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Research on the forecasting of marine traffic flows can provide a basis for port planning, planning the water area layout, and ship
navigation management and provides a practical background for sustainable development evaluation of shipping. Most of the
traditional marine traffic volume forecasting studies focus on the variation of the traffic volume of a single port or section in time
dimension and less research on traffic correlation of associated ports in shipping networks. To reveal the spatial-temporal
autocorrelation characteristics of the shipping network and to establish a suitable space-time forecasting model for marine traffic
volume, this paper uses the AIS data from 2011 to 2016 for the South China Sea to construct a regional shipping network. /e
adjacent discrimination rule based on network correlation is proposed, and the traffic demand between ports is estimated based on
the gravity model. On this basis, STARMA (space-time autoregressive moving average) model was introduced for deducing the
interaction between he traffic volumes of adjacent ports in shipping network. /e experimental results show that (1) there is a
significant positive correlation between time and space in the South China Sea shipping network, and this spatial-temporal
correlation has the characteristics of time dynamics and spatial heterogeneity; (2) the forecasting accuracy of the marine traffic
volume based on the spatial-temporal model is better than the traditional time-series-based forecasting model, and the spatial-
temporal model can better portray the spatial-temporal autocorrelation of maritime traffic.

1. Introduction

With the deepening of economic globalization, marine
transportation as an important pillar of international trade
has developed greatly [1]. At the same time, with the ad-
vancement of science and technology and the market demand
continuously being upgraded, the marine traffic is becoming
increasingly busy, and the contradiction between busy marine
traffic and navigation safety, navigation efficiency, and nav-
igation resources is becoming increasingly prominent [2]. To
alleviate this contradiction, better safeguard navigation, im-
prove navigation efficiency in water areas, and scientifically
and rationally plan the layout of water areas, it is necessary to
determine the future development trends by forecasting and

researching marine traffic flows and to promote the sus-
tainable development of shipping.

Marine traffic volume forecasting uses the historical data
from society, economy, and transportation to predict traffic
conditions in the sea for a period of time in the future, and
whether the selection of the forecastingmethod is reasonable
is the key to predicting success or failure. According to the
nature of the forecasting method itself, the common fore-
casting methods can be summarized into three categories:
linear-based forecasting methods, nonlinear-based fore-
casting methods, and combined forecasting methods. /e
forecasting method based on linear theory realizes pre-
diction in a certain period of time in the future based on the
periodic pattern of time series and is widely used in traffic
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volume forecasting [3]. However, the disadvantage of the
time-series model is that it is only applicable to the situation
where the traffic volume trend is stable. As the nonstationary
of traffic volume increasing, there is a large deviation be-
tween the forecast result and the observed value [4].With the
development of emerging intelligent methods, such as ar-
tificial intelligence, machine learnings, neural networks
[5, 6], support vector machine [7, 8], and genetic algorithms,
the forecasting model of knowledge discovery provides a
new method for modelling spatial-temporal series. Re-
searchers use the time series as an input variable to in-
telligent calculation methods to forecast future marine traffic
to reflect seasonal changes in the marine traffic volume [9],
and the results show that the nonlinear forecasting results
are more accurate and reliable [10]. Although the marine
traffic forecasting based on the intelligent method can be
applied to the prediction of nonstationary marine traffic,
there are problems such as a slow convergence rate and the
ease of fall into a local optimal solution [11], and it is difficult
to achieve higher accuracy relying on a single forecasting
model. To overcome the deficiencies of a single forecasting
model, scholars have studied the use of multiple forecasting
models for joint forecasting and have achieved better results
[12]. /e forecasting model based on hybrid theory can
effectively improve the forecasting accuracy of traffic volume
to a certain extent, but due to the relatively complex model,
the setting of its weight parameter is the key to the accuracy
of the model [13].

In summary, it can be seen that each forecasting model
has its applicable conditions and that the merits of a certain
model cannot be determined simply. In addition, most of the
above methods for predicting the maritime traffic volume
focus on analyzing the variation characteristics of the traffic
volume of a single port or section in the time dimension
[14, 15] and are less involved in large-scale shipping net-
works, taking into account the link to traffic conditions
between ports. Urban road network, which belongs to the
transportation network as the shipping network, mainly
defines the spatial adjacency [16] by means of the upstream
and downstream relationship of the road network [17].
However, marine traffic is a complex system, and the spread
of influence of traffic conditions between adjacent routes is
not isotropic [18]. At the same time, the influence of dif-
ferent network topologies on the diffusion of traffic con-
ditions also has a greater impact and constraints [19, 20]. It is
biased to rely solely on simple spatial adjacency to determine
the autocorrelation of traffic conditions. In addition, to more
accurately depict the complex geographical phenomena
existing in the shipping network, it is necessary to avoid
isolated use of a temporal or spatial model. /e spatial-
temporal models such as space-time dynamics models and
space-time Bayes, are widely used in climate change [21],
environmental monitoring [22], urban transport [23], public
health [24], and other fields. However, most of the spatial-
temporal models are built for specific applications and do
not adequately reflect the geographic characteristics of
spatial-temporal data. As a very important spatial-temporal
statistical model, the STARMA (space-time autoregressive
moving average) model characterizes the spatial-temporal

