deg) 125.76!!.!"
!!.!" 123.9!!.!

!!.! 125.49!!.!"
!!.!" 

Tperiastron,b BJD2450000.0 (d) 7745.61!!.!"
!!.!" 7746.2±1.3 7745.65±0.50 

Pc (d) > 1410 >920 >1390 

Kc (m s-1) > 12 > 13 > 12 

θ (deg) 60 – 90 45 – 90 60 – 90 

 γ (m s-1) VIS 17.18!!.!
!!".! 10.9!!.!

!!.! 4.6!!.!
!!.! 

NIR … 10.70!!.!
!!.! −6.5!!.!

!!.! 

jitter (m s-1) VIS 1.21!!.!!
!!.!" … 1.38!!.!"

!!.!" 

NIR … 1.23!!.!"
!!.!" 4.7!!.!

!!.! 

Fit  quality Value 

ln Lmodel – ln Lkeplerian 143.31 47.74 187.57 

rms (m s-1) VIS 3.25 … 3.27 

NIR … 10.03 10.26 
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Table S5. Time-series of the stellar activity indices derived from the CARMENES visual 

channel spectra. All indices are computed using SERVAL (20). Only a subset of the data 
analysed in this paper is shown here. A machine-readable version of the full dataset is available 
in Data S1. 
 

Barycentric Julian Date, 

BJD 

Hydrogen Balmer 

line ratio, H  

Differential line width, 

dLW (m
2
 s

–2
) 

Chromatic index, CRX 

(m s
–1

) 

2457752.40306 1.747±0.009 –3.9±2.3 28.1±14.5 

2457755.38261 1.653±0.012 –5.8±2.7 –70.5±28.1 

2457761.47313 1.325±0.009 –11.3±2.2 47.4±26.6 

2457788.49993 1.503±0.018 –22.8±5.2 –5.5±38.8 

2457815.46600 2.391±0.011 –21.1±2.8 34.5±17.1 

2457823.56615 1.875±0.008 –6.5±1.9 36.3±14.1 

2457833.40010 1.805±0.014 –15.6±3.2 33.7±29.7 

2457848.35684 2.091±0.009 –5.0±2.5 27.1±15.8 

2457852.39121 1.709±0.010 0.0±3.5 55.4±28.5 

2457856.41314 1.677±0.008 –1.4±2.4 19.9±21.6 
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Table S6. Photometric light curves of GJ 3512 obtained at the Montsec, Sierra Nevada and 

Las Cumbres observatories. Only a subset of the data analysed in this paper is shown here. A 
machine-readable version of the full dataset is available in Data S1. 
 

Barycentric Julian Date 

BJD 

Differential photometry 

 (mag) 

Photometric band Telescope/instrument 

2458091.48957 –0.0482±0.0075 R TJO/MEIA2 

2458092.58100 –0.0468±0.0050 R TJO/MEIA2 

2458093.57870 –0.0491±0.0041 R TJO/MEIA2 

2458094.65474 –0.0437±0.0050 R TJO/MEIA2 

2458095.52833 –0.0435±0.0059 R TJO/MEIA2 

2458096.57270 –0.0472±0.0030 R TJO/MEIA2 

2458103.58412 –0.0477±0.0039 R TJO/MEIA2 

2458104.52712 –0.0443±0.0041 R TJO/MEIA2 

2458106.50138 –0.0486±0.0048 R TJO/MEIA2 

2458107.48880 –0.0386±0.0035 R TJO/MEIA2 
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Fig. S1. Recursive periodogram to search for additional signals in the time series of radial 

velocity data and residuals. Panel A shows the window function of the radial velocity time 
series obtained with CARMENES. The ln L difference of the two planets fits with respect to a 
single Keplerian fit as a function of the period of the long-term trend (P2) is displayed in panel B. 

Panels C, D and E show the radial velocity semi-amplitude, the estimated mass, and the orbital 
semi-major axis corresponding to each long-period fitted, respectively. The dashed blue vertical 
line marks the position of the best likelihood solution (corresponding to a period of ~2100 days), 
and the dot-dashed red line marks the lower threshold of acceptable solutions according to their 
likelihood values (ln Lmax – ln Lthreshold = 5). 

  



 

 

15 
 

 

 
Fig. S2. Radial velocity and activity indices obtained from the VIS channel CARMENES 

observations. The left panels show the timeline of the measurements, with grey symbols 
indicating outliers removed by applying a 3σ clipping. Some of these may be caused by flaring 
events. The right panels show the likelihood periodograms of the full dataset (grey line) and with 
outliers removed (black line). The window function of the observations is shown in the top right 
panel. False alarm probability of 0.1% typically corresponds to Δ ln L ~ 15. Therefore, no 
significant signals are found in stellar activity indices near the orbital period corresponding to GJ 
3512 b (dot-dashed black vertical line). Significant signals with false alarm probabilities below 
or close to 1% are only present in the case of the differential line width (dLW) and chromatic 
index (CRX), showing peaks at ~89 days, that can be attributed to the rotation period of the star 
(dot-dashed red vertical line, ~87 days), and at ~415 days, that could be due to the yearly alias of 
a decreasing trend, respectively. 
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Fig. S3. CARMENES VIS channel residual radial velocity and contemporaneous 

