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Abstract— This paper addresses the problem of designing a
global adaptive learning control for robotic manipulators with
revolute joints and unknown dynamics. The reference signals
to be tracked are assumed to be smooth and periodic with
known period. By developing in Fourier series expansion the
input reference signals of every joint, an adaptive learning PD
control is designed which ’learns’ the input reference signals by
identifying their Fourier coefficients: global asymptotic tracking
and local exponential tracking of both the input and the output
reference signals is obtained when the Fourier series expansion
of each input reference signal is finite, while arbitrary small
tracking errors are achieved otherwise. The resulting control
is not model based and depends only on the period of the
reference signals and on some constant bounds on the robot
dynamics.

I. INTRODUCTION

In this paper we refer to the tracking control of robot
manipulators with revolute joints. As known [1], control laws
based on feedback from the position and velocities of the
joints have been shown to be globally asymptotically stable,
provided that the gravity terms are compensated. It has been
also shown that PD controllers may be used for trajectory
tracking, with accuracy related to the velocity feedback
gains [2]. Moreover, such control algorithms are robust with
respect to uncertainties on the inertia parameters; namely,
even though the inertia parameters are not known, the global
asymptotic stability is ensured. Conversely, uncertainties on
the gravity parameters may lead to undesired steady-state
errors [3].
When the robot dynamics are highly uncertain, adaptive and
learning control laws have been developed in order to cope
with the model uncertainties. Adaptive controls require the
assumption that the robot dynamics can be expressed as the
product of known functions and unknown parameters [4]. On
the other hand, learning controls require that the reference
trajectory is periodic with known period. The key idea is to
use the information obtained in the preceding trial to improve
the performance in the current one. Under the assumption
that the accelerations are measured and a resetting precedure
is performed at the beginning of each trial, learning control
laws were initially proposed in [1], [2]. In [5] three adaptive
iterative learning controllers are proposed that guarantee L2

convergence to zero of the position and velocity tracking
errors, only requiring a position and velocity errors resetting
at the begin of each trial: if the exact reset is not guaranteed,
then the position error can be made arbitrarily small by
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increasing the feedback gains. In [6] two control laws with
velocity estimation are proposed, which assure local uniform
asymptotic convergence of the position error to zero. The first
one is an adaptive control law which provides an estimation
of the inverse dynamics (assuming that the reference input
signal is linearly parametrized by unknown parameters). The
second one is a learning control law and assumes that the
reference input signal can be represented by an integral of
the product of a known differentiable kernel and an unknown
influence function: no robustness analysis is provided for
reference input signals which do not belong to such a class.
In [7] an adaptive control law and a learning control law
are combined in order to achieve an L2 convergence of the
position and velocity errors, provided that an exact reset
of the joint angles and velocities can be assured at the
beginning of each trial. In [8] four adaptive PID control
laws are applied to a robot arm, with revolute joints, which
has been linearized along the desired trajectory. The control
law consists of a PID feedback part and a learning part
which learns the input reference. Asymptotic tracking is
achieved in the first three control schemes, provided that the
feedback gains satisfy some inequalities, while an adaptation
on the feedback gains is used in the fourth one. An adaptive-
learning control law is proposed in [9] in which the L2