dependence between different regions by deriving the in-
teraction between adjacent regions within the system and is
more suitable for modelling geographic spatial-temporal
data [25]. /erefore, in order to reveal the spatial-
temporal autocorrelation characteristics of shipping net-
works and to establish a suitable spatial-temporal prediction
model for marine traffic volume, this paper proposes an
adjacent rule based on network correlation based on the
definition of road network adjacency and extends STARMA
model to derive the relationship between traffic volumes
between ports.

/e basis for marine traffic volume forecasting is his-
torical data on marine traffic. Not much data were available
to use in previous marine traffic surveys, and usually only a
few major ports were available. /e lack of accurate marine
traffic data has become a bottleneck in the previous study,
which has brought great difficulties to the forecasting of
marine traffic volume [26]. AIS (automatic identification
system) data contain a large number of marine traffic
characteristics, from which we can obtain the characteristics
of ship behavior. In recent years, the number of shore-based
base stations and low-orbit satellites in the AIS system has
continuously increased, and the continuity and effectiveness
of the ship’s trajectory are continuously improving, making
it possible to forecast the marine traffic volume.

In view of the above, this paper studies the STARMA
model to establish the spatial-temporal model of traffic
volume in the shipping network. First, the time series of
traffic flow attached to the port are taken as the objects, and
the spatial-temporal correlation characteristics of the
marine traffic flow network are analyzed by using spatial
statistics. Second, the port correlation in the network that
meets the adjacency characteristics is determined based on
the subdivision hierarchy of the marine traffic flow net-
work, and the traffic demand between ports is estimated
based on the gravity model. On this basis, the spatial weight
matrix is constructed. Finally, we use the measured marine
traffic volume of ports in the South China Sea and its
surrounding sea to verify the applicability of the space-time
autoregressive model.

2. Materials and Methods

2.1. Study Area. /e study area of this paper is in the range
of 96°E∼126°E and −5°S∼26°N, and the specific range is
shown in Figure 1. /e total study area is approximately
4.2×106 km2 and includes the areas surrounding the South
China Sea, the Gulf of /ailand, the Philippines, the Strait of
Malacca, and the sea surrounding Kalimantan. /e layout of
the shipping network is regional, to more accurately reflect
the regional shipping system and the study area in this paper
covers the national ports around the South China Sea.
Hereafter “South China Sea” in this article refers to the study
area in this article.

/e South China Sea is one of Asia’s three largest
marginal seas and is known as the “Mediterranean of Asia.”
/e South China Sea shipping system is composed of nu-
merous ports and routes, and the differences among the
ports are relatively large. Due to the large number of people
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involved and the large economic aggregates, its development
potential is huge. As a very important location, the South
China Sea is a must-have destination for East Asian and
Southeast Asian westbound routes, and its special geo-
graphical location means that it has a large traffic flow within
its sea area [27]. According to the statistics of the World
Shipping Council, 25% of the world’s sea transport takes
place through the South China Sea, and an average of 300
ships travel through the South China Sea every day. In
addition, the Malacca Strait, which is located between the
Indian Ocean and the Pacific Ocean, is one of the most
important channels for international trade transport, and it
bears one-third of the global trade volume of goods and
more than one-half of the oil transport volume. Based on the
above reasons, this paper focuses on analyzing the spatial-
temporal characteristics of traffic flow around the South
China Sea and, based on this, builds a spatial-temporal
model of the marine traffic volume.

2.2. Data and Data Processing. /e experimental data used
in this paper are the AIS data within the study area from
January 2011 to December 2016. /e ship types in the AIS
data include cargo ships, passenger ships, tugboats, pilot
ships, and oil tankers. /e other types of data are ex-
cluded, and only the cargo ship data are retained as the
data for the experiment; the amount of AIS data involved
in each year is 1.27, 1.36, 1.52, 1.64, 1.58, and 175 million,
respectively.

In this paper, the grid DBSCAN algorithm [28] is
used to obtain the area of the ship’s stay area in the study
area, and the near-shore section is selected as the ship
arrival port identification. On this basis, the ship’s stop
position at the port of departure (Lonod, Latod), start time

to and end time td, and ship track point series Traj �
p0, p1, p2, . . . , pk{ } in the open sea area are used to extract
the ship trip information.

