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SUMMARY:

Distance-based ordination methods, such as principal coordinates analysis (PCoA), are widely 

used in the analysis of microbiome data. However, these methods are prone to pose a potential risk 

of misinterpretation about the compositional difference in samples across different populations if 

there is a difference in dispersion effects. Accounting for high sparsity and overdispersion of 

microbiome data, we propose a GLM-based Ordination Method for Microbiome Samples 

(GOMMS) in this paper. This method uses a zero-inflated quasi-Poisson (ZIQP) latent factor 

model. An EM algorithm based on the quasi-likelihood is developed to estimate parameters. It 

performs comparatively to the distance-based approach when dispersion effects are negligible and 

consistently better when dispersion effects are strong, where the distance-based approach 

sometimes yields undesirable results. The estimated latent factors from GOMMS can be used to 

associate the microbiome community with covariates or outcomes using the standard multivariate 

tests, which can be investigated in future confirmatory experiments. We illustrate the method in 

simulations and an analysis of microbiome samples from nasopharynx and oropharynx.
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1. Introduction

In microbiome studies, it is often of interest to visually inspect compositional differences 

among microbiome samples before conducting stringent statistical tests on characteristics of 

the samples. A common approach is to use a distance-based ordination method, such as the 

principal coordinate analysis (PCoA), which can map high-dimensional data onto low-

dimensional displays (Legendre and Legendre, 1998). However, the distance-based 

ordination may be inappropriate for microbiome samples when there are large differences in 

dispersion between samples because it doesn’t take the effect of dispersion into 

consideration. As a result, the distance-based ordination can pose a potential risk of 

misinterpretation about a compositional difference between samples.
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It has been shown that the distance-based ordination methods are incapable of distinguishing 

between mean and dispersion effects (Warton et al., 2012). The former reflects the difference 

in relative abundance and the latter the difference in variability. That is, even though there is 

no mean effect, a distance-based ordination method can show significantly different 

centroids of two populations when there is a strong dispersion effect. The opposite is also 

possible: no difference in the centroids of two populations even if there is a mean effect. 

This undesirable result might happen in human microbiome studies since dispersion effects 

between different populations have been observed in numerous studies (Finegold et al., 

2010; Zeller et al., 2014; Bäckhed et al., 2015).

A solution to this potential problem is to use a generalized linear model approach, which 

explicitly models the mean-variance relationship, thus incorporating dispersion effects. A 

family of Poisson factor models exists that can be used for ordination analysis (Shen and 

Huang, 2008; Lee et al., 2013). However, they are not suitable for microbiome data in which 

apparent overdispersion has been evidenced (Chen and Li, 2013; McMurdie and Holmes, 

2014). In this paper, we propose a new GLM-based Ordination Method for Microbiome 

Samples (GOMMS) that uses a zero-inflated quasi-Poisson (ZIQP) factor model. This 

method accounts for characteristics of microbiome data (e.g., highly skewed non-negative 

counts with excessive zeros) while reducing dimensionality. In microbiome studies, a zero 

count is assigned to an absent taxon (e.g., species or gene) in a given sample if the taxon is 

detected in some other samples. Thus, a zero count can be either a result of true absence or 

undetected presence, suggesting that a mixture model is appropriate for modeling such 

zeros. GOMMS can also be used as a tool to associate the microbial communities to 

response variables or covariates that can be investigated in future confirmatory experiments.

In simulation studies, we demonstrate potential problems of distance-based ordination 

methods, particularly, PCoA and non-metric multidimensional scaling (NMDS). We show 

that GOMMS performs comparatively to the distance-based approaches when dispersion 

effects are negligible and consistently even when a distance-based ordination method 

exhibits the potential problems due to significant dispersion effects. We also show that the 

standard multivariate test such as the Hotelling’s T2 test can be applied using the estimated 

loading coefficients or coordinates for testing the differential community compositions. We 

perform an exploratory analysis on the upper respiratory tract microbial data (Charlson et 

al., 2010) that consist of the left and right of nasopharyngeal and oropharyngeal samples 

from smoking and nonsmoking healthy adults. GOMMS finds no difference in the centroid 

and variation of the samples of the left and right sides of the upper respiratory tract but 

significant difference in the samples of nasopharynx and oropharynx. Moreover, we find a 

significant correlation between a covariate, the elapsed time from the last smoke, and an 

estimated factor for the oropharyngeal samples from smokers, implying a possible effect of 

smoking on short-term changes in oropharyngeal microbial communities, which is an 

interesting hypothesis for a future confirmatory experiment.

