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Non-Markovian Stochastic
Processes∗
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Luis E. C. Rocha‡

Abstract. The Gillespie algorithm provides statistically exact methods for simulating stochastic dy-
namics modeled as interacting sequences of discrete events including systems of biochemical
reactions or earthquake occurrences, networks of queuing processes or spiking neurons, and
epidemic and opinion formation processes on social networks. Empirically, the inter-event
times of various phenomena obey long-tailed distributions. The Gillespie algorithm and its
variants either assume Poisson processes (i.e., exponentially distributed inter-event times),
use particular functions for time courses of the event rate, or work for non-Poissonian
renewal processes, including the case of long-tailed distributions of inter-event times, but
at a high computational cost. In the present study, we propose an innovative Gillespie
algorithm for renewal processes on the basis of the Laplace transform. The algorithm
makes use of the fact that a class of point processes is represented as a mixture of Poisson
processes with different event rates. The method is applicable to multivariate renewal
processes whose survival function of inter-event times is completely monotone. It is an
exact algorithm and works faster than a recently proposed Gillespie algorithm for gen-
eral renewal processes, which is exact only in the limit of infinitely many processes. We
also propose a method to generate sequences of event times with a tunable amount of
positive correlation between inter-event times. We demonstrate our algorithm with exact
simulations of epidemic processes on networks, finding that a realistic amount of positive
correlation in inter-event times only slightly affects the epidemic dynamics.
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1. Introduction. Various complex systems are driven by interactions between
subsystems via time-stamped discrete events. For example, in chemical systems,
a chemical reaction event changes the number of reagents of particular types in a
discrete manner. Stochastic point processes, in particular Poisson processes assuming
that events occur independently and at a constant rate over time, are a central tool for
emulating the dynamics of chemical systems [67]. They are also useful in simulating
epidemic processes in a population [14] and many other systems.
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96 NAOKI MASUDA AND LUIS E. C. ROCHA

Consider an event-driven system in which events are generated by Poisson pro-
cesses running in parallel. In chemical reaction systems, each Poisson process (possibly
with different rates for each process) is attached to one reaction. In epidemic processes
taking place on human or animal contact networks (i.e., graphs), each Poisson process
is assigned to an individual or a link, which may potentially transmit the infection.
The event rate of some of the Poisson processes may change with the occurrence of a
reaction or infection within the entire system. The simplest simulation method is to
discretize time and then judge whether or not an event occurs in each time window,
for individual processes. This widely used method is suboptimal because the size of
the time window must be sufficiently small to obtain high accuracy, which is com-
putationally expensive [70]. The Gillespie algorithm is an efficient and statistically
exact algorithm for multivariate Poisson processes [21, 22, 39]. The Gillespie algo-
rithm, or, in particular, the direct method of Gillespie [21, 22], exploits the fact that
a superposition of independent Poisson processes is a single Poisson process whose
event rate is the sum of those of the constituent Poisson processes. Using this math-
ematical property, only a single Poisson process needs to be emulated in the Gillespie
algorithm.

However, for various real-world systems in which multivariate point processes
have been applied (both with and without network structure), event sequences are
clearly non-Poissonian. In particular, inter-event times typically obey long-tailed dis-
tributions, which are inconsistent with the exponential (i.e., short-tailed) distribution
that Poisson processes produce. Examples of long-tailed distributions of inter-event
times include earthquake occurrences [5, 12], firing of neurons [4, 64], social networks
and the Internet [7, 24, 33, 69], financial transactions [49, 60], and crimes [37, 54].
Therefore, multivariate point processes that are not necessarily Poissonian have been
used in these applications, e.g., triggered seismicity [30, 55], networks of spiking
neurons [56, 66], epidemic processes [33, 50], opinion formation models [16, 65], fi-
nance [10, 17], and criminology [54, 59]. These applications call for numerical methods
to efficiently and accurately simulate interacting and non-Markovian point processes.

A reasonable description of event sequences in these phenomena requires, at the
very least, renewal processes, in which inter-event times are independently generated
from a given distribution [13, 15]. Along these lines, one numerical approach is to use
the modified next reaction method [3], which improves on both the so-called Gillespie’s
first reaction method [21] and the next reaction method [20]. The basic idea behind
these methods is to draw the next event time for all processes from predetermined
distributions, select the process that has generated the minimum waiting time to
the next event, execute the event, and repeat. However, for non-Poissonian renewal
processes, it is generally difficult to numerically solve the equations that determine
the next event time although these methods call for the generation of only half as
many random numbers in comparison to the Gillespie algorithm [70]. In addition, we
can easily halve the number of random variates required in the Gillespie algorithm,
such that the next reaction method and the Gillespie algorithm demand the same
number of random variates (Appendix A). In what follows, we restrict ourselves to
the Gillespie algorithm and its variants.

Motivated by applications to chemical reactions, many extensions of the Gillespie
algorithm in the case of non-Poissonian processes assume that the dynamical change
in the event rate is exogenously driven in particular functional forms [11, 46]. These
extensions are not applicable for general renewal processes, because the event rate of a
constituent process is a function of the time since the last event of the process, which
depends on that process. In other words, we cannot assume a common exogenous
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A GILLESPIE ALGORITHM FOR NON-MARKOVIAN STOCHASTIC PROCESSES 97

driver. Boguñá and colleagues extended the Gillespie algorithm to be applicable for
general renewal processes [9] (also see [70] for further developments). However, the
algorithm has practical limitations. First, it is not accurate when the number of
ongoing renewal processes is small [9]. This can result in a considerable amount of
approximation error in the beginning or final stages of the dynamics of epidemic or
opinion formation models, for example, in which only a small number of processes
is active, even in a large population [70]. Second, it is necessary to recalculate the
instantaneous event rate of each process following the occurrence of every event in
the entire population, a procedure that can be computationally expensive.