/rough the above steps, thousands of ship stay areas
were obtained. However, after analyzing the data, it was
found that a port city has multiple stopovers, and in reality,
many of the ship’s stay areas are only one of the many port
areas in the port city, such as Singapore’s main port areas of
Jurong, Pulau Bukom, Sembawang, Tanjong, and Penjuru.
In this paper, we obtained 155 port cities by integrating the
obtained stay areas; that is, this article uses the port city as a
shipping network node. Based on this, we obtained a total
of 368 pairs of ports with a total of more than 50 voyages in
the surrounding ports of the South China Sea, which
constitutes the connections between the ports in the
shipping network. In addition, to excavate the internal
correlation characteristics of the ports in the shipping
network and to reveal the spatial-temporal correlation of
the marine traffic flow, the time series of each port’s traffic
flow were calculated. /e skewness and kurtosis values of
some ports were found to be relatively large (skewed > 20
and kurtosis > 5), and after further verification by the
normal distribution test, the abnormal ports are deleted.
Finally, the 60 ports, which mean monthly voyages are
greater than 10, were selected as the modelling objects of
the spatial-temporal model (Table 1).

Figure 2(a) is the spatial distribution map of 60 rep-
resentative cargo ports in the study area. Figure 2(b) shows
the monthly time series of marine traffic in the three ports
of /ailand, Hong Kong, and Singapore in the South China
Sea shipping network for 6 years. It has an upward trend
with obvious periodic characteristics. During the experi-
ment, to test the accuracy of the spatial-temporal model,
data from 2011 to 2015 were used as training samples, data
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from 2016 were used as test samples, and the forecast time
was 12months.

3. Method

/e STARMA (space-time autoregressive moving average)
model fully considers the autocorrelation existing in the
geographic spatial-temporal data set and is suitable for
processing spatial-temporal series. However, the STARMA
has certain limitations in some aspects, such as spatial and
temporal nonstationary time-series data modelling and ef-
fectively describing the correlation between spatial variable
series by existing spatial weight matrix decision rules. In
view of the above problems, this paper builds the spatial-
temporal model of marine traffic volume in shipping net-
work based on the STARMA model. First, Moran’I and
temporal autocorrelation function are used to test the spatial

and temporal autocorrelations of spatial-temporal data.
Second, the shipping network hierarchical subdivision
structure is used to determine the port correlation in the
network that meets the adjacent rules, and the traffic de-
mand between the supply end and the demand side is
comprehensively considered to estimate the traffic demand
between ports. On this basis, the spatial weight matrix of the
spatial-temporal model of the shipping network is con-
structed. Finally, the applicability of the spatial-temporal
model based on network correlation proposed in this paper
is verified by using the measured ship traffic volume data of
the ports in the South China Sea and its surrounding seas.

3.1. Spatial and Temporal Characteristics of Traffic Volume in
Shipping Network. /e traditional linear regression method
cannot capture the autocorrelation characteristics contained
in spatial-temporal data, which makes it impossible to find

Table 1: Monthly voyage time-series statistics for ports in the shipping network.

Rank Name Numb Mean STDEV Skewed Kurtosis

1 Tainan 72 782.6250 91.4560 18.8483 −3.7311
2 Balikpapan 72 42.8472 19.2475 −0.0837 −1.0373
3 Bangkok 72 469.6388 131.894 2.7460 −1.8795
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
28 Fangchenggang 72 533.2916 119.1145 1.0687 −1.0374
29 Manila 72 254.7222 78.7479 0.6890 −0.1742
30 Beihai 72 142.7361 55.6224 0.3134 0.4706
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
58 Zhanjiang 72 301.4583 76.5235 0.9795 0.0841
59 Lungsod ng Cebu 72 112.2083 62.2414 −1.0059 0.4421
60 Samarinda 72 93.9583 57.6522 −1.3028 −0.6015
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Figure 2: Spatial-temporal modelling of port spatial distribution and voyage time-series characteristics. (a) /e spatial distribution of 60
ports. (b) /ailand, Hong Kong, and Singapore voyage time series.
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the spatial-temporal patterns. /erefore, the premise of
using above models to simulate traffic volume in the
shipping network is that the data are statistically spatially
independent and evenly distributed. In order to explore the
spatial-temporal heterogeneity and nonstationary charac-
teristics of the spatial-temporal series in the shipping net-
work, we use Moran’s I statistic to describe the spatial
autocorrelation characteristics of traffic volume in shipping
network and use time autocorrelation function and partial
autocorrelation function to describe the temporal auto-
correlation characteristics of traffic volume in the shipping
networks.

