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1 Introduction

Tensor models are the natural generalization of matrix models. Initially introduced in the

context of nuclear physics, random matrices have been applied extensively from statisti-

cal physics to number theory. A major development was the introduction of interacting

random matrix models and of their 1/N expansion. Indeed it was discovered that the

Feynman graphs of these models implement consistently a sum over cellular decomposi-

tions of Riemann surfaces naturally encoding the topology of the discretized surfaces [23].

This feature made them central both to string theory and to two dimensional quantum

gravity. Indeed the double scaling limit of matrix models provides a road towards the still

ongoing non-perturbative definition of string theory. Moreover the relationship between

the continuum Liouville formulation and discretized matrix models plays an ever increasing

role for the understanding of two-dimensional quantum gravity.

Early tensor models were introduced [1, 2] in order to generalize to higher dimensions

this great success of matrix models. Unfortunately they turn out to be difficult to handle

analytically. Some key concepts of matrices (eigenvalues, characteristic polynomials, de-

terminants) simply do not generalize (in a easily computable way) to higher rank tensors.

Moreover the much richer geometries in higher dimensions obviously bring new challenges.

Which description of geometry is most naturally and in the simplest way associated to a

Feynman theory? This question, which was certainly not central from a purely mathemat-

ical point of view, is the crucial one for a field theoretic-type quantization of gravity in

higher dimensions. Graph Encoded Manifolds (GEM) theory and crystallization [30, 31]
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in fact turned out to provide an answer to that question. Indeed colored triangulations are

dual to simple field theoretic combinatorics.

Following this observation, colored tensor models were introduced [26]. Unexpectedly

they also solve many associated difficulties. First and foremost they allowed to find a tensor

analog of the matrix 1/N expansion [32].

A major new feature of this expansion is that it is not of topological nature (at least

not in a naive way). The full meaning of the parameter governing this expansion, called the

degree, is still unclear, although it can be computed rather easily as the sum of the genera

of normal surfaces embedded in the cellular decomposition of the discretized geometry [33].

Progress followed quickly, in particular through computation of single [34, 44] and double

scaling limits of such models [9–11], and the inclusion of matter in the corresponding

random geometry [38, 39].

From the start tensor models were also related to the group field theory (GFT) ap-

proach to quantum gravity [21, 41, 43]. This approach implements a sum over spin networks

of loop quantum gravity [22] as a quantum field theory defined on a Lie group. Tensor mod-

els provided GFT with a consistent class of interactions and observables which generalize

the concept of locality to a background-independent formulation. This improvement al-

lowed to renormalize GFT [36, 42]. A complete study has been achieved in [37], interesting

physical perspectives are enumerated in [25].

Over the years, matrix models have developed a lot of additional exciting features.

First they could be used to tackle combinatorial problems, such as counting a variety of

2-dimensional maps [12]. Using a new class of matrix models, Kontsevich proved Witten’s

conjecture on generating functions for intersection numbers of moduli spaces. Matrix

models also have rich integrability properties, unraveled through orthogonal polynomials,

KdV hierarchy and Hirota’s equations. More recently Givental introduced a decomposition

of solutions to the multi-components KP hierarchy using matrix models [14, 15]. An other

important development which aroses from matrix models around the same time is the

topological recursion [16], which has grown into a polyvalent technique allowing to solve

many problems of algebraic and enumerative geometry [17]. The relation between these

two techniques has been shown in [19].

It is then natural to ask whether tensor models inherit, at least partly, of these impor-

tant mathematical features. In this paper we derive a decomposition formula that looks

like (but is not) a Givental decomposition formula for the simplest random tensor model,

namely the quartic melonic model (at any rank). In fact we describe the partition function

of this model as the action of a differential operator on a product of Hermitian 1-matrix

models (the number of matrix models being given by the rank of the tensor models). We

end this paper by deriving bilinear identities for the tensor model by deforming the Hirota’s

equations satisfied by the Hermitian 1-matrix model.

This paper is structured as follow:

• Section 2 about matrix models recalls the well known results on the subject.

• Section 3 introduces tensor models more formally, then specializes to the quartic

melonic tensor model and derives the intermediate field representation for it.
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• Section 4 shows the decomposition formula for tensor model into Hermitian matrix

models.

• Section 5 recalls the basic Hirota’s equations for matrix models and derives bilinear

identities for the quartic melonic tensor model from them.

2 Matrix models

2.1 Generalities on matrix models

For pedagogical reasons I present some known results about matrix models in this section,

this should allow readers coming from different communities to read this paper easily. Most

of the material can be found in [3, 4].

Matrix 1/N development. We recall briefly the 1/N development of matrix models.