In the present study, we propose an innovative Gillespie algorithm, the Laplace
Gillespie algorithm, which is applicable to non-Poissonian renewal processes. It ex-
ploits the mathematical properties of the Laplace transform, is accurate for an arbi-
trary number of ongoing renewal processes, and runs faster than the previous algo-
rithm [9]. This article is organized as follows. In section 2, we review the original
Gillespie algorithm for Poisson processes. In section 3, we review the previous ex-
tension of the Gillespie algorithm to general renewal processes [9]. In section 4, we
introduce the Laplace Gillespie algorithm, together with theoretical underpinnings
and examples. In section 5, we numerically compare the previous algorithm [9] and
the Laplace Gillespie algorithm. In section 6, we introduce a method to generate
event sequences with positive correlation in inter-event times, as is typically observed
in human behavior and natural phenomena [24]. In section 7, we demonstrate our
methods by performing exact simulations of an epidemic process in which inter-event
times follow a power-law distribution. In section 8, we discuss the results, including
limitations of the proposed algorithm. The codes used in our numerical simulations
are available in the Supplementary Materials.

2. Gillespie Algorithm. The original Gillespie algorithm [21, 22, 39] assumes N
independent Poisson processes with a rate of λi (1 ≤ i ≤ N) running in parallel.
Because of the independence of the different Poisson processes, the superposition of
the N processes is a Poisson process with rate

∑N
i=1 λi. Therefore, we first draw Δt,

an increment in time to the next event of the superposed Poisson process, from the
exponential distribution given by

(1) φ(Δt) =

(
N∑
i=1

λi

)
e−(

∑N
i=1 λi)Δt.

Because the survival function (i.e., the probability that a random variable is larger

than a certain value) of φ(Δt) is given by
∫∞
Δt φ(t

′)dt′ = e−(
∑N

i=1 λi)Δt, we obtain

Δt = − logu
/(∑N

i=1 λi
)
, where u is a random variate drawn from the uniform density

on the interval [0, 1]. Then, we determine the process i that has produced the event
with probability

(2) Πi =
λi∑N
i=1 λi

.

Finally, we advance the time by Δt and repeat the procedure. Following the occur-
rence of an event, any λi is permitted to change.

3. Non-Markovian Gillespie Algorithm. Now considerN renewal processes run-
ning in parallel, and denote by ψi(τ) the probability density function of inter-event
times for the ith process (1 ≤ i ≤ N). If the process is Poissonian, we obtain
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98 NAOKI MASUDA AND LUIS E. C. ROCHA

ψi(τ) = λie
−λiτ . For such a population of general renewal processes, Boguñá and

colleagues proposed an extension of the Gillespie algorithm, which they called the
non-Markovian Gillespie algorithm (nMGA) [9].

To begin with, we explain their exact Gillespie algorithm for general renewal
processes, which is the basis of the nMGA. A short derivation of the exact Gillespie
algorithm is given in Appendix B. We denote by ti the time elapsed since the last
event of the ith process, and by

(3) Ψi(ti) =

∫ ∞

ti

ψi(τ
′)dτ ′

the survival function of the ith process (i.e., the probability that the inter-event time
is larger than ti). We also set

(4) Φ(Δt|{tj}) =
N∏
j=1

Ψj(tj +Δt)

Ψj(tj)
,

which is in fact equal to the probability that no process generates an event for time
Δt (see Appendix B). The exact Gillespie algorithm for general renewal processes is
given as follows:

1. Initialize tj (1 ≤ j ≤ N) for all j (for example, tj = 0).
2. Draw the time until the next event, Δt, by solving Φ(Δt|{tj}) = u, where u

is a random variate uniformly distributed over [0, 1].
3. Select the process i that has generated the event with probability

(5) Πi ≡ λi(ti +Δt)∑N
j=1 λj(tj +Δt)

,

where λi(ti+Δt) ≡ ψi(ti+Δt)/Ψi(ti+Δt) is equal to the instantaneous rate
of the ith process.

4. Update the time since the last event, tj , to tj +Δt (j �= i) and set ti = 0.
5. Repeat steps 2–4.

Although this algorithm is statistically exact, step 2 can be time-consuming [9, 70].
To improve performance, Boguñá and colleagues introduced the nMGA. The nMGA
is an approximation to the aforementioned algorithm and is exact as N → ∞. When
Δt is small, as is the case when N is large, (4) is approximated as

Φ(Δt|{tj}) = exp

⎡
⎣− N∑

j=1

ln
Ψj(tj)

Ψj(tj +Δt)

⎤
⎦

=exp

⎡
⎣− N∑

j=1

ln
Ψj(tj)

Ψj(tj)− ψj(tj)Δt+O(Δt2)

⎤
⎦

≈ exp

⎡
⎣−Δt

⎛
⎝ N∑
j=1

λj(tj)

⎞
⎠
⎤
⎦ .(6)

With this approximation, the time until the next event is determined by Φ(Δt|{tj})
≈ exp

[ −Δt
(∑N

j=1 λj(tj)
)]

= u, i.e., Δt = − lnu
/(∑N

j=1 λj(tj)
)
. The process that

generates the event is determined by setting Δt = 0 in (5). For a Poisson process, we
set λi(ti) = λi to recover the original Gillespie algorithm (cf. (1) and (2)).
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A GILLESPIE ALGORITHM FOR NON-MARKOVIAN STOCHASTIC PROCESSES 99

4. Laplace Gillespie Algorithm.

4.1. Algorithm. In the nMGA, we update the instantaneous event rates for all
the processes λj(tj) (1 ≤ j ≤ N) and their sum following the occurrence of each
event. This is because tj (1 ≤ j ≤ N) is updated following an event. This procedure
is time-consuming when N is large; we have to update λj(tj) even if the probability
density of the inter-event times for the jth process is not perturbed by an event that
has occurred elsewhere.

To construct an efficient Gillespie algorithm for non-Markovian point processes,
we start by considering the following renewal process, called the event-modulated
Poisson process. When an event occurs, we first draw the rate of the Poisson process,
denoted by λ, according to a fixed probability density function p(λ). Then, we draw
the time until the next event according to the Poisson process with rate λ. Upon the
occurrence of the next event, we renew the rate λ by redrawing it from p(λ). We then
repeat these steps.