Moran’s I statistic is the most common type of spatial
autocorrelation statistic in current applications and is di-
vided into global Moran’s I and local Moran’s I according to
the difference in the metric regions. /e Global Moran’s I
statistic is used to characterize the degree of correlation
between all spatial objects in the spatial range to show
whether the spatial distribution pattern among the spatial
objects is significant. /e local Moran’s I statistic is used to
characterize the local spatial distribution pattern.

Time autocorrelation is one of the main features of
time-series data, which can express the dependence of
object attributes in time. /e ACF illustrates the degree of
correlation between time-series data at different times,
ranging from −1 to 1, and the closer the value to 1 is, the
higher the degree of autocorrelation of the time series is.
/e ACF map shows how the correlation of the time-
series changes with the lag period k. /e partial autocor-
relation function is another method for describing the
structural characteristics of a stochastic process in a sta-
tionary time-series and each regression coefficient φkk
in the function indicates the autocorrelation coefficient
between xt and xt−k which excludes the influence of the
intermediate variables xt−1, xt−2, xt, . . . , xt−k+1.

3.2. Spatial Weight Matrix considering Network Node
Correlations. /e purpose of the spatial weight matrix is to
accurately and comprehensively reflect the correlation be-
tween spatial geographical units. However, because of the
economic development level of the port hinterland and the
geographic location of the traffic flow, the spread of marine
traffic flow is not isotropic. Even if the geographical distance
is closest to the port, the traffic status may not be directly
related. /is nonuniformity of the proliferation of the
marine traffic flow makes it difficult to find the spatial
correlation of marine traffic by measuring the adjacent ports
by geographical distance alone. To solve the above problems,
first, based on the subdivision hierarchy structure of ship-
ping network obtained in the prestudy [29], the port cor-
relation in the network that meets the adjacent rules is
determined. Second, the demand for traffic between ports
based on the gravity model is estimated. Finally, a spatial
weight matrix is constructed based on the above steps.

3.2.1. Definition of Spatial Adjacency. In the spatial weight
setting of the shipping network, it is first necessary to define
spatial adjacency, which is also the basis of the spatial pattern

measure. /e spatial adjacency definition methods com-
monly used mainly include methods such as coboundary
method, topological graph method, and distance method.
However, the abovementioned spatial adjacency rules are
mostly based on their own related perspectives, ignoring the
network aggregation characteristics of the traffic flow in the
shipping network. /is paper defines the adjacency rules of
any two ports in the shipping network as follows: (1) the two
ports are directly adjacent; that is, there is navigation be-
tween the two ports; (2) the two ports are not directly ad-
jacent, and at this time, the connectivity of the two ports
needs to pass through one or more transit ports. /us, based
on the perspective of a complex network, the shipping
network is identified as a hierarchical subdivision structure
(Figure 3).

In the previous study of this paper [29], the shipping
network in the South China Sea has been proven to be a
typical scale-free network. /ere are obvious hierarchical
and community characteristics in the network, and there is a
direct connection with the ports at the adjacent level within
the community./is kind of relationship between nodes in a
complex network is just an expression of the adjacent re-
lationship of the spatial adjacency matrix of the port nodes.
/us, the spatial adjacency matrix in the shipping network is
defined as follows:

Wij �
1, i, j ∈M, i, j belongs to adjacent hierarchical,
0, i ∈M, j ∈ N,

{
(1)

where i and j are the nodes in a shipping network; M and N
are the different communities in a shipping network; Wij �

1 indicates that i and j have an adjacent relationship in the
network, that is, belong to the same community; and two
nodes are hierarchically adjacent. Wij � 0 indicates that
nodes i and j are not adjacent in the network; that is, they do
not belong to the same community, or two nodes are not
hierarchically adjacent.

3.2.2. Definition of Spatial Weight. Based on the spatial
weight matrix created by the influence of geographical
spatial relationship and attribute values, it is easier to reflect
the spatial agglomeration and spatial differences in spatial
units. /e monthly forecast of marine traffic volume is
mainly affected by many factors, such as weather conditions
and navigable water level, and the marine traffic volume
shows a certain degree of periodicity and seasonality.
According to previous scholars’ research, the gravity model
can better explain the spatial adjacency of ports in shipping
networks.

Spatial weight is a quantitative measure of adjacency./e
gravity model is an important method to explain the spatial
adjacency among ports in shipping networks [30]; that is,
voyages between adjacent ports are more frequent than
voyages between distant ports. If dij is the distance from port
i to j, then the trend of the interaction between them is
expressed by the lag function f (dij), and the voyage ex-
pression between them Vij � OiDj f (dij), where Oi is the
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total number of voyages leaving port i and Dj is the total
number of voyages arriving at port j.