2. Methods

In the factor analysis, we aim to find latent variables or factors f = (f1,…,fp)⊺, which 

represent unobserved constructs, such that factors can capture variability among correlated 
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observed variables x = (x1, … , xm)⊺ with a smaller number of variables (i.e., p < m), where 

the superscript ⊺ represents the transpose operator. Each observed variable is modeled as a 

linear combination of factors:

x j = β j1 f 1 + ⋯ + β jp f p + ∊ j, (1)

where ϵj represents the jth unique component including a random error and j = 1, 2, … ,m. A 

graphical representation of this factor model is given in Figure (1).

For an exploratory analysis, a factor model doesn’t place any structure on the linear 

relationships between observed variables nor between observed variables and factors. It 

specifies only the number of factors, thus a factor model being a proper method for the 

ordination. In other words, we can use 2 or 3 factors to graphically display similarities of 

data as we usually do with the principal components of PCoA. With a number p of factors, 

the factor analysis tries to find p factors that represent the covariance matrix as well as 

possible (Jolliffe, 2002), which implies that the estimated two factors of a 2-factor model 

can represent the covariance matrix better than or as well as any pair of factors of a p-factor 

model can do, where p > 2. Note that the focus of GOMMS is to accurately display 

properties of data in a low dimensional space, not to identify the optimal number of latent 

factors that explain most of the variation in data, as in typical factor analysis.

2.1 ZIQP Factor Model

Typical microbiome data consist of highly skewed non-negative counts with an excess of 

zeros. The source of these zero counts can be either true absence of microbes or undetected 

presence of microbes. To fit these sparse data, we introduce a ZIQP factor model. Let xij 

denote a count assigned to taxon j in sample i. Applying a factor approach to the log of rate 

μij, a ZIQP factor model can be given by

Xij~
0 with probability η j

QP μij, ϕ with probability1 − η j
,

log μij = βi0 + βi1 f j1 + ⋯ + βip f jp

(2)

where ϕ is an overdispersion parameter of the quasi-Poisson (QP) distribution, βi0 serves as 

a specific or unique factor loading for the ith sample that depends on the sequencing depth, 

βik is the kth factor loading for the ith rate profile, and fjk is the kth factor score for the jth 

feature, where i = 1, … , n, j = 1, …, m, and k = 1, …, p. In this model, the logarithm is the 

canonical link function for a Poisson model in the generalized linear model (GLM) 

framework (McCullagh and Nelder, 1989). In this model, the mean and dispersion of the 

observed count is

E Xi j = 1 − η j μi j, Var Xi j = 1 − η j ϕμi j,

Sohn and Li Page 3

Biometrics. Author manuscript; available in PMC 2018 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ϕ is used to account for extra-variability. Since the main purpose of this model is for 

ordination analysis, p is usually chosen as 2 or 3, in which case one can plot the estimated 

factor loadings (βi1, βi2, βi3) in a 2D or 3D plot.

2.2 Estimators of Parameters

The generalized log quasi-likelihood function is defined as

Q μ ∣ x = ∫
x

μ x − t
ϕV t dt, (3)

where ϕV(⋅) is variance. Denote Bn×(p+1) as a factor coefficient or loading matrix, Fm×(p+1) 

as a factor matrix with a vector of 1’s in the first column, and Bi and Fj as the ith row of B 
and the jth row of F, respectively. Then, the log quasi-likelihood function for the ZIQP 

model (2) can be expressed as

ℓ θ ∣ x = Σ
xij = 0

log η j − 1 − η j
exp BiF j

⊺

ϕ

+ Σ
xij > 0

log 1 − η j + ∫
xij

exp BiF j
⊺ xij − t

ϕt dt ,

(4)