The event-modulated Poisson process is a mixture of Poisson processes of different
rates. It is, in general, a non-Poissonian renewal process and is slightly different from a
mixed Poisson process, in which a single rate is initially drawn from a random ensemble
and used throughout a realization [27, 38]. It is also different from a doubly stochastic
Poisson process (also known as a Cox process), in which the rate of the Poisson process
is a stochastic process [27, 38, 40], or its subclass called the Markov-modulated Poisson
process, in which the event rate switches in time according to a Markov process [18].
In these processes, the dynamics of the event rate are independent of the occurrence
of events. In contrast, for event-modulated Poisson processes, the event rate changes
upon the occurrence of events.

An event-modulated Poisson process is a Poisson process when conditioned on
the current value of λ. Therefore, when we simulate N event-modulated Poisson
processes, they are independent of each other and of the past event sequences if we
are given the instantaneous rate of the ith process, denoted by λi for all i (1 ≤ i ≤
N). This property enables us to construct a Gillespie algorithm. By engineering
p(λ), we can emulate a range of renewal processes with different distributions of
inter-event times. The new Gillespie algorithm, which we call the Laplace Gillespie
algorithm (the reason for this name will be made clear in section 4.2, where we
discuss the algorithm’s theoretical basis in the Laplace transform), is defined as the
Gillespie algorithm for event-modulated Poisson processes. We denote the density of
the event rate for the ith process by pi(λi). The Laplace Gillespie algorithm proceeds
as follows:

1. Initialize each of theN processes by drawing the rate λi (1 ≤ i ≤ N) according
to its density function pi(λi).

2. Draw the time until the next event Δt = − lnu/
∑N
j=1 λj , where u is a random

variate uniformly distributed over [0, 1].

3. Select the process i that has generated the event with probability λi/
∑N
j=1 λj .

4. Draw a new rate λi according to pi(λi). If there are processes j (1 ≤ j ≤
N) for which the statistics of inter-event times have changed following the
occurrence of the event generated in steps 2 and 3 (e.g., a decrease in the
rate of being infected owing to the recovery of an infected neighbor), modify
pj(λj) accordingly and draw a new rate λj from the modified pj(λj). The
event rates of the remaining processes remain unchanged.

5. Repeat steps 2–4.

© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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100 NAOKI MASUDA AND LUIS E. C. ROCHA

4.2. Theory. An event-modulated Poisson process is a renewal process. The
renewal process is fully characterized by the probability density of inter-event times,
ψ(τ). For an event-modulated Poisson process with probability density of the event
rate p(λ), we obtain

(7) ψ(τ) =

∫ ∞

0

p(λ)λe−λτdλ.

Integration of both sides of (7) yields the survival function of the inter-event times as
follows:

(8) Ψ(τ) =

∫ ∞

τ

ψ(τ ′)dτ ′ =
∫ ∞

0

p(λ)e−λτdλ.

Equation (8) indicates that Ψ(τ) is the Laplace transform of p(λ). Therefore, the
necessary and sufficient condition for a renewal process to be simulated by the Laplace
Gillespie algorithm is that Ψ(τ) is the Laplace transform of a probability density
function of a random variable taking nonnegative values. Although this statement can
be made more rigorous if we replace p(λ)dλ by the probability distribution function,
we will use the probability density representation for simplicity.

A necessary and sufficient condition for the existence of p(λ) is that Ψ(τ) is
completely monotone and Ψ(0) = 1 [15]. The complete monotonicity is defined by

(9) (−1)n
dnΨ(τ)

dτn
≥ 0 (τ ≥ 0, n = 0, 1, . . .).

Condition Ψ(0) = 1 is satisfied by any survival function. With n = 0, (9) reads
Ψ(τ) ≥ 0, which all survival functions satisfy. With n = 1, (9) reads ψ(τ) ≥ 0, which
is also always satisfied. However, (9) with n ≥ 2 imposes nontrivial conditions.

4.3. Examples. In this section, we give examples of distributions of inter-event
times ψ(τ) for which the Laplace Gillespie algorithm can be used. These examples
are summarized in Table 1.

Exponential Distribution. A Poisson process with rate λ0, i.e., ψ(τ) = λ0e
−λ0τ ,

is trivially generated by p(λ) = δ(λ− λ0), where δ is the delta function.

Power-Law Distribution Derived from a Gamma Distribution of λ. Consider
the case in which p(λ) is the gamma distribution given by

(10) p(λ) =
λα−1e−λ/κ

Γ(α)κα
,

where Γ(α) is the gamma function, α is the shape parameter, and κ is the scale
parameter. By combining (8) and (10), we obtain

(11) Ψ(τ) =
1

(1 + κτ)α
.

The probability density of inter-event times is given by the following power-law dis-
tribution:

(12) ψ(τ) =
κα

(1 + κτ)α+1
.
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A GILLESPIE ALGORITHM FOR NON-MARKOVIAN STOCHASTIC PROCESSES 101

Table 1 Distributions of inter-event times, ψ(τ), for which the Laplace Gillespie algorithm can be
used. H is the Heaviside function defined by H(x) = 1 (x ≥ 0) and H(x) = 0 (x < 0).

Distribution ψ(τ) Ψ(τ) Condition p(λ)(λ ≥ 0)

Exponential λ0e−λ0τ e−λ0τ δ(λ − λ0)

Power law λα−1e−λ/κ

Γ(α)κα
κ

(1+κτ)α+1
1

(1+κτ)α

Power law with e−λ0τ

(1+κτ)α

(
λ0 + κα

1+κτ

)
e−λ0τ

(1+κτ)α
(λ−λ0)

α−1e
−λ−λ0

κ H(λ−λ0)
Γ(α)exponential tail

Power law (with ∝ e−λminτ

τ
or ∝ 1

τ2
e−λminτ−e−λmaxτ

τ(λmax−λmin)
λmin � λmax uniform on [λmin, λmax]

exponential tail)

Power law α+1
τα+2 γ(α+ 2, τ) α+1

τα+1 γ(α + 1, τ) α > −1 (α + 1)λα

Weibull αματα−1e−(μτ)α e−(μτ)α 0 < α ≤ 1 complicated

Gamma τα−1e−τ/κ

Γ(α)κα complicated 0 < α ≤ 1 H(λ−κ−1)
Γ(α)Γ(1−α)λ(κλ−1)α

Mittag–Leffler ≈ β sin(βπ)Γ(β)

πτβ+1 Eβ(−τβ) 0 < β < 1 1
π

λβ−1 sin(βπ)

λ2β+2λβ cos(βπ)+1

When α = 1, p(λ) is the exponential distribution and ψ(τ) ∝ τ−2 [31]. The same
mathematical relationship connecting the gamma distribution and a power-law distri-
bution has been used in superstatistics in statistical mechanics [8] and in a reinforce-
ment learning model for generating discount rates that decay with time according to
a power law [43].