In estimating the weight of marine traffic between ports,
the traffic attraction between the supply end and the demand
end of the marine traffic volume is taken into consideration,
and the gravity model is used to estimate the traffic volume
between ports. /e amount of traffic on the supply end and
the demand end is proportional to the traffic and is inversely
proportional to the traffic impedance between the two. /e
following equation is used to estimate the traffic volume
between ports:

Vij � k
Oα
i D

β
j

ed
−c
ij

, (2)

where Vij is the amount of traffic generated between ports i
and j, Oα

i andD
β
j are the total traffic volumes of ports i and j,

and α and β are the traffic volume coefficients ranging from 1
to 2, which are set to 1. In this paper, ed

−c
ij is the distance

attenuation function and c is set to 0.59 [31].

3.3. STARMA Model. /e STARMA model uses spatial-
temporal delay operators to expresses the spatial-temporal
variables that are influenced by both temporal lag and spatial
lag [25]. /e spatial lag operator L indicates that the traffic
volume of a port in space is affected by the adjacent port, and
the forecasting value of the port traffic volume can be
expressed as a weighted average of the values of the adjacent
port traffic variables. Its quantified expression is as follows:

zi(t) � ∑
p

k�1

∑mk

h�1

φkhL
(h)zi(t− k)− ∑

q

l�1

∑nl
h�0

θkhL
(h)εi(t− l) + εi(t),

(3)
where p is the time autocorrelation coefficient, q is the
temporal moving average order, L(h) is the spatial lag op-
erator, mk is the spatial order of the k temporal autocor-
relation term, nl is the spatial order of the l temporal moving
average term, φkh and θkh are parameters, and εi(t) repre-
sents the random error.

/e basic idea of the STARMAmodel is to derive item by
item according to the spatial-temporal series and calculate
the spatial-temporal average of each item in turn to realize
the simulation of long-term trend change. /e periodic
influence factors of traffic volume in the shipping network
make the traffic volume to show a strong seasonality, while
the trend influencing factors will make the traffic volume
change to have long-term trend characteristics. /erefore,
according to the time-series statistics, the ship traffic flow
has the characteristics of short-term time autocorrelation
and long-term trend change. In this paper, the traffic flow
time-series data are decomposed into large-scale spatio-
temporal nonlinear trend u and small-scale spatiotemporal
variation trend e. /e large-scale variability refers to the
deterministic global trend, while the small-scale variability
refers to the stationary sequence separated by spatial-
temporal data. Such a nonstationary spatiotemporal se-
quence can be expressed as zi(t) � μi(t) + ei(t), where zi(t)
is the observation, μi(t) is the large-scale space-time de-
terministic trend, and ei(t) is the periodic trend of the mean
constant. /e linear part ei(t) is modelled by STARMA, and
the nonlinear part μi(t) is modelled by the neural network.
On this basis, the linear forecasting results are combined
with the nonlinear results to obtain the final results.

4. Results

4.1. Traffic Flow Time-Series Analysis

4.1.1. Spatial Autocorrelation Analysis. Spatial autocorre-
lation is an important feature of the spatial geography unit,
and this paper analyzes the distribution of marine traffic of
each port from two aspects, global, and local as follows:

(1) Global Spatial Autocorrelation. /is paper uses the global
Moran’s I to perform global spatial autocorrelation analysis of
arrival voyages in the surrounding ports of the South China
Sea during 2011∼2016. Taking the arrival voyages of each port
as variables, based on the distance weight matrix, we use
GeoDa software to calculate the global Moran’s I value. As
Table 2 shows, the global Moran’s I value of the arrival
voyages to the ports of the South China Sea is positive, and the
result passed a Z-value test with a significance level of 0.01.
/e fact that the global Moran’s I index value is greater than 0
in each year indicates that the marine volume of the sur-
rounding ports in the South China Sea has a positive spatial
correlation and shows a certain degree of spatial aggregation.
At the same time, Moran’s I index significance level values are
all below 0.001, indicating that the spatial correlation of
shipping development in the ports of the South China Sea is
relatively low, and the overall spatial agglomeration effect is
not obvious. In general, marine traffic flow is spatially weakly
stable, and in the modelling, the marine traffic flow in the
shipping network can be considered as smooth data.