Consider the matrix model defined by

Z[t4, N ] =

∫
dM exp

(
−N

(
1

2
Tr(M2) +

t4
4

Tr(M4)

))
, (2.1)

with N the size of the matrix. At the formal level this is a generating function for quad-

rangulations. The free energy F = lnZ expands as F =
∑

g≥0N
2−2gFg(t4) where the

Fg’s are generating functions of quadrangulations of genus g for the counting variable of

quadrangles t4. In the limit N →∞ only the leading order survives i.e. the term F0 count-

ing the planar quadrangulations, so to say quadrangulations of the sphere S2. One can

compute the two points function G2(t4) = 1
N 〈Tr(M2)〉 in this limit and recover the Tutte’s

result [24] for planar rooted quadrangulations:

G2(t4, N =∞) =
∑

n

2
3n

(n+ 2)(n+ 1)

(
2n

n

)
tn4 . (2.2)

Matrix double scaling limit. One expands the free energy in N :

F (t4, N) =
∑

g≥0
N2−2gFg(t4). (2.3)

All Fg’s have a critical point at t4 = tc. Roughly they behave as Fg ∼ Cg(t4 − tc)
5
4
(2−2g).

By setting x = constant = N(t4 − tc)5/4 while N → ∞ and t4 → tc one gets the double

scaling limit of F :

F (x) =
∑

g≥0
x2−2gCg. (2.4)

The Cg coincide with the correlations functions of Liouville gravity. This corresponds to the

continuum limit of matrix models. One can thus understand that F (x) should satisfy some

differential equations, that is, the differential equation satisfied by the Liouville partition

function. This equation is of the Painlevé type.

– 3 –
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Orthogonal polynomials and integrability. This presentation is based on [8, 12].

Orthogonal polynomials allows to compute exactly the partition function of matrix model.

For the sake of definitness consider the matrix model defined above with potential V (M) =
t4
4 TrM4. The orthogonal polynomials are the only polynomials which are monic and or-

thogonal with respect to the measure exp(− t4
4 x

4)dx:
∫
PN,t4(x)PM,t4(x) exp

(
−N t4

4
x4
)
dx = δN,MKN , (2.5)

KN a proportionality factor. This can be used to solve matrix models because the orthog-

onality relations determine completely the model. For instance an orthogonal polynomial

is provided by PN,t4(x) = 〈det(x −M)〉. Following [12], changing variables to eigenvalues

leads to:

PN,t4(x) = 〈det(x−M)〉

=
1

ZN

∫ N∏

i=1

dµ(xi)(x− xi)
∏

i<j

(xi − xj)2, (2.6)

where dµ(x) = exp(−NV (x))dx. Then write:

ZN

∫
dµ(x)PN,t4(x)xM (2.7)

=

∫
dµ(x)

∫ N∏

i=1

dµ(xi)(x− xi)∆({xj})2xM

=

∫ N+1∏

i=1

dµ(xi)∆({xj}j=1···N+1)∆({xj}j=1...N )xMN+1

=
1

N + 1

∑

k

(−1)N+1−k
∫ N+1∏

i=1

dµ(xi)∆({xj}j=1···N+1)∆(x1, · · · , x̂k, · · · , xN+1)x
M
k .

Noticing that:

1

N + 1

∑

k

(−1)N+1−k∆(x1, · · · , x̂k, · · · , xN+1)x
M
k =

∣∣∣∣∣∣∣∣∣∣

1 x1 · · · xN−11 xM1
1 x2 · · · xN−12 xM2
... · · · · · · · · · ...

1 xN+1 · · · xN−1N+1 x
M
N+1

∣∣∣∣∣∣∣∣∣∣

, (2.8)

this determinant vanishes for M ≤ N − 1. For M = N :

ZN

∫
dµ(x)PN,t4(x)xN =

1

N + 1

∫ N+1∏

i=1

dµ(xi)∆({xj}j=1···N+1)
2 =

ZN+1

N + 1
. (2.9)

This implies KN =
ZN+1

(N+1)ZN
. So one computes KN as a function of the ZN ’s:

KN =
ZN+1[t4]

(N + 1)ZN [t4]
. (2.10)

Finally this leads to ZN [t4] = N !
∏N−1
i=1 Ki. One then derives recursion relations for the

KN (for instance see [8] for a general description of these problems).

– 4 –
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2.2 Generic matrix model and Kontsevitch model

In this section we introduce the generic matrix model.

Definition 1. We define the Hermitian one matrix model by the partition function:

Z1MM [{tp}p=0...∞, N ] =

∫

HN

dM exp


−N

2
Tr(M2)−N

∑

p≥0
tpTr(Mp)


 , (2.11)

HN being the space of N ×N hermitian matrices. This partition function has to be under-

stood at the formal level.