Power-Law Distribution with an Exponential Tail Derived from a Gamma
Distribution of λ. Consider a shifted gamma distribution [27] given by

(13) p(λ) =

{
(λ−λ0)

α−1e−(λ−λ0)/κ

Γ(α) (λ ≥ λ0),

0 (0 < λ < λ0),

where λ0 is a constant. By combining (8) and (13), we obtain

(14) Ψ(τ) =
e−λ0τ

(1 + κτ)α
.

By differentiating (14), we obtain a power-law distribution with an exponential tail
given by

(15) ψ(τ) =
e−λ0τ

(1 + κτ)α

(
λ0 +

κα

1 + κτ

)
.

Power-Law Distribution Derived from a Uniform Distribution of λ. Assume
that p(λ) is a uniform density on [λmin, λmax] [31]. We obtain

(16) Ψ(τ) =
e−λminτ − e−λmaxτ

τ (λmax − λmin)

and

(17) ψ(τ) =
λmine

−λminτ − λmaxe
−λmaxτ

(λmax − λmin) τ
+
e−λminτ − e−λmaxτ

(λmax − λmin) τ2
.

© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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102 NAOKI MASUDA AND LUIS E. C. ROCHA

Now suppose that λmin 
 λmax. If λmin > 0, we obtain ψ(τ) ∝ e−λminτ/τ as
τ → ∞, a power-law distribution with an exponential cutoff. If λmin = 0, we obtain
ψ(τ) ∝ 1/τ2 as τ → ∞.

Power-Law Distribution Derived from a Power-Law Distribution of λ. Con-
sider the distribution

(18) p(λ) = (α+ 1)λα,

where α > −1 and 0 ≤ λ ≤ 1 [31]. We obtain

(19) Ψ(τ) =
α+ 1

τα+1
γ(α+ 1, τ),

where γ(α+ 1, τ) =
∫ τ
0
xαe−xdx is the incomplete gamma function, and

(20) ψ(τ) =
α+ 1

τα+2
γ(α+ 2, τ).

As τ → ∞, we obtain ψ(τ) ≈ (α+ 1)Γ(α+ 2)/τα+2.

Weibull Distribution. The Weibull distribution is defined by

(21) Ψ(τ) = e−(μτ)α ,

which yields

(22) ψ(τ) = αματα−1e−(μτ)α .

The Weibull distribution with α = 1 is an exponential distribution. The Weibull
distribution has a longer and shorter tail than the exponential distribution when α < 1
and α > 1, respectively. The Weibull distribution can be expressed as the Laplace
transform of a p(λ) if and only if 0 < α ≤ 1 [35, 75]. The distribution when α = 1/2
is the so-called stable distribution of order 1/2, for which we obtain [15, 27, 35]

(23) p(λ) =
m

1
2 e−

m
4λ

2
√
πλ

3
2

.

For other values of α (i.e., 0 < α < 1/2 or 1/2 < α < 1), the explicit form of p(λ)
is complicated [35] such that the use of the Laplace Gillespie algorithm is impractical.
For these α values, a mixture of a small number of exponential distributions may
resemble the Weibull distribution [36], such that we may be able to use p(λ) with
point masses at some discrete values of λ to approximate the Weibull distribution of
inter-event times.

Gamma Distribution. When inter-event times obey the gamma distribution, i.e.,

(24) ψ(τ) =
τα−1e−τ/κ

Γ(α)κα
,

Ψ(τ) can be expressed as the Laplace transform of a probability density function p(λ)
if and only if 0 < α ≤ 1 [23, 74]. We obtain [23]

(25) p(λ) =

{
0 (0 < λ < κ−1),

1
Γ(α)Γ(1−α)λ(κλ−1)α (λ ≥ κ−1).
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A GILLESPIE ALGORITHM FOR NON-MARKOVIAN STOCHASTIC PROCESSES 103

Mittag–Leffler Distribution. Consider the distribution of inter-event times de-
fined in terms of the survival function given by

(26) Ψ(τ) = Eβ(−τβ),

where

(27) Eβ(z) =

∞∑
n=0

zn

Γ(1 + βn)

is the so-called Mittag–Leffler function. When 0 < β < 1, Ψ(τ) is completely mono-
tone, and we obtain [25, 26]

(28) p(λ) =
1

π

λβ−1 sin(βπ)

λ2β + 2λβ cos(βπ) + 1
.

When β = 1, (26) and (27) imply that Ψ(τ) = e−λτ , yielding a Poisson process. When
0 < β < 1, Ψ(τ) is long-tailed with the asymptotics [19, 26]

(29) Ψ(τ) ≈ sin(βπ)Γ(β)

πτβ
,

or, equivalently,

(30) ψ(τ) ≈ β sin(βπ)Γ(β)

πτβ+1
.

Therefore, this class of ψ(τ) produces long-tailed distributions of inter-event times
with a power-law exponent lying between one and two. A special case occurs when

β = 1/2, in which case Ψ(τ) = e−τ
2β [

1− erf(τβ)
]
, where erf(z) ≡ (2/

√
π)
∫ z
0 e

−z′2dz′

is the error function.

Integral of a Valid Survival Function. The function given by

(31) Ψw(τ) ≡
∫∞
τ

Ψ(τ ′)dτ ′∫∞
0

Ψ(τ ′)dτ ′
=

∫∞
τ

Ψ(τ ′)dτ ′

〈τ〉ψ
is well-defined if and only if 〈τ〉ψ , i.e., the mean inter-event time with respect to
density ψ(τ) is finite. Assume that the renewal process generated by ψ(τ) permits
use of the Laplace Gillespie algorithm. Because Ψw(τ) ≥ 0 (τ ≥ 0), dnΨw(τ)/dτn =
− [dn−1Ψ(τ)/dτn−1

]
/
∫∞
0

Ψ(τ ′)dτ ′ (n = 1, 2, . . .), and Ψ(τ) is completely monotone,
it follows that Ψw(τ) is completely monotone. In addition, (31) implies that Ψw(0) =
1. Therefore, the renewal process with survival function Ψw(τ) can also be simulated
by the Laplace Gillespie algorithm.