convergence is achieved when the target of the adaptive
control, which requires a linear parametrization of the robot
dynamics, is to track a periodic reference signal. In [10] a
hybrid adaptive/learning control is presented, which, combin-
ing the iterative learning and the adaptive control approaches,
achieves global asymptotic convergence to zero of the joint
errors: the proposed controller requires, as usual in iterative
learning algorithms, infinite memory and do not guarantee
exponential convergence.
This paper addresses the problem of designing a global
adaptive learning PD control for robotic manipulators with
revolute joints and unknown dynamics. The reference signals
to be tracked are assumed to be smooth and periodic with
known period. By developing in Fourier series expansion
the input reference signals of every joint of the manipulator,
an adaptive learning PD control is designed which ’learns’
the input reference signals by identifying their Fourier co-
efficients: global asymptotic tracking and local exponential
tracking of both the input and the output reference signals
is obtained when the Fourier series expansion of each input
reference signal is finite, while arbitrary small tracking errors
are achieved otherwise. The resulting control is not model
based and depends only on the period of the reference
signals and on some constant bounds on the robot dynamics.
The control structure consists of a linear part (proportional
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and derivative) plus a learning part which reconstructs the
unknown reference input signal. The structure of the learning
part is obtained by adapting to the multi-input multi-output
robot model the method already used in [11] for local
state feedback control of single-input single-output feedback
linearizable systems and in [12] for local output feedback
control of single-input single-output systems in output feed-
back form. Preliminary local results for robot control were
obtained in [13]. The results here presented are global and
are based on the choice of a different Lyapunov function
proposed in [3], [14].

II. SYSTEM DEFINITION AND ASSUMPTIONS

Consider the dynamics of an n-link rigid robot with
rotational joints as described by

H(q)q̈ + C(q, q̇)q̇ + E(q) + F (q̇) = u (1)

where: q is the n×1 vector of the joint coordinates; H(q) is
the inertia matrix, which is symmetric positive definite and
bounded for any q; C(q, q̇) takes into account the Coriolis
and centrifugal forces and is linear with respect to q̇ and
bounded with respect to q; F (q̇) is the friction vector; u is
the vector of the applied torques; E(q) is the vector of the
gravity forces given by E(q) = ∂U(q)/∂q where U(q) is
the gravitational energy which is bounded for any q. The
vector E(q) and its partial derivative with respect to q are
also bounded. We list in the following the properties owned
by the robot model (1) and the assumptions under which the
control algorithm is designed.

Assumption 2.1: The reference signal qr(t) ∈ CN (with
N > 5) is periodic with known period T and such that
||qr(t)|| ≤ B0, ||q̇r(t)|| ≤ B1, ||q̈r(t)|| ≤ B2 with B0, B1,
B2 known positive constant reals.

Property 2.1: Given a proper definition of C that is not
unequivocally defined by the form C(q, q̇)q̇ the matrix
Ḣ − 2C is skew-symmetric. One possible definition for the
elements of C which leads to the skew-symmetry of Ḣ−2C
is

Ci,j(q, q̇) =
1

2

[
q̇T ∂Hi,j

∂q
+

n∑
k=1

(
∂Hi,k

∂qj
− ∂Hj,k

∂qi

)
q̇k

]

which implies that

Ḣ(q) = C(q, q̇) + CT (q, q̇)

C(q, x1)x2 = C(q, x2)x1. (2)

Property 2.2: The inertia matrix H(q) is such that

Hm ≤ ‖H(q)‖ ≤ HM , ∀q ∈ �n∥∥∥Ḣ(q)
∥∥∥ ≤ HDM ‖q̇‖ , ∀q, q̇ ∈ �n

‖H(q) − H(qr)‖ ≤ kH ‖q − qr‖ , ∀q, qr ∈ �n.

Property 2.3: The matrix C(q, q̇) is such that

‖C(q, q̇r)‖ ≤ CM ‖q̇r‖ , ∀q, q̇r ∈ �n

‖C(q, q̇r) − C(qr , q̇r)‖ ≤ kC ‖q − qr‖ , ∀q, qr, q̇r ∈ �n.

Property 2.4: The vector of the gravity forces E(q) is
such that

‖E(q)‖ ≤ EM , ∀q ∈ �n

‖E(q) − E(qr)‖ ≤ kE ‖q − qr‖ , ∀q, qr ∈ �n.

Assumption 2.2: The friction vector F (q̇) is such that
F (0) = 0 and

‖F (q̇) − F (q̇r)‖ ≤ FM ‖q̇ − q̇r‖ ∀q̇, q̇r ∈ �n.