The second term entering the definition of the generic matrix model is called the

generic potential, each term of its development is an invariant of the matrix M in such a

way that the “action” is univalued. For these invariants to be independent one has to take

the limit of big size N of the matrix. Each invariant can be labelled by an integer p, and we

introduce one coupling constant for each of these invariants. We consider these coupling

constants as formal parameters of a formal series obtained by expanding the exponential

and interchanging the order of summation. The integral representation introduced above

is just a reminder for writing the term of the corresponding formal series (although this

integral is well defined for negative values of the coupling constant).

The Kontsevitch model is the model computing the intersection numbers of moduli

spaces of Riemann surfaces of genus g and n punctures.

Definition 2. The Kontsevitch model is here defined by:

ZK [Λ] =

∫

HN

dX exp
(
−Tr(XΛX) + iTr(X3)

)
(2.12)

where Λ is a diagonal matrix. We call the Miwa’s coordinates the Tk = 1
kTr(Λk).

These two models are important since they are used to decompose solutions of the

multi-component KP hierarchy as an intertwining operator acting on a product of the

matrix models described above i.e. prototypically:

Z = eU
∏

k

Z1MM [{tkp}] = eÛ
∏

k

ZK [Λk], (2.13)

where Z is given from a spectral curve S(x, y) by Z = e−F (S). F (S) :=
∑

g≥0N
2−2gFg(S) is

the generating function of genus g symplectic invariants1 (the Fg’s) of S. The intertwining

operator U (resp. Û) is a differential operator quadratic in the tkp’s and ∂
∂tkp

(resp. the T kp ’s

and ∂
∂T kp

).

In order to get a glimpse of the difference between these two decompositions we give

some more details (everything and much more can be found in the literature). A spectral

curve S is a compact Riemman surface Ξ endowed with two meromorphic functions2 x, y ∈
M(Ξ) satisfying an algebraic equation S(x, y) = 0.3 One defines the 1-form ω0

1 = ydx on

1I.e. invariant through symplectomorphism of the spectral curve. This definition actually corresponds

to a cohomological field theory.
2In the case of meromorphic functions the spectral curve is said to be algebraic. Moreover if Ξ is of

genus 0 it is rational.
3Exists because of the algebraic character of the spectral curve.
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Ξ and ω0
2 = B is the Bergmann kernel of Ξ (we need a choice of polarization of Ξ to define

everything properly). Denote the poles of ω0
1 by {αi} and its branch points by {ai}. The

operator U can be computed by decomposing the global Virasoro constraints (equivalently

the “loop equations”) locally on the poles of ω0
1 leading to the results of [18], on the other

hand this decomposition can be performed locally around the zeroes of ω0
1, this leads to

the expression of Û used to decompose on Kontsevitch tau functions. More formally the

loop equations can be rewritten as:

L(p)Z = 0, ∀p ∈ C. (2.14)

The construction of the L(p) being ensured by the data given above. In the limit p → αi
these operators project onto local operators that can be described as:

L(p) ∼
∞∑

n=1

dzi(p)

zi(p)n+1
Lin. (2.15)

The zi’s being local coordinates around the poles αi. With the Virasoro operators Lin
taking the usual form for Hermitian 1-matrix models:

Lin =
1

N2

(
2n

∂

∂tin
+

n−1∑

k=1

∂

∂tin−k∂t
i
k

)
+

di∑

p=1

(p+ n)tin
∂

∂tin+p
. (2.16)

Analogously the projection can be made onto local operators defined around the branch

points {ai}. These operators are described in the formula (11) of [5].

3 Tensor models

In this section we introduce briefly the general framework of tensor models. These models

have been introduced in the 90’s in order to mimic the success of matrix models in more

than two dimensions. In particular they have been constructed in order to give a definition

of a ‘sum over geometries’ for three and more dimensions. Unfortunately they were at that

time very difficult to handle analytically and the problem of generating well controlled

triangulations was not understood [28]. Tensor models was then abandoned. Recently,

Razvan Gurau revived interest in tensor models by constructing a (colored) model gen-

erating controlled triangulations. He was then able to construct a 1/N expansion. The

original point of view evolved after the ‘uncoloring’ paper [35]. For more details one can

look in general references on the subject, for instance the necessary background is contained

in [27, 35].

3.1 Tensor invariants and generic 1-tensor model

The uncolored point of view can be described as follows. The action of tensor model should

be univalued when seen as a function on the vector space of tensor. Consequently it has to

be constructed out of tensor invariants, in fact this is how matrix models are constructed,

the trace being the invariant.