The corresponding probability density of inter-event times is given by

(32) ψw(τ) = −dΨw(τ)

dτ
=

Ψ(τ)

〈τ〉ψ .

In terms of p(λ), we obtain

(33) ψw(τ) =

∫∞
0
p(λ)e−λτdλ∫∞

0
p(λ′)
λ′ dλ′
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104 NAOKI MASUDA AND LUIS E. C. ROCHA

and

(34) Ψw(τ) =

∫∞
0

p(λ)
λ e−λτdλ∫∞

0
p(λ′)
λ′ dλ′

.

Therefore, in each update of the Laplace Gillespie algorithm with the density of inter-
event times given by ψw(τ), the rate of the Poisson process λ should be sampled
according to density pw(λ), where

(35) pw(λ) =
p(λ)
λ∫∞

0
p(λ′)
λ′ dλ′

.

For example, if ψ(τ) is an exponential distribution, then ψw(τ) is an exponential
distribution of the same mean. If ψ(τ) is the power-law distribution given by (12),
then ψw(τ) is a power-law distribution of the same form, with α replaced by α− 1.

Product of Valid Survival Functions. The product of two completely monotone
functions, Ψ1(τ) and Ψ2(τ), is completely monotone [15]. In addition, Ψ1(0)Ψ2(0) = 1
if Ψ1(0) = Ψ2(0) = 1. Therefore, the survival function Ψ(τ) ≡ Ψ1(τ)Ψ2(τ) admits
use of the Laplace Gillespie algorithm if Ψ1(τ) and Ψ2(τ) do as well. The probability
density of the event rate will be the convolution of p1(λ) and p2(λ), where Ψi(τ) =∫∞
0 pi(λ)e

−λτdλ (i = 1, 2).

Numerical Laplace Transform. Given an arbitrary p(λ), we can in principle
carry out a numerical Laplace transform to derive Ψ(τ). We then obtain a valid ψ(τ)
by numerically differentiating Ψ(τ).

4.4. Empirical Distributions of Inter-Event Times. We are often interested in
informing multivariate point processes by empirical data of event sequences. A stan-
dard numerical approach is to emulate the dynamics (e.g., epidemic processes) on top
of empirical event sequences, i.e., use empirically observed events with time stamps
to induce, for example, infection events [33, 50]. There exists a Gillespie algorithm
to run dynamical processes on such empirical temporal networks [70]. Another ap-
proach is to estimate ψ(τ) from empirical data and then use a variant of the Gillespie
algorithm (e.g., the nMGA or the Laplace Gillespie algorithm) to simulate stochastic
point processes (e.g., epidemic processes).

The Laplace Gillespie algorithm requires the survival function, Ψ(τ), to be com-
pletely monotone. Under this condition, we may be able to compute the inverse
Laplace transform to obtain p(λ) at a reasonable computational cost [2]. However,
because it is likely that an empirical Ψ(τ) is not completely monotone, we propose
two alternative methods to estimate p(λ) from empirical data. The first method is to
fit a completely monotone survival function of inter-event times, such as (11), to given
data. The second method is to estimate a finite mixture of exponential distributions
of different means to approximate the empirical ψ(τ) or Ψ(τ). Likelihood or other
cost-function methods are available for performing this estimation [29, 35, 36, 42, 58].
If the empirical Ψ(τ) is completely monotone, the approximation error is guaranteed
to decay inversely proportional to the number of constituent distributions [44]. For
both of these methods, we should be mindful of the bias in the estimation caused by
a finite time window of observation [41].

4.5. Initial Conditions. When we begin to run N processes, one approach is to
initially draw the inter-event time for each process from ψ(τ). This initial condition
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A GILLESPIE ALGORITHM FOR NON-MARKOVIAN STOCHASTIC PROCESSES 105

defines the so-called ordinary renewal process [13]. An alternative model, called the
equilibrium renewal process, assumes that the process has begun at time t = −∞, such
that the first inter-event time for each process, drawn at t = 0, uses the equilibrium
distribution of waiting times to the next event, rather than ψ(τ) (i.e., the distribution
of inter-event times) [13]. In fact, the equilibrium distribution of waiting times to the
next event coincides with ψw(τ) given by (32) [13, 15, 51]. To simulate the equilibrium
renewal process, we start by drawing the rates of the Poisson processes according to
pw(λ) given by (35). Afterwards, we draw the event rates according to p(λ).

5. Numerical Performance. In this section, we compare the performances of
the nMGA and the Laplace Gillespie algorithm. We use the power-law distribution
of inter-event times given by (12). Because κ only controls the scale of inter-event
times, we set κ = 1 without loss of generality. To generate gamma-distributed random
variates, we use a well-known algorithm [48] and adapt an open source code [1] for our
purposes. We generate �N/3� processes by (12) with α = 1, another �N/3� processes
with α = 1.5, and another N − 2�N/3� ≈ N/3 processes with α = 2. We continue the
simulation until one of the N processes generates 106 inter-event times. We employ
the ordinary renewal process such that the initial inter-event time for each process is
drawn from ψ(τ).

The survival functions for one of the processes with α = 1, one of those with
α = 1.5, and one of those with α = 2 are shown by the solid curves for the nMGA and
the Laplace Gillespie algorithm in Figures 1(a) and 1(b), respectively, for N = 10.
The theoretical survival function (11) is plotted with the dashed curves. The results
obtained from the Laplace Gillespie algorithm (Figure 1(b)) are more accurate than
those obtained from the nMGA. This is because the nMGA is exact only in the limit of
N → ∞, whereas the Laplace Gillespie algorithm is exact for any N . When N = 103,
the nMGA is sufficiently accurate (Figure 1(c)), as is the Laplace Gillespie algorithm
(Figure 1(d)). The results shown in Figures 1(a) and 1(c) are consistent with the
numerical results obtained in [9].