(2) Local Spatial Autocorrelation. /e spatial correlation
distribution of the marine traffic volume in the South China
Sea was obtained through the local Moran’s I analysis. As
Figure 4 shows, the marine traffic flow mainly presents a
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high-high aggregation model in China’s coastal area, while
in the Philippines, a low-low aggregation model is mainly
presented. It is not difficult to understand as the route
density in China’s coastal areas is large and the links between
ports are closer than those in other regions./e coastal areas
in China have a high density of routes, and the connections
between ports are closer than in other regions. It is not
difficult to understand that China’s foreign trade has con-
tinued to grow rapidly and voyages between ports have
continued to hit new highs, while the Philippines has fewer
voyages due to its smaller economic aggregates and low
dependence on foreign trade. In addition, Ho Chi Minh,
Manila, and surrounding areas are high-low correlation
models. /e abovementioned ports are either economic
centers of the countries around the South China Sea or
occupy important geographical locations, and all bear the
pivotal role of connecting with other ports. /erefore, their
marine traffic is relatively large and forms a high-low cor-
relation model with the surrounding ports.

4.1.2. Temporal Autocorrelation Analysis. /e ACF map can
represent the change in the autocorrelation coefficient

between any time periods in the time series. Figure 5 shows
the ACF and PACF plot of the monthly time-series data of
the total traffic volume of the surrounding ports in the South
China Sea from January 2011 to December 2016. Among
them, Figures 5(a) and 5(b) are the original time-series data
of the total traffic volume and the time-series data after the
difference; Figure 5(c) shows the ACF plot of the spatial-
temporal series data for each port after the difference, where
the abscissa is the lag period, the ordinate is the corre-
sponding autocorrelation function value (that is, the cor-
relation degree), and the dashed line is the confidence level
with a 95% confidence interval approximation; Figure 5(d) is
the PACF plot of the spatial-temporal series for each port
after the difference, and the ordinate is the corresponding
partial autocorrelation function value (that is, the degree of
correlation).

In Figure 5(c), the step length of each lag period is one
month, and within 12months (lag period k< 13), the ACF is
greater than 0.2; the ACF gradually decreases with the in-
crease of the lag period k. /e above content shows that the
correlation degree ρk of the spatial-temporal series data for
each port’s traffic volume gradually weakens when the lag
period k increase. In addition, the traffic volume for each
port has a strong positive correlation in a certain time range
and the traffic volume in the current time period has a
certain degree of correlation with the traffic volume in the
subsequent time period. As can be seen in Figure 5(d), the
PACF rapidly approaches zero from 0.7 and exhibits an
alternating exponential decay, which shows that the data
after the difference are time-stable time series. Furthermore,
the PACF is truncated after the first-order time lag, in-
dicating that the time-shifted average degree is 1.

4.2. STARMAModel Building. In the previous study of this
paper [29], the port communities in the shipping network
are named China Coastal Community, Taiwan Community,
Beibu Community, ASEAN Community, and Philippine
Community (Figure 6). Combined with the centrality of
ports, the network is presented as a subdivision hierarchy
structure. From the above definition of the spatial adjacent
relationship, the first-order and second-order spatial adja-
cencies of the ports around the South China Sea are ob-
tained. /e diagonal element of the spatial adjacency matrix
is 0. If the off-diagonal element is 0, there is no adjacent
relationship between the spatial units corresponding to the
row and the column; if the nondiagonal elements is 1, the
spatial unit corresponding to the row and the column
corresponds to adjacency. /en, by weighting of equation
(2) and normalization of the adjacent matrix, the first-order
spatial weight matrix W

(1) and the second-order spatial
weight matrix W

(2) are obtained.
In this paper, the ST-ACF and ST-PACF values are

calculated based on spatial-temporal series data for each port
in the shipping network. /e calculation results are as
follows:

It can be seen from Tables 3 and 4 that the values of the
ST-ACF and ST-PACF show a progressively decreasing
phenomenon in both time dimension and the spatial

Table 2: Multiyear global autocorrelation statistics.

Year 2011 2012 2013 2014 2015 2016

Moran’s I 0.069 0.079 0.080 0.083 0.072 0.073
Z-value 3.593 3.922 3.880 4.012 3.580 3.687
Significance
level

0.0003 0.0001 0.0001 0.0001 0.0003 0.0002
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Figure 4: Local spatial autocorrelation of ports in the South China
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dimension. /e ST-PACF shows truncation after the first-
order spatial and temporal lags. /erefore, it can be con-
cluded that the sample is a spatial-temporal autocorrelation
process of first-order time lag and second-order spatial lag.
/e initial judgment of the STARMA equation is STARMA
(1, 0). /e specific model is as follows:

z(t) � φ10z(t− 1) + φ11W
(1)
· z(t− 1) + φ12W

(2)
· z(t− 1)

+ ε(t).

(4)
After obtaining the above model, the parameters in the

above equation are further estimated using the sample data
from 2011 to 2015. /e estimated value of each parameter in
the equation and its test value are shown in Table 5.