– 6 –
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First we shortly introduce the tensor invariants. To this aim we consider the tensors

as multilinear forms on a direct product of vector spaces. A really nice and more detailed

presentation of them is done in the second section of [20]. Consider a Hermitian space

(V, h) of complex dimension dimV = N , h being the Hermitian product on V . h induces

the usual isomorphism V → V ∗ by v 7→ v∗ = h(v, .). Denoting {ui}i=1...N a basis of V and

the dual basis {h(ui, .) = ũi}i=1...N , the coordinates of a vector in V and its dual in V ∗ are

related by complex conjugation from the property of the Hermitian product:

v∗ = h(v, .) = h(
∑

i

viui, .) =
∑

i

v̄iũi . (3.1)

A rank D tensor T is a multilinear form T : V ×D → C, one can write in a basis:

T =
∑

{ip}p=1...D

Ti1...iD ũi1 ⊗ . . .⊗ ũiD . (3.2)

Moreover the dual (denoted T̄ ) of T (i.e. the multilinear form on V ∗×D) is written in the

basis {ui}i=1...N :

T̄ =
∑

{ip}p=1...D

T̄i1...iDui1 ⊗ . . .⊗ uiD (3.3)

by the property of the induced Hermitian product on a tensor product of Hermitian spaces.

By invariants of tensor we actually mean that the constructed quantity is invariant

under any change of basis of V and V ∗. If we change the basis by an element g−1 ∈
GL(N,C) the coordinates of a vector v are changed by the matrix U(g) of g and the

coordinates of the dual vector are changed by g−1. This induces the change of basis in the

tensor product space, and thus on tensors:

T ′i1···iD =
∑

j1···jD

U(g−11 )i1j1U(g−12 )i2j2 · · ·U(g−1D )iDjDTj1···jD (3.4)

T̄ ′i1...iD =
∑

j1···jD

U(g1)i1j1U(g2)i2j2 · · ·U(gD)iDjD T̄i1...iD (3.5)

This observation allows us to describe the possible tensor invariants. The invariants of

order 2p are p-linear in both T and T̄ . Using the transformation rule given above, one

notices that the only requirement for the quantity to be invariant is that the indices of a

T contract to the indices of a T̄ with respect to their positions. The first index of a T

contracts with the first index of a T̄ and so on. Thus to describe an invariant of order

2p one only has to describe the contraction pattern of the p T ’s with the p T̄ ’s. This can

be represented by bipartite graphs with colored edges. Indeed, if one represents the T ’s

(resp. T̄ ’s) by white (resp. black) vertices with D half-edges indexed with color labels

from 1 to D. These labels represent the positions of the indices of the T ’s and T̄ ’s. Then

the contraction of the jth index of a T with the jth of a T̄ is pictured by contracting the

respecting half-edges in the graph. Thus the set of invariants of order 2p are represented

by all bipartite regular graphs of valence D with a proper D-coloration of the edges whose

examples are pictured on figure 1. For any D-colored graph we define its jackets.

– 7 –
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1

2

3

4

1

2

3

4

=
∑

ai,bi
T̄a1a2a3a4Ta1a2a3b4 T̄b1b2b3b4Tb1b2b3a4

1

2

34

1

2

3 4

=
∑

ai,bi
T̄a1a2a3a4Ta1a2b3b4 T̄b1b2b3b4Tb1b2a3a4

Figure 1. Two examples of tensor invariants for a rank 4 tensor.

Definition 3. A colored jacket J is a ribbon graph associated to a D-colored graph G with

1-skeleton the graph G and faces made of graph cycles of colors (τ q(0), τ q+1(0)) for τ ∈ SD
a cyclic permutation, modulo the orientation of the cycle (i.e. τ−1 leads to the same jacket).

From this we define the degree:

Definition 4. The degree ω : {D-colored graphs} → N associates a positive integer to a

D-colored graph G by:

ω(G) =
∑

J (G)

gJ , (3.6)

i.e. it is the sum of the genera of all the jackets J of G.

We are now ready to define the generic tensor model.

Definition 5. The generic tensor model of dimension D + 1 is defined by the partition

function

Z[N, {tB}] =

∫
dTdT̄ exp

(
−ND−1

∑

B
N
− 2

(D−2)!
ω(B)

tBB(T, T̄ )

)
, (3.7)

where B runs over the regular D-colored graphs indexing the invariants. The tB are the

coupling constants, the one corresponding to the only invariant of order 2 often being fixed

to one-half. B(·, ·) being the invariant of T and T̄ indexed by the graph B. ω(B) is the

degree of B.

One notices that the jackets are specifics. In fact in the 4-colored graphs case they

provide cellular decompositions of Heegaard surfaces4 of the 3-manifold represented by

4If one wants to be precise, one has to say that it gives a spine in general because when the triangulated

object is a pseudo-manifold any neighborhood of a point does not have the topology of a ball.
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the graph [33]. Furthermore one can define a formal 1/N expansion in the case of tensor

models. Defining F [N, {tB}] as Z[N, {tB}] = exp(−F [N, {tB}]) the expansion has this form

F [N, {tB}] =
∑

ω≥0
N
D− 2

(D−1)!
ω
Fω[{tB}], (3.8)

where we are making some abuse of notations by writing ω as the sum index instead of the

function defined on (D + 1)-colored graphs taking integer values.