The nMGA may require a lot of time in updating the instantaneous event rates
for all processes every time an event occurs in one of the N processes. The Laplace
Gillespie algorithm avoids this rate recalculation, whereas it might be costly to cal-
culate the gamma variates each time an event occurs. We compare numerically the
computation times for the two algorithms by varying N . The other parameters re-
main the same as those used in Figures 1(a)–(d). For the Laplace Gillespie algorithm,
we use a binary tree data structure to store and update λi (1 ≤ i ≤ N) to accelerate
the selection of the i value with probability Πi upon the occurrence of each event [20].
In short, each λi occupies a leaf of the tree, and each non-leaf node stores the sum
of its left child and its right child. This data structure is useful when only a small
number of λi are changed following the occurrence of each event [20]. This is not the
case for the nMGA, for which all the N instantaneous event rates must be updated
upon each event. Therefore, for the nMGA, we use a simple linear search, which is
computationally less expensive than updating a binary tree every time an event oc-
curs. We use codes written in C++, compiled with a standard g++ compiler without
an optimization option on a Mac Book Air with 1.7 GHz Intel Core i7 processor and
8GB 1600 MHz DDR3 RAM. The computation time in seconds plotted as a function
of N in Figure 1(e) indicates that the Laplace Gillespie algorithm runs substantially
faster than the nMGA as N increases.

Both the nMGA and the Laplace Gillespie algorithm require two uniformly dis-
tributed random variates per event, as does the standard Gillespie algorithm. In
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Fig. 1 Comparison between the nMGA and the Laplace Gillespie algorithm. The distribution of
inter-event times is power law (12) with κ = 1. Among the N processes, �N/3� processes
are simulated with α = 1, another �N/3� processes with α = 1.5, and another N − 2�N/3� ≈
N/3 processes with α = 2. (a)–(d) Survival function of inter-event times for one process with
α = 1, another with α = 1.5, and another with α = 2, from the top to the bottom. (a) nMGA
when N = 10. (b) Laplace Gillespie algorithm when N = 10. (c) nMGA when N = 103.
(d) Laplace Gillespie algorithm when N = 103. (e) Computation time as a function of the
number of processes, N .

addition, for each generated event, the nMGA demands O(N) time to search for the
process to fire and update the instantaneous event rates for all processes. In contrast,
the Laplace Gillespie algorithm demands O(k logN) time per event on average, where
k is the typical number of processes that are affected by the firing of the ith process.
The search for what process to fire requires O(logN) time, given the binary tree data
structure [20]. The updating of λj due to the event of the ith process requires O(k)
time, including the generation of k gamma-distributed random variates. The updat-
ing of the binary tree requires O(k logN) time because it consumes O(logN) time
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A GILLESPIE ALGORITHM FOR NON-MARKOVIAN STOCHASTIC PROCESSES 107

for each updated λj . Because k is usually much smaller than N in practice [20, 33],
the Laplace Gillespie algorithm is expected to run faster than the nMGA, which is
consistent with the numerical results shown in Figure 1(e).

Additionally, the Laplace Gillespie algorithm outperforms the nMGA in the sense
that the Laplace Gillespie algorithm is exact for any N , whereas the nMGA is not.
On the other hand, for the Laplace Gillespie algorithm, the form of ψ(τ) is limited,
whereas the nMGA allows for any ψ(τ) to be used.

6. Positively Correlated Sequences of Inter-Event Times. We have considered
renewal processes, i.e., stationary point processes without correlation between inter-
event times. However, inter-event times are positively correlated for human activity
and earthquakes [24, 52]. The Laplace Gillespie algorithm provides a method for gen-
erating point processes with positive correlation, without changing ψ(τ). To generate
such event sequences, we redraw a new event rate for the Poisson process, λi, with
probability 1 − q (0 ≤ q < 1), when the ith process has generated an event. With
probability q, we continue to use the same value of λi until the ith process gener-
ates another event. We call this algorithm the correlated Laplace Gillespie algorithm.
The standard Laplace Gillespie algorithm is recovered when q = 0. The correlation
between inter-event times grows as q increases. Although the same λi value may be
used for generating consecutive inter-event times, the corresponding inter-event times
are different because they are generated from a Poisson process. The computation
time for the correlated Laplace Gillespie algorithm decreases as q increases because
the number of times that λi is redrawn is proportional to 1− q.

In a continuous-time Markov process with a state-dependent hopping rate, the
inter-event time defined as the time between two consecutive hops, regardless of the
state, is generally correlated across inter-event times [63]. The correlated Laplace
Gillespie algorithm can be interpreted as a special case of this scenario such that the
state is continuous, the process hops back to the current state with probability q,
and it hops to any other state with probability proportional to (1 − q) × p(λ). The
correlated Laplace Gillespie algorithm can be alternatively built on top of a finite-
state [63] or an infinite-state [42] Markov process with a general transition probability
between states. This variant of the correlated Laplace Gillespie algorithm is similar to
a two-state cascading Poisson process in which the two states correspond to different
event rates [47].

Two remarks are now in order. First, ψ(τ) is independent of the q value. This is
because the stationary density of the corresponding continuous-time Markov process
in the λ-space is equal to p(λ), irrespective of the q value. Of course, the distribution of
τ conditioned on the previous inter-event time, τ ′, is different from ψ(τ) and depends
on τ ′ in general. Second, the correlated Laplace Gillespie algorithm cannot be used
to generate correlated event sequences when ψ(τ) is the exponential distribution. In
this case, the event rate λ must be kept constant over time and therefore cannot be
modulated in a temporally correlated manner.