Table 5 lists the parameter estimates of φ10, φ11, and φ12

in the equation and the corresponding significance test
results. It can be seen that the p values of the three pa-
rameters are all less than 0.05; therefore, the assumption that
the equation coefficient is not related to the dependent
variable should be rejected; that is, the independent variable
can explain the change in the dependent variable. /erefore,
the spatial-temporal model can be expressed as follows:

z(t) � 0.4227z(t− 1) + 0.2628W(1)
· z(t− 1) + 0.3685W(2)

· z(t− 1) + ε(t).

(5)

4.3. Model Comparison. To test the forecasting model of
shipping network traffic, we used the nonspatial time-series
prediction method STL (seasonal-trend decomposition
procedure based on Loess) to verify the results obtained. /e
STL method is a time-series decomposition method pro-
posed by Cleveland in 1990 [32], and this method de-
composes the time-series data into independent long-term
trend terms, seasonal components, and residuals to achieve
predictions. Although the STL method cannot achieve a
spatial-temporal forecast, it can obtain the evolutionary
characteristics and rules of things over time by processing
the time-series data and then forecast the future develop-
ment of things [33].

Based on the obtained shipping network model equation
(5), spatial-temporal forecasts are made using the first-order
and second-order spatial weight matrices constructed pre-
viously. By taking the traffic volume time-series data of the
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Figure 5: (a) /e original time-series data, (b) the time-series data after the difference, (c) spatial-temporal autocorrelation function, and
(d) partial autocorrelation function plot of the monthly traffic volume for ports in the shipping network.
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60 ports around the South China Sea from 2011 to 2015 as
training data and taking the traffic volume time-series data
in 2016 as the test sample of the model’s forecasting ability,
the spatial-temporal forecast results were obtained. In the
spatial dimension, Figure 7 shows the spatial-temporal

models and STL forecasting results of marine volume in
the South China Sea shipping network in 2016. In the
temporal dimension, Figure 8 shows the forecasting results
of marine traffic volume in the South China Sea shipping
network in 2016.
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Figure 6: Community detection result of shipping network in the South China Sea.

Table 3: ST-ACF plot of spatial-temporal series data of arrival
voyages for 60 ports

Temporal lag (h)
Spatial lag (h)

0 1 2

1 0.8828 0.8987 0.8142
2 0.8383 0.8684 0.7736
3 0.7736 0.8189 0.7130
4 0.7343 0.7742 0.6758
5 0.6003 0.6188 0.5490
6 0.5496 0.5387 0.5030

Table 4: ST-PACF plot of spatial-temporal series data of arrival
voyages for 60 ports.

Temporal lag (h)
Spatial lag (h)

0 1 2

1 0.9676 0.2668 0.0166
2 0.0177 −0.0748 −0.1821
3 −0.0571 0.0912 −0.0235
4 0.0032 0.0442 −0.0132
5 −0.0102 −0.0164 −0.0384
6 −0.0389 0.0712 −0.0703
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From the forecast results in Figure 7, in the spatial
domain, compared with the STL method, the forecast re-
sults of the spatial-temporal model of the shipping network
are found to adapt better to the prediction results of dif-
ferent port sizes and are closer to the observations values.
In Figure 8, in the temporal domain, it can be found that
both models can obtain a good fit. Furthermore, it can also
be found that when the time-stationary of the observations
is high, the two models can approach the observations very
well; when the observations vary greatly with time, the

spatial-temporal model can more easily capture such
changes.

4.4. Model Accuracy. In the previous section, we compared
the time domain and space domain fitting results of marine
traffic volume. In this section, we compare and analyze the
two generalization accuracy evaluation results of traffic
volume forecasting of the shipping network in the South
China Sea. In order to compare the forecasting accuracy

Table 5: STARMA model parameter estimates and their test values.

φ10 φ11 φ12

Value 0.4227 0.26280 0.3685
Standard deviation 0.0153 0.0109 0.0151
t value 26.7543 23.8937 24.2650
p value 0.0000 0.0000 0.0000
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Figure 7:/emarine volume prediction results of the STL and spatial-temporal model for some ports in the shipping network in (a) March,
(b) June, (c) September, and (d) December of 2016.
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Figure 8: Continued.
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of the two models, three indicators, namely, Pearson’s
correlation coefficient (R), root mean square error (RMSE),
and mean absolute percentage error (MAPE) are selected.
Table 6 shows the evaluation results.

As shown in Table 6, the correlation coefficient R
(0.8827) based on the STARMAmodel is significantly higher
than the correlation coefficient (0.4469) of the STL model,
indicating that compared with the time-series model, the
spatial-temporal model is more likely to capture the peri-
odicity and trend of the monthly traffic volume of the port in
the shipping network. /e RMSE of the STARMA model is
12.15% higher than the RMSE of the STL model, indicating
that the spatial-temporal model is more sensitive to outliers
of traffic observations; that is, it is easier to explain spatial-
temporal variations. Similarly, the MAPE accuracy of the
STARMA model is also better than the MAPE of the STL
model, which has an increase of 19.66%, indicating that the
forecasting accuracy of the spatial-temporal model is better
than that based on the time series.