Assumption 2.3: The bounds Hm, HM , HDM , kH , CM ,
kC , EM , kE , FM defined in Properties 2.2-2.4 and Assump-
tion 2.2 are known positive reals.
The bounded periodic reference input ur(t) ∈ �n of period
T, corresponding to the reference qr(t), can be computed as

ur = H(qr)q̈r + C(qr , q̇r)q̇r + E(qr) + F (q̇r). (3)

From (3), from Properties 2.1-2.4 and from Assumption 2.2,
the reference input ur(t) satisfies the inequality

‖ur(t)‖ ≤ FMB1 + EM + CMB1 + HMB2
�

= B(0) (4)

∀t ∈ [0, T ], with B(0) ≥ 0 a known constant real by virtue
of Assumption 2.1. Subtracting (3) from (1) and taking (2)
into account, we obtain the error dynamics

u − ur = H(q)¨̃q + [H(q) − H(qr)] q̈r + C(q, q̇) ˙̃q

+C(q, q̇r) ˙̃q + [C(q, q̇r) − C(qr, q̇r)] q̇r

+ [E(q) − E(qr)] + F (q̇) − F (q̇r) (5)

where q̃ = q − qr and ˙̃q = q̇ − q̇r. Let θi =
[θi,1, θi,2, · · · , θi,pi

]T be the vector of the first pi Fourier
coefficients of the Fourier series expansion of the i-th com-
ponent of ur(t) = [ur,1(t) · · · , ur,n(t)]T , where 1 ≤ i ≤ n
and pi is an odd number. There exist n positive reals εMi

such that (see [15]) ur,i(t) =
∑pi

k=1 θi,kφi,k(t) + εi(t) =
φT

i (t)θi + εi(t) where |εi(t)| ≤ εMi and with φi(t) =
[φi,1(t), · · · , φi,pi

(t)]T and

φi,1(t) = 1,

φi,2j(t) =
√

2 sin(2πjt/T ),

φi,2j+1(t) =
√

2 cos(2πjt/T ),

j = 1, . . . , (pi − 1)/2 . (6)

Consequently, we can write

ur(t) = ΦT (t)Θ + ε(t) (7)

where ε(t) = [ε1(t), · · · , εn(t)]T ∈ �n, ||ε(t)|| ≤ εM =

(
∑n

i=1 ε2Mi)
1/2, Θ = [θT

1 , · · · , θT
n ]T ∈ �

∑
n

i=1
pi and

ΦT (t) =

⎡
⎢⎢⎢⎣

φT
1 (t) 0 · · · 0
0 φT

2 (t) · · · 0
... 0

. . . 0
0 0 · · · φT

n (t)

⎤
⎥⎥⎥⎦ ∈ �n×

∑
n

i=1
pi .
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Since by Assumption 2.1 qr(t) ∈ CN , then ur(t) ∈ CN−2

and εMi is such that (see [15])

εMi =

{
4B

(N−2)
i

(
T
2π

)N−2 N−2
N−3 , pi = 1

4B
(N−2)
i

(
T
2π

)N−2 2N−3

N−3
1

(p−1)N−3 , pi > 1

where B
(N−2)
i = sup0≤t≤T (|dN−2(ur,i(t))/dtN−2|). By

virtue of the Bessel inequality we have ||Θ||2 ≤
1
T

∫ T/2

−T/2
||ur(τ)||2dτ which, in view of (4), implies

||Θ|| ≤ B(0) . (8)

Since the reference signal ur(t) defined by (3) and (7) is
unknown, we introduce the estimate ûr(t) = ΦT (t)Θ̂(t)
with Θ̂T (t) = [θ̂T

1 (t), · · · , θ̂T
n (t)]. Since Θ is bounded by a

known bound, we use the projection algorithm proj(χ, Θ̂) so
that the estimate Θ̂(t) is constrained to belong to a suitable

region. We define ˙̂
Θ = a proj(χ, Θ̂), in which a is a positive

adaptation gain, χ is a suitable function and proj(χ, Θ̂) is
given by

proj
(
χ, Θ̂

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

χ, if β(Θ̂) ≤ 0

χ, if β(Θ̂) > 0 and

χT grad
(
β(Θ̂)