We measure the so-called memory coefficient [24] to quantify the amount of corre-
lation in a sequence of inter-event times generated by the correlated Laplace Gillespie
algorithm. The memory coefficient for a sequence of inter-event times, {τ1, τ2, . . . , τn},
where n is the number of inter-event times, is defined by

(36) M =

∑n−1
i=1 (τi −m1)(τi+1 −m2)√∑n−1

i=1 (τi −m1)2
∑n
i=2(τi+1 −m2)2

,

where m1 =
∑n−1

i=1 τi/(n− 1) and m2 =
∑n

i=2 τi/(n− 1).
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Fig. 2 Memory coefficient, M , for the correlated Laplace Gillespie algorithm. We used the power-
law distribution of inter-event times given by (12) with κ = 1. (a) α = 1. (b) α = 2. The
error bar represents the mean ± standard deviation. (c) Survival function of a single event
sequence (i.e., N = 1) with 106 events with α = 1 and q = 0.1, 0.5, and 0.9. (d) Similar to
(c) with α = 2.

For the power-law distribution of inter-event times given by (12) with κ = 1,
we generate a sequence of n = 105 inter-event times and calculate M . The mean
and standard deviation of M , calculated on the basis of 103 sequences, are plotted
for α = 1 and α = 2 in Figures 2(a) and 2(b), respectively. For both α values,
M monotonically increases with q and a range of M values between 0 and ≈ 0.4
is produced. In empirical data, M lies between 0 and 0.1 for human activity and
between 0.1 and 0.25 for natural phenomena [24]. These ranges of M are produced
using approximately 0 ≤ q ≤ 0.2 and 0.2 ≤ q ≤ 0.5, respectively.

7. Epidemic Processes. Previous numerical efforts suggested that the dynamics
of epidemic processes in well-mixed populations or networks were altered if contact
events were generated by non-Poissonian renewal processes [34, 53, 61, 68]. The
nMGA and the Laplace Gillespie algorithm can be used for implementing such models
of epidemic processes. To demonstrate the use of the Laplace Gillespie algorithm, we
simulate a node-centric susceptible-infected-recovered (SIR) epidemic process model,
which is similar to previous models [57, 61, 62].

Consider a static network composed of N nodes. At any point in time, each
node assumes one of the three states: susceptible, infected, or recovered. An infected
node i transmits the disease to a susceptible node j upon the activation of link (i, j).
To activate links, we initially assign to each node i (1 ≤ i ≤ N) an independent and
identical point process whose probability density of inter-event times is given by ψ(τ).
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Fig. 3 Final outbreak size for the SIR epidemic model. (a) Well-mixed population. (b) Regular
random graph with degree of each node equal to five. We set N = 104. For the power-law
density of inter-event times, we use (12) with κ = 1 and α = 1.5.

When an event occurs at node i, we select a neighbor of i, denoted by j, with the
equal probability and activate link (i, j). If either i or j is infected and the other is
susceptible, the disease is transmitted such that the susceptible node becomes infected.
An infected node transits to the recovered state according to a Poisson process of rate
μ. A recovered node neither infects nor is infected by other nodes.

The mean time to node activation, which enables infection, is given by 〈τ〉 =∫∞
0 τψ(τ)dτ . The mean time for an infected node to recover is equal to 1/μ. We
define the effective infection rate by λeff = (1/μ)/〈τ〉 [9]. We control λeff by changing
μ for a given ψ(τ). This definition is justified because multiplying 〈τ〉 and 1/μ by the
same factor only changes the time scale of the dynamics.

We assume an equilibrium point process, i.e., we start simulations from the equi-
librium state. This is equivalent to drawing the first event time for each node from
the waiting-time distribution, ψw(τ), rather than from ψ(τ), and drawing subsequent
event times from ψ(τ). The population structure is assumed to be either well mixed
(i.e., complete graph) or the regular random graph in which all nodes have degree five
and all links are randomly formed. In both cases, we set N = 104. Each simulation
starts from the same initial condition, in which a particular node, which is the same in
all simulations, is infected and all the other N − 1 nodes are susceptible. We measure
the number of recovered nodes at the end of the simulation normalized by N , called
the final size, averaged over 104 simulations. We consider four renewal processes for
node activation: the exponential distribution, corresponding to a Poisson process, and
three power-law distributions given by (12) with α = 1.5, κ = 1, and q = 0, 0.2, and
0.9.

The final size for the well-mixed population and the regular random graph is
shown in Figures 3(a) and 3(b), respectively. For both population structures, and
across the entire range of the effective infection rate, λeff , the final size is larger
when ψ(τ) is the power-law distribution than when it is the exponential distribution.
Consistent with this result, the epidemic threshold, i.e., the value of λeff at which the
final size becomes positive, is smaller for the power-law distribution ψ(τ) than for the
exponential distribution ψ(τ).

The final size is larger with positive correlation of inter-event times (q = 0.9)
than with no correlation (q = 0). Results for q = 0.2 are almost identical to those for
q = 0. Because realistic values of the memory coefficient, M , for human activity are
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110 NAOKI MASUDA AND LUIS E. C. ROCHA

produced by 0 ≤ q ≤ 0.2 (section 6), we conclude that a realistic amount of positive
correlation in inter-event times does not affect the final size.

8. Discussion. We have provided a generalization of the Gillespie algorithm for
non-Poissonian renewal processes, which we call the Laplace Gillespie algorithm. Our
algorithm is exact for any number of processes running in parallel and is faster than
the nMGA [9]. Although it is only applicable to renewal processes whose survival
function is completely monotone, it applies to several renewal processes of interest.
We have also proposed a method to simulate nonrenewal point processes with tunable
positive correlation between inter-event times.

Previous studies numerically explored Poissonian explanations of long-tailed dis-
tributions of inter-event times. Examples include a nonhomogeneous Poisson process
whose event rate switches between two values and is also periodically modulated [47].
Another example is a self-exciting Hawkes process with an exponential memory ker-
nel [52]. We have shown that a power-law distribution of inter-event times (12) is
generated when the rate of an event-modulated Poisson process is drawn from the
gamma distribution upon the occurrence of every event. This observation provides
a theoretical underpinning of the fact that nonhomogeneous Poisson processes and
Hawkes processes can generate long-tailed distributions of inter-event times. In other
words, switching between different rates is a general mechanism to produce long-tailed
distributions of inter-event times. Although the present results indicate that, in the-
ory, we require a mixture of an infinite number of Poisson processes of different rates
to produce a power-law distribution, in practice a small number of Poisson processes
may be sufficient. In fact, a mixture of a small number of exponential distributions is
sometimes employed to fit empirical distributions of inter-event times [29, 35, 36, 58].