3.2 T 4 tensor models and intermediate field representation

In this section we study the melonic T 4 (already studied in [9, 40]) and write its intermediate

field representation using hermitian matrices.

First we introduce some notations. Call C the set of colors, or equivalently the set that

labels the positions of the indices of the components of the tensors. Since a D-dimensional

tensor model is defined by the use of rank D tensor, |C| = D. For instance, for a tensor

of rank three C = {1, 2, 3}, each element of C indexes respectively the first, the second and

the third index of the tensor. Moreover we introduce a partial Hermitian product notation.

Consider a subset of D ⊂ C, we denote T̄ ·D T the contraction of all the indices labelled

by elements in D, T̄ · T denotes the contraction of all indices. And we denote by î the

set C − {i}.
In three dimensions using these notations one writes the quartic melonic interaction

terms as:

V [T̄ , T ] =

D=3∑

a=1

(T̄ ·â T ) ·a (T̄ ·â T )

=
∑

all index

T̄sjkTs′jkT̄s′j′k′Tsj′k′ + T̄iskTis′kT̄i′s′k′Ti′sk′ + T̄ijsTijs′ T̄i′j′s′Ti′j′s. (3.9)

By using this notation scheme we write the partition function of the quartic melonic tensor

models in D-dimensions as:

Z[λ,N ] =

∫
dTdT̄ exp

[
ND−1

(
−1

2
(T̄ · T )− λ

4

D∑

a=1

(T̄ ·â T ) ·a (T̄ ·â T )

)]
. (3.10)

It can be rewritten using intermediate field as:

Z[λ,N ] =

∫ ∏

k

dσkdσ̄k exp

[
−N

2

∑

c=1···D
Tr(σ2c )

− Tr log

(
1
⊗D + i

√
λ

2ND−2

∑

c=1...D

1
⊗(c−1) ⊗ σc ⊗ 1⊗(D−c)

)]
. (3.11)

One obtains this representation by writing the T 4 interaction term as:

exp

[
−ND−1λ

4
(T̄ ·â T ) ·a (T̄ ·â T )

]

=

∫
dσadσ̄a exp

[
−N

2
Tr(σ2a)− i

√
NDλ/2Tr(Θaσa)

]
, (3.12)

– 9 –
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where Θa denotes T̄ ·â T . Then by replacing the interaction terms of (3.10) by the right

hand side of eq. (3.12), we get:

Z[λ,N ] =

∫
dTdT̄

∏

a

dσadσ̄a exp

[
ND−1

(
−1

2
(T̄ · T )

)

−N
2

∑

a

Tr(σ2a)− i
√
NDλ/2Tr(Θaσa)

]
. (3.13)

Integrating out the tensor T̄ , T fields we end with:

Z[λ,N ] =

∫ ∏

a

dσ̄adσa det

[
1
⊗D + i

√
λ

2ND−2

∑

c=1...D

1
⊗(c−1) ⊗ σc ⊗ 1⊗(D−c)

]−1

exp

[
−N

2

∑

a

Tr(σ2a)

]
. (3.14)

And so one obtains eq. (3.11) by writing the determinant in (3.14) as

det

[
1
⊗D + i

√
λ

2ND−2

∑

c=1...D

1
⊗(c−1) ⊗ σc ⊗ 1⊗(D−c)

]

= exp

[
Tr log

(
1
⊗D + i

√
λ

2ND−2

∑

c=1...D

1
⊗(c−1) ⊗ σc ⊗ 1⊗(D−c)

)]
. (3.15)

One notices that expanding the logarithm of (3.11) the matrix model one obtains looks

like the matrix models introduced in [6] for specific choices of the values of the formal

variables. The models introduced therein are studied because of their connection to LMO

invariants of 3-manifolds (see [7]). The study of possible connections to tensor models

could be interesting and the subject of further works.