photometric time-series of GJ 3512. The left panels display the radial velocity after subtraction 
of the planetary and long-term signals (black dots, panel A), along with the TJO (cyan solid and 
open dots), SNO T150 (black solid squares), SNO T90 (black open squares), and LCO (yellow 
crosses) photometric data. Panels C, E, and G correspond to different photometric bands as 
labelled. Zero points between TJO and SNO and SNO T150 and LCO light curves were 
computed from the mean value of measurements taken during the same night. The likelihood 
periodogram of each dataset is plotted in the right panels using the same colours (solid and 
dashed lines correspond to solid and open symbols, respectively), while the red line corresponds 
to the periodogram of the whole sample of radial velocity residuals (panel B) or of the combined 
photometric dataset (panels D, F, and G). False alarm probability of 0.1% typically corresponds 
to Δ ln L ~15. A different vertical scale is used in panel B. Black and red dot-dashed vertical 
lines indicate the orbital period corresponding to GJ 3512 b and the estimated rotation period 
(~87 days), respectively. 
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Fig. S4. GJ 3512 b minimum planet mass and host stellar mass compared with known 

planetary systems. Data for known exoplanets comes from the NASA exoplanet archive. 
Different exoplanet detection techniques are shown as labelled and GJ 3512 b is depicted with an 
orange star symbol. Panel A shows exoplanet masses as a function of the stellar host star masses. 
The planet minimum mass is plotted in the case of planets detected by radial velocities and 
timing. Dashed lines indicate different host star-to-planet mass ratios (q) as labelled, and the 
horizontal dot-dashed line corresponds to 10 M⊕. Systems with stellar or planet mass 
uncertainties above 30% (not shown in Fig. 2) are displayed in lighter colours. Panel B displays 
the exoplanet mass versus the orbital semi-major axis for late-type stars with masses below 0.3 
M

!
 and relative uncertainties below 30%. 

  



 

 

18 
 

 

Fig. S5. Formation maps for the pebble accretion scenario. Each panel shows planet 
formation outcomes for a different stellar mass. In each panel, the x-axis shows the formation 
location of the 0.01 M⊕ seed, and the y-axis its formation time. The colour scale shows the final 
mass of the planet, and the black contours its final orbital radius (in au). The formation of a 
diverse spectrum of planets is possible around the more massive stars, but the seeds placed 
around 0.1- M

! M-dwarfs do not significantly accrete or migrate. Stellar parameters are in solar 
units. 
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Fig. S6. Growth maps for three protoplanetary disc models around a star of mass 0.1 M
!

. 
Model 1 (panel A) has an initial gas accretion rate of 10–9 M

! a
–1 and a final gas accretion rate of 

10–10 M
!

 a–1. Model 2 (panel B) has an initial gas accretion rate of 3×10–7 M
! a

–1 and the same 

final gas accretion rate; this rapid decline of the accretion rate makes for an initially dense and 
compact disc. Finally, model 3 (panel C) has an initial gas accretion rate of 3×10–7 M

! a
–1 and a 

final gas accretion rate of 2×10–9 M
! a

–1, yielding a larger initial disc size compared to model 2. 

The yellow line shows the size of the protoplanetary disc (which expands in time due to 
outwards transport of angular momentum), the red lines mark the Toomre Q parameter for 
gravitational instability in the gas. Model 3 is gravitationally unstable in the gas between 
approximately 20 and 30 au (the initial disc size). The white contours indicate the final planetary 
position and the coloured contours the final planetary mass. Cores never grow above a few Earth 
masses, even in the gravitationally unstable model 3. This is mainly due to the rapid planetary 
migration around low-mass stars. 
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Fig. S7. Growth maps for three protoplanetary disc models around a star of mass 0.1 M
!

, 

including planetesimal accretion. We make the extreme assumption that the protoplanetary 
disc converts 1% of its initial mass at t = 0 to planetesimals, knowingly that this is not a realistic 
assumption for the solar-metallicity star GJ 3512. Planetesimal accretion by the migrating 
protoplanet leads to the formation of gas-giant planets in both models 2 and 3 (panels B and C, 
respectively). However, these giant planets migrate to orbits very close to the host star, becoming 
hot Jupiter-type planets, in contrast to the companions of GJ 3512. 
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Fig. S8. Semi-major axes a and eccentricities of planets in systems after scattering. We 
show the orbital elements of the 124 out of 1000 systems in our dynamical simulation with two 
surviving planets and with the innermost planet having a < 0.6 au and e within 0.1 of the 
observed value. The vertical grey line marks the smallest possible orbit for the outer planet 
according to the radial velocity solution. Black, blue and red lines mark analytical estimates for 
the maximum permissible eccentricity for the outer planet of specified mass guaranteeing the 
long-term stability of two-planet systems (71). The green star symbol marks the orbital 
properties of GJ 3512 b (see Table 1). After ejecting one planet, most of the simulations yield an 
outer planet in a relatively low-eccentricity orbit (e = 0.1–0.3), a semi-major axis within 1–2 au 
and a mass of about 1 MJ. These parameters are compatible with the trend visible in the radial 
velocity observations. 
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