where θ = (η, B, F, ϕ). The separation of zero and non-zero counts complicates the 

maximization of ℓ(θ|x). However, assuming we could observe Zij = 1 when Xij comes from 

an unknown zero state and Zij = 0 when Xij comes from QP, the complete log quasi-

likelihood function (4) can be expressed as

ℓ θ ∣ x = Σ
i = 1

n
Σ

j = 1

m
zijlog η j

+ Σ
i = 1

n
Σ

j = 1

m
1 − zij log 1 − η j

+ Σ
i = 1

n
Σ

j = 1

m
1 − zij ∫xij

exp BiF j
⊺ xij − t

ϕt dt .

The maximum likelihood estimation (MLE) for ηj is then the solution of

∇η j
ℓ θ ∣ x = ∑

i = 1

n zij − η j

η j 1 − η j
= 0, (5)

that is, η j = Σi = 1
n zij n, and MLEs for B and F are the solutions of
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∇Bℓ θ + X = 1 − Z ∘ X − exp BF⊺ F = 0 subject toB0 ≥ 0, (6)

∇Fℓ θ ∣ X + 1 − Z ∘ X − exp BF⊺ ⊺B−0 = 0, (7)

where X and Z are the matrices of {xij and {zij}, respectively, the subscript 0 indicates the 

first column of a matrix, −0 indicates the exclusion of the first column, and ο is the 

Hadamard product operator. The score functions (6) and (7) are identical to those of Poisson 

regression and Poisson regression with an offset B0. However, the solution of these 

parameters is not identifiable since both B and F are unknown. To achieve identifiability, we 

use as a constraint

Fk
⊺Fk′ = δkk′, (8)

where δkk′ is the Kronecker delta, and adopt an alternating maximum likelihood method. 

More details about the constraint and the alternating maximum likelihood method can be 

found in Shen and Huang (2008).

For the estimation of ϕ, Equation (3) doesn’t behave like a log likelihood. The conventional 

approach is a moment estimator based on the residuals (McCullagh and Nelder, 1989), that 

is,

ϕi = 1
m − p ∑

j = 1

m xij − μij
2

μij
, (9)

where p is the number of factors. We use a global overdispersion parameter ϕ = median ϕi . 

Note that it is more realistic to use an overdispersion parameter for each feature. This will, 

however, often lead some MLEs for B and F to be divergent during alternating maximum 

likelihoods in an expectation-maximization (EM) framework.

2.3 EM algorithm for a ZIQP Factor Model

The constraint and estimators (5) - (9) are used in an EM framework to obtain unique 

estimations of the parameters, θ = (η, B, F, ϕ).

2.3.1 Initialization Step.—Singular value decomposition (SVD) allows us to express a 

matrix An×m as

A = UΣV⊺ AV = UΣ, (10)
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where U is an n × r orthogonal matrix, Σ is an r × r non-negative diagonal matrix, V is an m 
× r orthogonal matrix, and r ⩽ min(m, n). It can be viewed as a transformation of the unit 

sphere in ℝn into an ellipsoid in ℝr that exposes the substructure of A more clearly, ordering 

it based on the amount of variation. Therefore, V is a good candidate for F since it satisfies 

the constraint (8) while SVD allows us to approximate A by selecting the first p values of Σ. 

The SVD approach has been used in various genomic studies (Holter et al., 2000; Lee et al., 

2013).

Since assuming a factor model on the logarithm of rate parameter, we apply SVD to the log 

of the standardized X after adding 0.5 to avoid singularity to obtain Vm×p and set F(0) = V. 

For zij
0 , the proportion of zeros in taxon j is used when xij = 0. To estimate B(0), we fit n 

quasi-Poisson regressions with weights 1i − Zi
0  using Xi as a response and F(0) as 

covariates, where 1 is an m × n matrix with 1’s; 1i and Zi are the ith rows of 1 and Z, 

respectively. With μij
0 = exp Bi

0 F j
0 T , we estimate ϕi

0  by (9) and then ϕ 0 = median ϕi
0 .