4 Constructing T 4 tensor model out of matrix models

In this section we construct the T 4 tensor models as an action of a differential operator on a

product of Hermitian 1-matrix model. Starting from the intermediate field representation

we show:

Theorem 1. The partition function of the D-dimensional melonic T 4 model can be rewrit-

ten as:

Z[λ,N ] = eX̂eŶ
D∏

i=1

Z1MM [{tip}p∈N] = eÔ
D∏

i=1

Zi1MM [{tip}p∈N] (4.1)

where Z1MM [{tip}p∈N] is a Hermitian 1-matrix model partition function and X̂, Ŷ , Ô are

differential operators acting on the times tip (or coupling constants) of the 1-matrix model:

X̂ = −
∑

i,p

tip
∂

∂tip
(4.2)

Ŷ =
(−1)D

ND

∑

(q1,...,qD)∈(ND)∗

(−i)
∑
qi

∑
qi

√
λ

2ND−2

q1+...+qD(
q1 + . . .+ qD
q1, . . . , qD

)
∂D

∂t1q1 . . . ∂t
D
qD

, (4.3)
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and

Ô = ln(eX̂eŶ ) = X̂ +
D

2

exp(D/2)

sinh(D/2)
Ŷ , (4.4)

Proof. In order to prove this, we make use of the intermediate field representation of the

T 4 tensor model.

ZT 4
m

[λ,N ] =

∫ ∏

k

dσkdσ̄k (4.5)

exp

[
−N

2

∑

c=1...D

Tr(σ2c )−Tr ln

(
1
⊗D+i

√
λ

ND−2

∑

c=1...D

1
⊗(c−1) ⊗ σc ⊗ 1⊗(D−c)

)]
.

Taylor expanding the logarithmic potential in
√
λ we get:

ZT 4
m

[λ,N ] =

∫ ∏

k

dσkdσ̄k exp

[
−N

2

∑

c=1···D
Tr(σ2c )

]

exp


∑

p>0

−Tr

(
(−i)p
p

√
λ

2ND−2

p( ∑

c=1...D

1
⊗(c−1) ⊗ σc ⊗ 1⊗(D−c)

)p)
 . (4.6)

Using multinomial coefficients we can expand Tr
(∑

c=1···D 1
⊗(c−1) ⊗ σc ⊗ 1

⊗(D−c)
)p

, and

so we obtain:

ZT 4
m

[λ,N ] =

∫ ∏

k

dσkdσ̄k exp

[
−1

2

∑

c=1...D

Tr(σ2c )

]

exp


 ∑

(q1,...,qD)∈(ND)∗

(−i)
∑
qi

∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

) D∏

c=1

Tr(σqcc )


 . (4.7)

Noticing that for a generic Hermitian 1-matrix model we have the identity:

∂

∂tp
Z1MM [{tp}] = −N〈Tr(σp)〉int . (4.8)

We can represent the T 4 partition function since in fact:

ZT 4
m

[λ,N ] (4.9)

=

∫ ∏

k

dσkdσ̄k exp

[
−1

2

∑

c=1...D

Tr(σ2c )

]

∑

n≥0

1

n!


 ∑

(q1,...,qD)∈(ND)∗

(−i)
∑
qi

∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

) D∏

c=1

Tr(σqcc )



n

=

〈∑

n≥0

1

n!


 ∑

(q1,...,qD)∈(ND)∗

(−i)
∑
qi

∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, · · · , qD

) D∏

c=1

Tr(σqcc )



n〉

gauβ

.
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Using equation (4.8) one can write similar correlation functions by differentiating product

of matrix models:

〈
(−i)

∑
qi

∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

) D∏

c=1

Tr(σqcc )

〉

int

=
(−1)D(−i)

∑
qi

ND
∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

)
∂D

∂t1q1∂t
2
q2 . . . ∂t

D
qD

D∏

i=1

Z1MM [{tip}∞p=0].

(4.10)

It follows:

〈∑

n≥0

1

n!


 ∑

(q1,...,qD)∈(ND)∗

(−i)
∑

qi

∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, · · · , qD

) D∏

c=1

Tr(σqc
c )



n〉

int

(4.11)

=exp


 ∑

(q1,...,qD)∈(ND)∗

(−1)D(−i)
∑

qi

ND
∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

)
∂D

∂t1q1∂t
2
q2 . . . ∂t

D
qD




D∏

i=1

Zi[{tip}∞p=0],

since the differential operators commute. One defines Ŷ by:

Ŷ =
∑

(q1,...,qD)∈(ND)∗

(−1)D(−i)
∑
qi

ND
∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

)
∂D

∂t1q1∂t
2
q2 . . . ∂t

D
qD

. (4.12)

In order to obtain the Gaussian expectation values, and not the interacting one, we act with

another operator whose role is to suppress the original matrix potential. In this manner

we get the T 4 partition function. Define X̂ by:

X̂ = −
D∑

i=1

∞∑

p=0

tip
∂

∂tip
. (4.13)

acting with exp(X̂) on exp(Ŷ )
∏
i Z1MM [{tip}∞p=0] suppresses the matrix potential term as

shown by a direct computation. One wants to find an explicit form for Ô, the commutator

of X̂ and Ŷ is given by:

[X̂, Ŷ ]=
∑

(q1,...,qD)∈(ND)∗

(−1)D(−i)
∑

qi

ND
∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

)
∂D

∂t1q1∂t
2
q2 . . . ∂t

D
qD

D∑

i=1

∞∑

p=0

tip
∂

∂tip

=
∑

(q1,...,qD)∈(ND)∗

D∑

i=1

∞∑

p=0

(−1)D(−i)
∑

qi

ND
∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

)∑

j

δjiδpqj
∂D

∂t1q1∂t
2
q2 . . . ∂t

D
qD

=
∑

(q1,...,qD)∈(ND)∗

D∑

i=1

(−1)D(−i)
∑

qi

ND
∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

)
∂D

∂t1q1∂t
2
q2 . . . ∂t

D
qD

=D
∑

(q1,...,qD)∈(ND)∗

(−1)D(−i)
∑

qi

ND
∑
qi

√
λ

2ND−2

∑
qi( ∑

i qi
q1, . . . , qD

)
∂D

∂t1q1∂t
2
q2 . . . ∂t

D
qD

=DŶ . (4.14)
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σ1

σ2

M

M
M

M

M

M

M †

M †

M †

M †

M †

M †

Figure 2. This figure shows the splitting when we consider the quartic melonic tensor model of

rank 2. It collapses to a complex matrix model with complex matrix M . It can be splitted with

two Hermitian matrices σ1, σ2.

Therefore using Hausdorff-Baker-Campbell formula we can find an explicit form for the

operator Ô:

Ô = log[eX̂eŶ ] = X̂ +
D

1− exp(−D)
Ŷ = X̂ +

D

2

exp(D/2)

sinh(D/2)
Ŷ . (4.15)

Paying more attention to the operators X̂ and Ŷ one notices that they span an Aff(1)

Lie algebra. We notice that this differential operator is not quadratic in the ∂
∂tiqi

and so

this is not a Givental decomposition. However we can reproduce this decomposition in

two cases,

• in the case of rank 2 tensor models, the quartic melonic model collapses onto a

complex matrix model with a Tr(MM †MM †). By splitting this interaction in two

ways with two Hermitian matrices σ1, σ2 (see figure 2), we get a model with a

Tr log(1⊗2 + i
√
λ/2(σ1 ⊗ 1 + 1 ⊗ σ2)) interaction.5 This can be represented by a

quadratic Ŷ operator so that this case reduces to a Givental decomposition.

• Also one can reduce the number of interaction terms for the quartic tensor models

of any ranks. If this number of interactions reduces to two, we also get a Givental

decomposition.

5 Bilinear identities for T 4 tensor model

We begin by introducing the orthogonal polynomials for the 1-Hermitian matrix model,

we follow closely the presentation given by [13]. For each value of the coupling constant
~t = (tp)p=0···∞ and of N the size of the matrix we define:

5Up to symmetry factors.

– 13 –



J
H
E
P
0
8
(
2
0
1
5
)
1
2
9

Definition 6. The family of orthogonal polynomials parametrized by N and {ti} in the

variable x for the matrix measure is defined by:

PN,~t = 〈det(x−M)〉N,~t, (5.1)

i.e. the mean value of the characteristic polynomial of the matrix.

These polynomials are orthogonal to the matrix measure defined by the partition

function of the 1-Hermitian matrix model. This is only dependant on the fact that the

measure comes with a Vandermonde determinant when written in eigenvalues coordinates

and that the interaction is symmetric in the coordinates.

For the Hermitian matrix model, the Hirota’s equations amount to write the orthog-

onality relations for the characteristic polynomial. They can be written using vertex

operators:
1

2iπ

∮
dz

(
V+(z)Z1MM [{ti}]

)(
V−(z)Z1MM [{t̃i}]

)
= 0, (5.2)

where V±(z) = exp(±∑n≥0 z
ntn) exp(∓ log(1z ) ∂

N∂t0
∓∑n≥1

z−n

n
∂

N∂tn
). One would hope the

integrable structure of the Hermitian matrix models used for the decomposition survives

the action of exp(Ŷ ). In fact the bilinear Hirota’s equations of the Hermitian 1-matrix

model lead to a set of bilinear identities for the tensor model. Generalizing an idea of [13],

one acts by conjugation on the vertex operators of each matrix model of color c:

V c
±(z, λ) = exp(Ŷ )V c

±(z) exp(−Ŷ ), (5.3)

in some sense we make the vertex operators evolve to the intermediate field representation

of tensor model.6 Thus we obtain a set of identities of the form:

∮ (
V c
+(z, λ) exp(Ŷ )

D∏

c′=1

Z1MM [{tc′i }]
)(

V c
−(z, λ) exp(Ŷ )

D∏

c′=1

Z1MM [{t̃c′i }]
)