)
≤ 0

χp, if β(Θ̂) > 0 and

χT grad
(
β(Θ̂)

)
> 0

where β(Θ̂) = (||Θ̂||2 − r2)/(α2 + 2αr),
grad[β(Θ̂)] = (2Θ̂)/(α2 + 2αr), χp = χ −
β(Θ̂)(grad[β(Θ̂)]grad[β(Θ̂)]T )/(grad[β(Θ̂)]T grad[β(Θ̂)])χ
in which α is an arbitrary positive constant and r is the
radius of the ball S ⊂ �n, centered at the origin, containing
Θ. According to (8), r = B(0) in our case. By definition,
proj(χ, Θ̂) is Lipschitz continuous and if Θ̂(0) ∈ S then the
following properties hold ([16]), ∀t ≥ 0,

Θ̃T (t)proj(χ, Θ̂(t)) ≥ Θ̃T (t)χ,∥∥∥Θ̂(t)
∥∥∥ ≤ α + B(0), ∀t ≥ 0,∥∥∥proj(χ, Θ̂)
∥∥∥ ≤ ‖χ‖ (9)

with Θ̃ = Θ − Θ̂. From (6), (8), (9) and since r = B(0) we
obtain

||ΦT (t)Θ̂|| ≤ √
p
∥∥∥Θ̂

∥∥∥ ≤ √
p

(
B(0) + α

)
(10)

where p ≥ max1≤i≤n {pi}. Finally we define γ̄1 =
HM/(k)1/2, γ̄2 = 2HM/(kHm)1/2, γ̄3 = [(2γ∗

1 )/k +
2[(γ∗

1 )
2

+ kγ∗
2 ]1/2/k]2, γ̄4 = [(2γ∗

3)/(3k) + 2[(γ∗
3)

2
+

3kγ∗
4 ]1/2/(3k)]2, γ̄5 = 32p(B(0) + α)2/k2, γ̄6 =

HM/k, γ̄7 = 32p(B(0) + α)2(2 + A2
p)/(k2A2

p), γ̄8 =

64HmA2
vp(B(0) + α)2/(k2HmA2

V ), γ̄9 = HM/k, γ̄10 =
1/k, γ̄11 = 1/k2, γ̄12 = 1, γ̄13 = 1/[8Gp2(1+8A2

P )], γ̄14 =
[HM/[8Gp2k(1 + 8A2

P )]]2/3, γ̄15 = [H2
M/[2GHmp2k(1 +

8A2
P )]]2/3, k̄ = 128p(B(0) + α)2/(HmA2

V ) where γ∗
1 =

FM +K1+K2+K3+CMB1+k, γ∗
2 = 2HM +CM/(2

√
2)+

2CMB1 + FM , γ∗
3 = K1 + K2 + K3 + k, γ∗

4 = 2CMB1 +
B2KH +KCB1+KE +FM + k

2 , G = HM/4+6+2[(T/2+

1)a + KHB2 + KCB1 + KE]2 + 4[ωHM/2 + HDMB1 +
2CMB1 + FM + HM ]2 + 4a2(T/2 + 1)2 + 16A2

V [CM +
HDM ]2, K1 = max[B2

√
k2

H + 8H2
M , 2

√
2B2HM +B2kH ],

K2 = max[B1

√
k2

C + 8C2
MB2

1 , 2
√

2B2
1CM +B1kC ], K3 =

max[
√

k2
E + 8E2

M , 2
√

2EM +kE], α, AP , AV are arbitrary
positive constants and k, a are positive reals to be defined
in the control design. We are now ready to state and prove
the main result: the proof is constructive and contains the
control design.