2.3.2 E Step.—Estimate zij
k  given current estimates of θ by

=
η j

ℓ − 1

η j
ℓ − 1 + 1 − η j

ℓ − 1 exp − μij
ℓ − 1 ϕ ℓ − 1 ifxij = 0,

0 otherwise .

2.3.3 M Step.—Given the current estimate of Z(ℓ), the following steps are performed in 

order:

(1) Maximize Bi
ℓ  with weights (1 — Z(ℓ))i by quasi-Poisson regressing Xi onto F(ℓ–1) 

for all i.

(2) Estimate ϕ(ℓ) with Bi
ℓ  and F(ℓ–1).

(3) Maximize F j
ℓ  with weights 1 − Z ℓ

j
⊺
 by quasi-Poisson regressing X j

⊺ onto B(ℓ) 

for all j.

(4) Apply SVD to the standardized B(ℓ) F(ℓ)T to obtain V(ℓ) and reset F(ℓ) = V(ℓ).

Repeat the EM steps until δF = max(F(ℓ) — F(ℓ−1)) < δ0, where δ0 is a small number, such as 

δ0 = 10−6.

3. Simulation Results

3.1 Data generated from negative binomial distributions

To illustrate potential problems of the distance-based ordination method and compare the 

performance of GOMMS with that of PCoA and NMDS, we simulated count data for two 

populations, each containing n samples from negative binomial (NB) models with the 

estimated proportion pj of taxon j from real datasets including the Human Microbiome 
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Project (The Human Microbiome Project Consortium, 2012), where NB(μ, ϕ) represents the 

probability mass function of a negative binomial with the parameters of mean μ and 

overdispersion ϕ,

PNB X = x ∣ ϕ =
Γ x + ϕ−1

Γ ϕ−1 Γ x + 1
1

1 + ϕμ
ϕ−1 μ

ϕ−1 + μ

x
.

The dispersion Var(X) = μ(1 + ϕμ). We set μij = N0pj for two populations and ϕG2 = 10ϕG1, 

where N0 is an arbitrary constant, and ϕG1 and ϕG2 are global overdispersions for the first 

and second population, respectively. In other words, there is no mean difference in taxa 

between the two populations but a strong difference in dispersions of the two populations. 

We used a global overdispersion parameter for each population to demonstrate potential 

problems of the distance-based ordination method more clearly. For the following 

simulations, 80 samples (40 samples per population) and 100 taxa were simulated.

As for comparisons, we used the Bray-Curtis distance (Bray and Curtis, 1957) for PCoA and 

NMDS as their distance matrix, which is commonly used in microbiome data analysis. 

Figure (2) (a) shows 2-D ordination results for the three methods: GOMMS, PCoA, and 

NMDS. GOMMS shows a similar centroid but clear difference in dispersions. NMDS also 

shows a similar centroid but very different dispersions. However, PCoA shows differences in 

both centroids and dispersions, which is misleading.

To view the mean difference under strong dispersion effects, we swapped the mean counts 

for the first 10 taxa with the following 10 taxa in the second population. The results for this 

case are shown in Figure (2) (b). GOMMS and PCoA display both mean and dispersion 

differences while NMDS doesn’t display a mean effect. As shown in Figure (2), under a 

strong dispersion effect, PCoA tends to show a mean difference; however, NMDS tends not 

to display any mean difference whether or not there is a mean difference, clearly showing 

the potential problems of the distance-based ordination methods.

3.2 Data generated from zero-inflated negative binomial distributions with taxon-specific 
dispersion parameters

Secondly, we used a Zero-Inflated Negative Binomial (ZINB) model with randomly 

generated mean counts for taxa, namely

xij = η jI xij = 0 + 1 − η j NB μij, ϕ j I xij ≥ 0 ,

where ηj is the proportion of taxon j from a zero state and I is the indicator function. For 

ZINB models, we used taxon-specific overdispersion parameters, that is, a value of 

overdispersion for each taxon ϕj was randomly generated. For the range of the rate 

parameter, we used the products of randomly selected values of the three parameters: an 

expected common mean uj ~ int(1,10) for taxon j, a difference factor wj ~ int(2, 5) for taxon 

j between two populations, and a sample scale si ~ int(1,10) for sample i to mimic different 

sequencing depths, where int(a,b) denotes any randomly selected integer between a and b. 
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For the mixture parameter ηj for sample j, we used ηj = exp(−4.6/μj) to make the probability 

of true zero depending on the means. For the cases of significant dispersion differences 

between two populations, the overdispersion parameter for each taxon ϕj in one population 

was randomly generated from Unif(0.5,1) and that in the other population from Unif(3,10). 