We have applied the Laplace Gillespie algorithm to an epidemic model in well-
mixed and networked populations. The applicability of the Laplace Gillespie algo-
rithm, as well as of the modified next reaction method [3] and of the nMGA, extends
far beyond epidemic modeling. In fact, these algorithms can simulate systems of
earthquakes, spiking neurons, financial time series, crimes, and so on (see section 1 for
references). In particular, empirical data corresponding to these applications suggest
long-tailed distributions of inter-event times (section 1), thus yielding a CV (coeffi-
cient of variation, i.e., the standard deviation divided by the mean) larger than unity,
and therefore not excluding the use of the Laplace Gillespie algorithm. It is also
straightforward to include births and deaths of nodes [6, 61] and links [32] of contact
networks, or rewiring of links [28, 71], as long as these events obey renewal processes
or nonrenewal point processes with positive correlation, as emulated by the correlated
Laplace Gillespie algorithm.

The Laplace Gillespie algorithm can be employed if and only if the survival func-
tion of inter-event times is completely monotone. Some convenient conditions for and
examples of survival functions that are not completely monotone are as follows:

(i) Nonmonotonicity. By setting n = 2 in (9), we obtain dψ(τ)/dτ ≤ 0. Therefore,
ψ(τ) must monotonically decrease with τ for the Laplace Gillespie algorithm to be
applicable. This condition excludes the gamma and Weibull distributions with shape
parameter α > 1, any log-normal distribution, and any Pareto distribution, i.e.,

(37) ψ(τ) =

{
α
τ0

(
τ0
τ

)α+1
(τ ≥ τ0),

0 (τ < τ0),

where α > 0 and τ0 > 0.

© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

06
/0

6/
18

 to
 1

37
.2

22
.1

90
.9

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



A GILLESPIE ALGORITHM FOR NON-MARKOVIAN STOCHASTIC PROCESSES 111

(ii) CV is smaller than unity. Complete monotonicity implies that the CV of τ
is larger than or equal to unity [75]. This condition again excludes the gamma and
Weibull distributions with α > 1. In practice, a CV value less than unity indicates that
events occur more regularly than in a Poisson process, which would yield CV = 1.
Therefore, renewal processes producing relatively periodic event sequences are also
excluded.

In epidemiology, evidence suggests that empirical recovery times are less dispersed
than the exponential distribution, implying a CV value less than unity. Therefore,
a gamma distribution with scale parameter α > 1 or even a delta distribution is
often alternatively employed [45, 72]. These distributions cannot be simulated by our
algorithm.

(iii) Higher-order conditions. Even when dψ(τ)/dτ ≤ 0 and the CV is large, Ψ(τ)
may not be completely monotone. For example, the one-sided Cauchy distribution
defined by ψ(τ) = 1/

[
π(τ2 + 1)

]
yields d2ψ(τ)/dτ2 = 2(3τ2−1)/

[
π(τ2 + 1)3

]
, whose

sign depends on the value of τ .
Empirical evidence of online correspondences of humans suggests that, except for

very small τ values, τ obeys a power-law distribution for small τ and an exponential
distribution for large τ [73]. Such a ψ(τ) monotonically decreases with τ , verifying
that dψ(τ)/dτ ≤ 0. However, the sign of d2ψ(τ)/dτ2 depends on the τ value, such
that the corresponding survival function is not completely monotone.

Appendix A. Halving the Number of Random Variates Used in the Gillespie
Algorithm. Each step of the Gillespie algorithm usually requires two random variates,
u1 and u2, uniformly distributed on [0, 1], one to draw the time increment via Δt =

− logu1
/(∑N

i=1 λi
)
and the other to select the process i that fires on the basis of

(2). To eliminate one random variate, we first select i using random variate u2.
Independently of whether we use a binary or a linear search, we end up identifying
the unique i value that satisfies

∑i−1
j=1 Πj ≤ u2 <

∑i
j=1 Πj . Once i is determined, we

set u1 ≡ (u2−∑i−1
j=1 Πj

)
/Πi, which is in fact uniformly distributed on [0, 1]. Therefore,

we do not have to draw u1 using a random number generator. This mathematical
trick is similar to the one employed in the next reaction methods [3, 20].

Appendix B. Derivation of the Exact Gillespie Algorithm for General Re-
newal Processes. ConsiderN renewal processes running in parallel. If the ith process
is running in isolation, the waiting time τ until the next event is distributed according
to

(38) ψw
i (τ |ti) =

ψi(ti + τ)

Ψi(ti)
,

where Ψi(ti) is the survival function of the ith process given by (3).
In fact, the ith process coexists with the other N − 1 processes. We denote by

φ(Δt, i|{tj}) the probability density with which the ith process, but not the other
N − 1 processes, generates the next event in the set of N processes after time Δt,
given the time since the previous event for each process, {tj}, i.e., t1, . . . , tN . We
obtain

(39) φ(Δt, i|{tj}) = ψw
i (Δt|ti)

N∏
j=1;j �=i

Ψj(Δt|tj),
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where

(40) Ψj(Δt|tj) =
∫ ∞

Δt

ψw
j (τ

′|tj)dτ ′ = Ψj(tj +Δt)

Ψj(tj)

is the probability that the time until the next event for the hypothetically isolated
jth process is larger than Δt, conditioned on the assumption that the last event has
occurred time tj before. Using (38) and (40), we rewrite (39) as

(41) φ(Δt, i|{tj}) = ψi(ti +Δt)

Ψi(ti +Δt)
Φ(Δt|{tj}),

where Φ(Δt|{tj}) is given by (4).
Equation (4) represents the probability that no process generates an event for

time Δt. By equating this quantity to u, a random variate over the unit interval,
we can determine Δt, i.e., the time until the next event in the entire population
of the N renewal processes. Equation (41) implies that, once Δt is determined,
λi(ti +Δt) = ψi(ti+Δt)/Ψi(ti +Δt) is the instantaneous rate of the ith process and
is proportional to the probability that the ith process generates this event. Therefore,
the exact Gillespie algorithm for general renewal processes is produced as given in
section 3.
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