Theorem 2.1: Consider system (1) satisfying Assumptions
2.2, 2.3 and a reference output signal yr(t) satisfying As-
sumption 2.1. Consider the dynamic control algorithm

u(t) = −ΦT (t)Θ̂(t) − γkq̃(t) −√
γk ˙̃q(t)

˙̂
Θ(t) = a proj

[
√

γΦ(t) ˙̃q(t) + Φ(t)
q̃(t)

1 + 2 ‖q̃(t)‖2 , Θ̂(t)

]

Θ̂(0) = Θ̂0 (11)

where k, γ ∈ � are positive reals, ||Θ̂0|| ≤ B(0) and Θ̂ is
an estimation of the vector Θ defined in (7). Assume that
k ≥ k̄ and γ > max1≤i≤15 {γ̄i}. Then:

(i) All closed loop signals are bounded and, in partic-
ular, ||Θ̂(t)|| ≤ B(0) + α, ||q̃(t)|| ≤ AP + 2r0,
|| ˙̃q(t)|| ≤ AV +2r0(kγ/Hm)1/2 with r0 = (||q̃(0)||2+
|| ˙̃q(0)||2)1/2.

(ii) The tracking errors ||q̃(t)|| and || ˙̃q(t)|| converge
globally uniformly asimptotically into the region
||q̃(t)||2/A2

P + || ˙̃q(t)||2/A2
V ≤ 1.

(iii) The errors ||q̃(t)||, || ˙̃q(t)|| and ||Θ̃(t)|| converge glob-
ally uniformly asymptotically and locally exponen-
tially into the region ||q̃(t)||2/E2

P + || ˙̃q(t)||2/E2
V +

||Θ̃(t)||2/E2
S ≤ 1 where EP = O(1/pN−4

m ), EV =

O(1/p
N−9/2
m ), ES = O(1/p

N−9/2
m ) as pm → ∞ with

pm = min1≤i≤n {pi}. Moreover lim supt→∞ |ΦT Θ̂−
ur(t)| ≤ EU = O(1/pN−5

m ).
(iv) If ε(t) = 0, ∀t ≥ 0, the equilibrium point

(q̃T , ˙̃q
T
, Θ̃T ) = 0, of the closed loop system (5),

(11) is globally uniformly asymptotically and locally
exponentially stable.

Remark 2.1: The control law is not model based and
consists of the sum of two terms: a PD linear term and
a learning term which reconstructs the reference torque
corresponding to the desired output trajectory. The order of
the controller is equal to

∑n
i=1 pi, with pi being the number

of estimated Fourier coefficients of the i-th joint torque.
Remark 2.2: As shown by Property (iii), the accuracy

obtained by the proposed controller can be improved by
increasing the number of the estimated Fourier coefficients
for each joint reference torque. If the joint reference inputs
have a finite Fourier series expansion, the joint tracking
errors converge globally (and locally exponentially) to zero,
while the estimates Θ̂(t) converge towards the true values
Θ.

Remark 2.3: The bounds EP , EV , ES , EU can be arbi-
trarily reduced by increasing the number pi of the estimated
Fourier coefficients of each input reference torque ur,i(t)
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with 1 ≤ i ≤ n.
Proof. Consider the function

V =
√

γ

[
1

2
γq̃T KP q̃ +

1

2
˙̃q
T
H(q) ˙̃q

]
+

˙̃q
T
H(q)q̃

1 + 2 ‖q̃‖2 ,

which is such that Vm = 0.25(γ)3/2k||q̃||2 +
0.25Hm(γ)1/2|| ˙̃q||2 ≤ V ≤ (γ)3/2k||q̃||2 +
HM (γ)1/2|| ˙̃q||2 = VM provided that γ ≥ max {γ̄1, γ̄2}.
From Assumption 2.1,2.2 and Properties 2.2-2.4,
differentiating V, we obtain

V̇ ≤ −
[√

γ

(√
γ

k

2
− γ∗

1

)
− γ∗

2

]∥∥ ˙̃q
∥∥2

− [
√

γ (
√

γk − γ∗
3 ) − γ∗

4 ]
‖q̃‖2

1 + 2 ‖q̃‖2

+
√

γ
∥∥ ˙̃q

∥∥ ∥∥∥−ur(t) − ΦT (t)Θ̂(t)
∥∥∥ − γ

k

2

∥∥ ˙̃q
∥∥2

+
∥∥∥−ur(t) − ΦT (t)Θ̂(t)