= 0, (5.4)

for each c ∈ [[1, D]]. Then one has to write these equations in term of the matrices. To this

aim we compute the explicit V c
±(z, λ). First set Âc =

∑
p≥0 z

ptcp and B̂c = log(1z ) ∂
N∂tc0

+
∑∞

n=1
z−n

n
∂

N∂tcn
. Therefore, for c ∈ [[1, D]]:

[
B̂c, Ŷ

]
= 0

[
Âc, Ŷ

]
= −(−1)D

ND

∑

(q1,...,qD)∈(ND)∗

(−i)
∑
qi

∑
qi

√
λ

2ND−2

q1+...+qD

×
(
q1 + . . .+ qD
q1, . . . , qD

)
zqc

∂D−1

∂t1q1 . . .
ˆ∂tcqc . . . ∂t

D
qD

.

6It’s not exactly the tensor model that one obtains, unless one sets the tci ’s to zero. But one can argue

that these bilinear identities are satisfied whatever the value of the tci ’s and thus induce bilinear identities

for the corresponding tensor model.
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One computes the evolved operators explicitly:

V c
±(z, λ) = exp(±Âc) exp(∓Âc) exp(Ŷ ) exp(±Âc) exp(∓B̂c) exp(−Ŷ )

= exp(±Âc) exp(e∓adÂc Ŷ ) exp(∓B̂c) exp(−Ŷ ). (5.5)

Finally noting that adn
Âc

(Y ) = 0 for n ≥ 2.

V c
±(z, λ) = exp(±Âc) exp(Ŷ ∓ [Âc, Ŷ ]) exp(∓B̂c) exp(−Ŷ )

= exp(±Âc) exp(∓[Âc, Ŷ ]) exp(∓B̂c). (5.6)

So one has proved the following proposition:

Proposition 1. The explicit form of the operators V c
±(z, λ) for c ∈ [[1, D]] is given by:

V c
±(z, λ) = e±

∑∞
p=0 t

c
pz
p

e
∓ log( 1

z
) ∂
N∂tc0

∓
∑∞
n=0

z−n
n

∂
N∂tcn

e
± (−1)D

ND

∑
(q1,...,qD)∈(ND)∗

(−i)
∑
qi∑

qi

√
λ

2ND−2

q1+...+qD
(q1+...+qDq1,...,qD

)zqc ∂D−1

∂t1q1
... ˆ∂tcqc ...∂t

D
qD . (5.7)

Using this proposition we get the form of the Hirota’s equation for the intermediate

field representation of the tensor model. These can be explicitly rewritten as:

0 =

∮
dz e

∑
n z

n(tn−t̃n)

〈
det
(
z − σc

)

det
(
1⊗D

(
1 + z

√
λ

2ND−2

)
+
√

λ
2ND−2

∑
i 6=c 1

⊗(D−c) ⊗ σc ⊗ 1⊗(c−1)
)
〉

N,t

〈
det
(
1
⊗D
(

1 + z
√

λ
2ND−2

)
+
√

λ
2ND−2

∑
i 6=c 1

⊗(D−c) ⊗ σc ⊗ 1⊗(c−1)
)

det
(
z − σc

)
〉

N ′,t̃

. (5.8)

We should be able to write these equations in terms of tensor variables. In fact in [45]

we get a relation between powers of intermediate matrices and power of Θc matrices of

the form:

σqc = Hq(Θ
c) , (5.9)

Hq being the qth Hermite polynomial. We postpone this to future work.

6 Conclusion

In this paper we unravelled a decomposition of a specific tensor model by the mean of an

intertwining operator acting on a product of Hermitian matrix models. The intertwining

operator is not of a Givental type since it is not quadratic in the coupling constants. How-

ever it collapses to a Givental operator in specific cases. Rank 2 tensor models and quartic

melonic tensor models with only two interactions are some of these cases. Furthermore we

do know that the resulting partition functions count specific types of polyangulations of

pseudo-manifolds in D dimensions. Moreover this decomposition formula allowed to derive

bilinear equations for the tensor models as a ‘deformation’ of Hirota’s equations of the

matrix models.
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It would be interesting to understand more about these specific tensor models especially

in a more geometric fashion. Can this decomposition help to grasp the geometrical meaning

of the number generated by the partition function of the model? Do the observables of

this tensor models have anything to do with the symplectic invariants computed by the

topological recursion? For some tensor models we know they can be written as matrix

models in several way. Do tensor models provide a framework for writing matrix models

satisfying duality relations between them? A related question being: is there any hope to

write Givental models as some sort of tensor models? Also, is our model integrable and

can we find any method to compute it exactly? Answering one or more of these questions

could shed light on the real mathematical nature of these tensor models.

Moreover it should be investigated whether or not it is possible to generalize this

decomposition to arbitrary tensor models in a natural way.
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