For the cases of little or no significant dispersion effect between two populations, a value of 

overdispersion for each taxon ϕj for each population was randomly generated from 

Unif(0.5,10).

Results of simulations are presented in Figure 3 for four different scenarios with various 

differences in means and/or dispersions. Similar conclusions can be drawn as the data 

simulated under the NB models. When there are differences in dispersions between two 

populations, NMDS fails to display differences in the means (Figures 3 (c) and (d)). On the 

other hand, PCoA tends to present a false difference in the means (Figure 3 (d)) in the 

presence of differences in dispersions. GOMMS seems to capture these differences clearly 

even there are taxon-specific dispersions.

3.3. Power/type 1 error comparisons

For a quantitative comparison of testing the difference in the overall means between two 

populations, we applied the Hotelling’s T2 test with unequal covariance matrices using the 

coordinates estimated from GOMMS, PCoA, and NMDS. By generating data as in the 

previous section using the ZINB models, we evaluated the effects of sample size n, the 

number of features, the number of differentially abundant features and the sparsity of the 

count data on the power and type 1 error of the Hotelling’s T2 test. Specifically, to evaluate 

the effect of sample size, we randomly generated datasets with various numbers of samples 

(n = 20, 50, 100) and a fixed number of taxa (p = 100). To evaluate the effect of the number 

of taxa, we used 50 samples with various numbers of taxa (p = 50, 100, 200) but a fixed 

number of differentially abundant taxa (20%). To evaluate the effect of the number of 

differentially abundant taxa, with 50 samples and 100 taxa, they were increased by two-fold 

from 10%. Finally, to evaluate the effect of the sparsity, we used a fixed sample size of 50 

but varied the rate parameter as well as the number of taxa. Overall, we considered a total of 

400 simulations for each case, including 100 simulations where there is no mean or 

dispersion differences, 100 simulations where there is a mean difference but no dispersion 

difference, 100 simulations where there is a dispersion difference but no mean difference, 

and 100 simulations where there are both mean and dispersion differences. The empirical 

power and type 1 error for α = 0.01 are calculated based on these simulations. Results for α 
level of 0.05 and 0.001 are similar and are omitted.

Table 1 summarizes the simulation results. Where there is no difference in dispersions of 

two populations, overall, we observe that the tests from all the three ordination methods have 

essentially the same power with the type 1 errors well controlled around α = 0.01. However, 

when there is a difference in dispersions between two populations, tests based on PCoA 

clearly yield extremely inflated type 1 errors. In contrast, tests based on GOMMS and 

NMDS control the type 1 errors within the specified 0.01 level although tests based on 

NMDS are slightly conservative. However, tests based on GOMMS have better power for 

detecting differences in the means between two populations.
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4. Exploratory Analysis of Real Data: Microbial Communities in the Upper 

Respiratory Tract

The original data sets consist of 16S rRNA gene sequences of 291 swap samples from the 

left and right sides of nasopharynx and oropharynx of each 29 smoking and 33 nonsmoking 

healthy adults (Charlson et al., 2010). We used 269 samples after removing duplicate 

samples from the same adult. The sequences were analyzed for a taxonomic assignment 

using the Qiime pipeline (Caporaso et al., 2010) with a default parameter setting. We first 

analyzed the samples of nonsmoking healthy adults to see a difference in microbial 

communities between different sites of the upper respiratory tract. With the taxonomic 

assignments at the genus level, we performed ordination with GOMMS. As shown in Figure 

(4) (left panel), there are little or no mean or dispersion difference in the samples of the left 

and right sides of the upper respiratory tract (p=0.98 for nasopharynx, and p = 0.98 for 

oropharynx, Hotelling’s T2 tests). However, there are mean and dispersion differences in the 

samples of nasopharynx and oropharynx (p=0.00, Hotelling’s T2 test, and p = 0.00, Box’s M 

test). The samples of oropharynx seem to have a higher dispersion than those of 

nasopharynx.