∥∥∥ ‖q̃‖
1 + 2 ‖q̃‖2

−k

2

‖q̃‖2

1 + 2 ‖q̃‖2 (12)

where γ∗
1 , γ∗

2 , γ∗
3 , γ∗

4 have already been defined. From (12),
completing the squares, choosing γ ≥ max {γ̄3, γ̄4} and
recalling (4) and (10) we obtain

V̇ ≤ −γ
k

4
ϕ

(‖q̃‖ ,
∥∥ ˙̃q

∥∥)
+

4p(B(0) + α)2

k
(13)

in which ϕ(||q̃||, || ˙̃q||) = || ˙̃q||2 + ||q̃||2/(1 + 2||q̃||2).
From (13), it follows that V̇ ≤ 0 if ϕ(||q̃||, || ˙̃q||) ≥
16p(B(0)+α)2/(γk2). Since the level curves of the function
ϕ(||q̃||, || ˙̃q||) are closed only if ϕ(||q̃||, || ˙̃q||) < 0.5, the
closed loop trajectories are bounded ∀t ≥ 0 provided that
γ > max {γ̄3, γ̄4, γ̄5}. From the expressions of the functions
Vm and VM we obtain that ||q̃|| and || ˙̃q|| converge uniformly
asimptotically into the region

||q̃||
A2

P

+
|| ˙̃q||
A2

V

≤ 1, AP , AV ∈ �+ (14)

provided that k > k̄ and choosing γ > max1≤i≤8 {γ̄i}
(Property (ii) of Theorem 2.1). If ||q̃(0)||2/A2

P +
|| ˙̃q(0)||2/A2

V ≥ 1 and ||q̃(t)||2/A2
P + || ˙̃q(t)||2/A2

V ≥ 1,
Vm(t) ≤ V (t) ≤ VM (0) so that, since γ ≥ γ̄9, it follows that
||q̃(t)|| ≤ AP + 2r0 and || ˙̃q(t)|| ≤ AV + 2r0(γk/Hm)1/2,
∀t ≥ 0 (Property (i) of Theorem 2.1). Moreover, there exists
a finite time instant t∗ ≥ 0 such that

||q̃(t)||
4A2

P

+
|| ˙̃q(t)||
4A2

V

≤ 1 , ∀t ≥ t∗ . (15)

Consider the function W = V + ||Θ̃||2/(2a) which is such
that Wm = Vm + ||Θ̃||2/(2a) ≤ W ≤ VM + ||Θ̃||2/(2a) =
WM provided that γ ≥ max {γ̄1, γ̄2}. Differentiating W and
recalling (11) we obtain Ẇ ≤ −γkϕ(||q̃||, || ˙̃q||)/4 + ε2S/k
where εS = supt∈[0,T ] ||ε(t)||. If γ ≥ max1≤i≤9 {γ̄i} the

closed loop trajectories are such that ||q̃(t)|| ≤ 2AP ∀t ≥ t∗,
so that

Ẇ ≤ − γk

4 (1 + 8A2
P )

(∥∥ ˙̃q
∥∥2

+ ‖q̃‖2
)

+
ε2S
k

. (16)

Consider the function

U = W +
1

2
a∗

∥∥∥QΘ̃ − ΦH(q) ˙̃q
∥∥∥2

(17)

in which a∗ > 0 is yet to be defined and Q(t) is the
matrix solution of Q̇ = −Q + Φ(t)ΦT (t), Q(0) = (T/2)I

from which, since
∫ t+T

t Φ(τ)ΦT (τ)dτ ≥ (T/2)I > 0
(∀t ≥ 0) we have (T/2)e−T I < Q(t) ≤ (T/2)I + pI
with p ≥ ||Φ||2 = max1≤i≤n {pi}. From (5),
(11) and (17), we obtain U̇ ≤ Ẇ + a(QΘ̃ −
ΦH(q) ˙̃q)T (Q ˙̃Θ − QΘ̃ + ΦΦT Θ̃ − Φ̇H ˙̃q − ΦḢ ˙̃q
+Φ (H(q) − H(qr)) q̈r + ΦC(q, q̇) ˙̃q + ΦC(q, q̇r) ˙̃q + Φ(C(q,
q̇r) − C(qr, q̇r)) + Φ (E(q) − E(qr)) + ΦF ˙̃q − ΦE
+γkΦq̃ +