/rough model comparison, it is found that the spatial-
temporal model fits better than the time-series model in
forecasting the regional shipping network traffic volume and
can better explain the spatial-temporal variation in regional
shipping networks./e analysis shows that the reason is that
it not only extracts the large-scale nonlinear trends in the
spatial-temporal series but also captures the small-scale
random spatial-temporal variation. /erefore, the spatial-
temporal model can improve the generalization accuracy of
the fitting to some extent.

5. Conclusion

/is study uses ship AIS data from 2011 to 2016 in the waters
surrounding the South China Sea to build a regional
shipping network based on data mining technology. /en,
considering the influence of the correlation between the
ports in the shipping network on the traffic volume, a set of
closely connected ports is identified by utilizing the topo-
logical features of the shipping network and is used to
construct the spatial weight matrix of the shipping network
in the South China Sea. Finally, the STARMA model was
used to derive the interaction between traffic volumes at
adjacent ports in the shipping network and to obtain traffic
forecasts for ports in the regional shipping network. /e
conclusions are as follows:

(1) By analyzing the spatial and temporal characteristics
of the time-series data of ship traffic in various ports
of the South China Sea shipping network, it can be
concluded that the maritime traffic volume has
certain regularity and difference in both time and
space; that is, the port traffic volume in each region
shows a certain degree of local autocorrelation in the
traditional distance-based weight matrix, and it
shows a clear spatial-temporal correlation in the
network environment.

(2) Marine traffic has strong regularity. /is regularity is
not only reflected in the time-series self-correlation
characteristics of the port’s traffic volume but also in
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Figure 8: Marine traffic volume forecasting plots of the spatial-temporal model and the STL model. (a) Jeishi, (b) Quanzhou, (c) Kinarut,
(d) Hong Kong, (e) Keelung, (f ) TigerJuyu, (g) Iloilo, (h) Pinghai, (i) Tarakan, (j) Zhanjiang, (k) Lungsod ng Cebu, and (l) Samarinda.
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the strong correlation between spatially-related
ports. /e network adjacent rule based on the
characteristics of the shipping network community
proposed in this paper not only considers the geo-
graphical constraints but also takes into account the
role of the port in the network and can better capture
the spatial correlation of the marine traffic volume
than the spatial adjacent rule that considers only the
geographical distance.

(3) Combined with the measured marine traffic volume
data of the surrounding ports in the South China Sea,
the applicability of the ship traffic volume forecasting
method based on the spatial-temporal correlation
characteristics proposed in this paper is validated.
Several evaluation indexes such as R, MAPE, and
RMSE are used to evaluate the prediction model’s
simulation results. /e results show that the fitting
result of the spatial-temporal model is better than the
time-series model, and it can better explain the
spatial-temporal variation in the regional shipping
network. /e above results show that the prediction
model proposed in this paper is reasonable and ef-
fective. In particular, the method proposed in this
paper is to use the data in a period of time as training
data to forecast the subsequent traffic volume.
/erefore, the method proposed in this paper is also
applicable to the forecasting of traffic volume in the
future, that is, 2018 and 2019.

In addition, the results obtained from this paper also
reflect that the model constructed in this paper reflects the
system characteristics and spatial-temporal correlation
characteristics of the regional shipping system and sum-
marizes the integrity of the shipping network traffic and the
interrelationship of various parts within the system. To a
certain extent, this paper reveals the complexity, changing
laws, and development trends of regional shipping systems,
provides a scientific basis for the scientific planning of the
future development scale of ports and the formulation of
long-term strategic decisions, and provides a certain sup-
plement for port system research. Since the shipping is a
complex and volatile industry and will rise and fall with
the global economy, in the medium and long term, it is

recommended that each country should analyze the future
development trend of the regional shipping system. On this
basis, scientifically plan the layout adjustment of domestic
ports, and maintain the moderate construction of the port
so as to achieve the sustainable development of regional
shipping.

/is paper starts with the influence of the correlation of
the shipping network nodes on the maritime traffic, analyzes
the spatial-temporal autocorrelation of the ship traffic vol-
ume on the sea, and builds a corresponding forecasting
model on this basis. However, deficiencies remain and need
to be further explored. /is paper mainly considers the
impact of node correlation of a shipping network on
maritime traffic. /e influence of the spatial structure and
topological characteristics on maritime traffic needs further
study. In addition, different historical data volumes lead to
different prediction results, and sensitivity analysis for
historical data volume should be further studied.
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