Since there is no difference in the samples of the left and right sides, the samples for the two 

sides are treated as independent replicates and used to see the impact of smoking on airway 

bacterial communities. The ordination result with the taxonomic assignments at the genus 

level is shown in the right panel of Figure (4). We observed some effect of smoking on 

nasopharyngeal bacterial communities but not on oropharyngeal bacterial communities 

(p=0.02 and 0.24, respectively, Hotelling’s T2 tests). However, among the smokers, a wider 

variation in oropharyngeal samples is observed as compared to the nasopharyngeal samples 

(p=0.062, Box’s M test).

To explain the variation in oropharyngeal bacterial communities among the smokers, we 

calculated the correlations between the three factors obtained by GOMMS and two 

quantitative variables provided with the upper respiratory tract dataset, including elapsed-

time-since-last-meal and elapsed-time-since-last-smoke. We observe a significant correlation 

between elapsed-time-since-last-smoke and one of the factors (Kendall’s rank correlation 

coefficient τ = −0.241 and its p-value = 0.009, Figure (5)), which may imply potential short-

term changes in oropharyngeal bacterial communities caused by smoking.

As for comparisons, results of PCoA and NMDS are also shown in Figure (4) (middle and 

bottom panels), both also indicating mean and dispersion differences in the samples of 

nasopharynx and oropharynx and higher dispersion in oropharyngeal samples than those of 

nasopharynx. As expected, no significant difference was observed between left and right 

sites using either of the loading scores. However, Hotelling’s T2 test with PCoA loading 

scores indicate a significant mean difference between smokers and non-smokers in 

oropharyngeal microbiomes (p=0.004), but not in the nasopharyngeal bacterial communities 

(p=0.22).
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5. Discussion

It is well known that microbiome data are overdispersed; the degree of dispersion can vary 

across different populations, such as diseased and healthy populations. Therefore, it is 

logical to extract the information about dispersion directly from data. However, the distance-

based approach, which makes an implicit assumption about dispersion, is used for ordination 

in the vast majority of published articles in the microbiome study. This approach provides 

reliable results when two conditions are satisfied: 1) a distance metric used is appropriate for 

given data and 2) dispersion effects are small across different populations. However, if either 

of the two conditions is not satisfied, it might provide undesirable results as depicted in the 

Warton et al. (2012) article and this article, where the distance-based methods can confound 

location and dispersion effects.

The proposed model includes only one global overdispersion parameter in order to achieve 

more computationally stable and fast results. However, as shown in Section 3.2, this simple 

model can indeed capture the main features of the data in term of overall means and 

dispersions even when the data are generated with taxon-specific overdispersions. Similarly, 

for the purpose of ordination analysis, we suggest fitting the model with a very small 

number of latent factors. We observed in our simulations that even the true models include a 

large number of latent factors, fitting the proposed model with two to three factors can reveal 

the differences in means or dispersions between two populations.

GOMMS resolves the problems of the distance-based approach and also provides a way to 

link characteristics of a microbial community with covariates of interest through estimated 

latent factors. However, it has a disadvantage in computation time. The distance-based 

approach, particularly PCoA, is extremely fast and irrelevant to the problem of divergence. 

However, since GOMMS uses an alternating regression in the EM framework to estimate 

parameters, it is slower compared to the distance-based approach and parameter estimates. 

However, for practical sample sizes and number of taxa in microbiome studies, the average 

runtime is in several minutes. For example, for a sample of 50, the average runtime of 

GOMMS on a typical desktop PC is 22.46, 40.37, 66.35 seconds for 50, 100 and 200 taxa, 

compared to 0.12, 0.12 and 0.12 seconds for PCoA and 9.30, 14.96, 18.33 seconds for 

NMDS, respectively. Finally, in practice, to minimize the issue of convergence of the EM 

algorithm, GOMMS includes only the taxa whose numbers of nonzero counts are greater 

than the larger of two numbers: the number of factors and 5% of the sample size. When 

there are more than p distinct nonzero values for each taxon, non-convergence rarely occurs. 