√
γkΦ˙̃q + ΦH ˙̃q − ΦH ˙̃q) from which,

since ||Q|||| ˙̃Θ|| ≤ (T/2 + p) a(γp)1/2|| ˙̃q|| +
(T/2 + p)a

√
p||q̃||/(1 + 2||q̃||2), ||Ḣ(qr + q̃)|| ≤

HDM ||q̇r|| + HDM || ˙̃q||, ||C(q, q̇)|| ≤ CM || ˙̃q|| + CMB1, by
virtue of Properties 2.1-2.4 and Assumption 2.2, we have

U̇ ≤ Ẇ − a∗
∥∥∥QΘ̃ − ΦH(q) ˙̃q

∥∥∥2

+a∗
∥∥∥QΘ̃ − ΦH(q) ˙̃q

∥∥∥ δ1 ‖q̃‖
+a∗

∥∥∥QΘ̃ − ΦH(q) ˙̃q
∥∥∥ δ2

∥∥ ˙̃q
∥∥

+a∗
∥∥∥QΘ̃ − ΦH(q) ˙̃q

∥∥∥ δ3

∥∥ ˙̃q
∥∥2

+a∗
∥∥∥QΘ̃ − ΦH(q) ˙̃q

∥∥∥√
pεS (18)

where δ1 = p
√

p(γk+(T/2+1)a+KHB2 +KCB1 +KE),
δ2 = p

√
p(k

√
γ + a(T/2 + 1)

√
γ + ωHM/2 + HDMB1 +

2CMB1 + FM + HM ), δ3 = p
√

p(CM + HDM ). From
(18) and since || ˙̃q|| ≤ 2AV , ∀t ≥ t∗, we have U̇ ≤ Ẇ −
a∗||QΘ̃−ΦH(q) ˙̃q||2+a∗||QΘ̃−ΦH(q) ˙̃q||δ1||q̃||+a∗||QΘ̃−
ΦH(q) ˙̃q||δ4|| ˙̃q||+ a∗||QΘ̃−ΦH(q) ˙̃q||√pεS with δ4 = δ2 +

2δ3AV . From (16) and since ||QΘ̃ − ΦH(q) ˙̃q||δ1||q̃|| ≤
||QΘ̃ − ΦH(q) ˙̃q||2/4 + δ2

1 ||q̃||2, ||QΘ̃ − ΦH(q) ˙̃q||δ4|| ˙̃q|| ≤
||QΘ̃ − ΦH(q) ˙̃q||2/4 + δ2

4 || ˙̃q||2, ||QΘ̃ − ΦH(q) ˙̃q|||√pεS ≤
||QΘ̃ − ΦH(q) ˙̃q||2/4 + pε2S it follows that (recalling that
||c− b||2 ≤ 2(||c||2 + ||b||2) and ||c− b||2 ≥ ||c||2/2− ||b||2)

U̇ ≤ − γk

4(1 + 8A2
P )

||X ||2 + a∗M ||X ||2 −
T 2

32
e−2T a∗||Θ̃||2 +

(
pa∗ +

1

k

)
ε2S (19)

where, if γ ≥ max1≤i≤12 {γ̄i}, M = γ2k2p3G, G =
HM/4 + 6 + 2[(T/2 + 1)a + KHB2 + KCB1 + KE ]2 +
4[ωHM/2+HDMB1 +2CMB1 +FM +HM ]2 +4a2(T/2+

1)2 + 16A2
V [CM + HDM ]2 and X = [q̃T , ˙̃q

T
]T . From (19)

we obtain

U̇ ≤ −γ
k

8(1 + 8A2
P )