The R package for GOMMS provides the result of convergence.

While the methods are developed for count data from 16S rRNA sequencing in microbiome 

studies, the ideas can be extended to the situations where only the relative abundances or the 

composition of the taxa are available, in which case a zero-inflated Beta distribution with 

latent factors can be considered. For the shotgun metagenomic data, one can align the 

sequencing reads to clade-specific marker genes (Segata et al., 2012) or a set of universal 

marker genes (Sunagawa et al., 2013) and obtain a set of read counts over these marker 

genes. The proposed quasi-Poisson model can be modified to include multivariate counts. 

Finally, it is also interesting to extend the method to incorporate covariates.
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R codes to implement the methods and the real data sets are available at https://cran.r-

project.org/web/packages/gomms/
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Figure 1. 
A graphical representation of a factor model for an example involving p orthogonal factors 

and m observed variables.
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Figure 2. 
Simulation results where data are generated from NB distributions. (a) There is a difference 

in dispersions but not in means between the two populations. (b) There is a difference in 

both means and dispersions between the two populations. The difference in dispersions 

between two populations is 10 fold. White circles represent samples in a population with 

higher dispersion.
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Figure 3. 
Simulation results where data are generated from ZINB distributions with taxon-specific 

overdispersion parameters. Four scenarios are presented, where each population is 

represented by a different color and white circles represents samples in a population with 

higher dispersion.
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Figure 4. 
Comparisons of bacterial community compositions from three methods, where circles and 

triangles represent samples from nasopharynx and oropharynx, respectively. Left panel: 

comparison between nasopharynx and oropharynx among the non-smokers. Dark gray color 

is for samples from the right side of nasopharynx and oropharynx and white color is for 

samples from the left side. Right panel: comparison between smokers and non-makers. Dark 

gray color represents samples of smokers and white color represents samples of nonsmokers.
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Figure 5. 
Elapsed time since last smoke vs. the estimated factor loadings for oropharyngeal samples of 

the smokers, τ is Kendall’s rank correlation coefficient and p is its corresponding p-value.
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Table 1

Size/power comparison based on Hotelling’s two-sample T2 test for mean difference between two populations 
using the estimated coordinates at α = 0.01. For each entry, the first number is the empirical test size, and the 
second number is the power.

No difference in dispersions Difference in dispersions

GOMMS NMDS PCoA GOMMS NMDS PCoA

Sample size, n

20 0.01/1.00 0.01/1.00 0.00/1.00 0.01/0.33 0.00/0.18 0.56/0.99

50 0.01/1.00 0.00/1.00 0.00/1.00 0.01/0.79 0.00/0.42 1.00/1.00

100 0.02/1.00 0.01/1.00 0.00/1.00 0.02/0.98 0.00/0.79 1.00/1.00

# of taxa, p

50 0.00/0.98 0.00/0.99 0.01/1.00 0.04/0.60 0.00/0.39 0.76/1.00

100 0.01/1.00 0.00/1.00 0.00/1.00 0.01/0.79 0.00/0.42 1.00/1.00

200 0.00/1.00 0.00/1.00 0.01/1.00 0.03/0.94 0.00/0.40 1.00/1.00

% Differential abundant taxa

10% 0.00/1.00 0.00/1.00 0.00/1.00 0.01/0.53 0.00/0.21 1.00/1.00

20% 0.01/1.00 0.00/1.00 0.00/1.00 0.01/0.79 0.00/0.42 1.00/1.00

30% 0.01/1.00 0.00/1.00 0.00/1.00 0.04/0.89 0.00/0.77 0.91/1.00

Sparsity, % of zeros

30% 0.00/1.00 0.00/1.00 0.01/1.00 0.03/0.91 0.00/0.27 1.00/1.00

50% 0.01/1.00 0.00/1.00 0.00/1.00 0.02/0.81 0.00/0.46 1.00/1.00

70% 0.02/1.00 0.00/1.00 0.01/1.00 0.04/0.81 0.00/0.68 0.99/1.00
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