‖X‖2 − T 2

32
e−2T a∗

∥∥∥Θ̃
∥∥∥2

+
2

k
ε2S (20)
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where, since γ ≥ γ̄13, a∗ = min
{
1/(pk), 1/(8Gγkp3(1+

8A2
P ))

}
= 1/(8Gγkp3(1 + 8A2

P )). From (20) it follows
that U̇ ≤ 0 provided that ||q̃|| ≥ 16ε2S(1 + 8A2

P )/(γk2)
�

=

R2
m and ||Θ̃|| ≥ 512ε2SGγp3(1 + 8A2

P )e2T /T 2 �

= R2
M .

From (17) and from the expressions of the functions
Wm and WM , if γ ≥ max {γ̄14, γ̄15}, we have Um ≤
γ
√

γk||q̃||2/4 +
√

γHm|| ˙̃q||2/8 + Sm||Θ̃||2 ≤ U ≤
γ
√

γk||q̃||2 + 2
√

γHM || ˙̃q||2 + SM ||Θ̃||2 = UM where
Sm = 1/(2a)+ T 2e−2T /(128Gγkp3(1 + 8A2

P )) and SM =
1/(2a) + (T + 2p)2/(32Gγkp3(1 + 8A2

P )). From (20) and
from the expressions of the functions Um and UM , it follows
that ||q̃||, || ˙̃q|| and ||Θ̃|| converge locally exponentially into
the region

||q̃||2
E2

P

+
|| ˙̃q||2
E2

V

+
||Θ̃||2
E2

S

≤ 1 (21)

where E2
P = 4R2

m + 8HMR2
m/(γk) + 4SMR2

M/(γ
√

γk),
E2

V = 8γkR2
m/Hm + 16HMR2

m/Hm + 8SMR2
M/(Hm

√
γ)

and E2
S = γ

√
γkR2

m/Sm +2HM
√

γR2
m/Sm +SMR2

M/Sm.
Since k = O(pm), γ = O(1), RM = O(1/p

N−9/2
m ), Rm =

O(1/pN−2
m ) as pm → ∞ (pm = min1≤i≤n {pi}) then EP =

O(1/pN−4
m ), EV = O(1/p

N−9/2
m ), ES = O(1/p

N−9/2
m ),

lim supt→∞ |ΦT Θ̂ − ur(t)| ≤ EU = O(1/pN−5
m ) which

implies property (iii) of Theorem 2.1. Moreover, if pm is
sufficiently large , it follows that EP < 2AP , EV < 2AV

so that ||q̃|| and || ˙̃q|| converge in a region smaller than
(15): the convergence is exponential in the region obtained
by the difference between (15) and the projection of (21)
on the plane ||Θ̃|| = 0. From (13), and (20) it follows
that, if ε(t) = 0 ∀t ≥ 0, the system is globally uniformly
asymptotically and locally exponentially stable (property (iv)
of Theorem 2.1).

III. SIMULATIONS

The proposed control algorithm has been applied to a
two link robot arm with two revolute joints whose dynamic
behavior is described by (1) with u = [u1, u2]

T , q =
[q1, q2]

T , q̇ = [q̇1, q̇2]
T ,

H(q) =

[
α1 + 2α3 cos(q2) α2 + α3 cos(q2)
α2 + α3 cos(q2) α2

]

C(q, q̇)q̇ =

[ −2α3 sin(q2)q̇1q̇2 − α3 sin(q2)q̇
2
2

α3 sin(q2)q̇
2
1

]

E(q) =

[
α4 cos(q1) + α5 cos(q1 + q2)

α5 cos(q1 + q2)

]

F (q̇1, q̇2) =

[
F1q̇1

F2q̇2

]
. (22)

In (22) α1 = I1 + m1L
2
1/4 + m2(L

2
1 + L2

2/4) + I2, α2 =
I2 + m2L

2
2/4, α3 = m2L1L2/2, α4 = g(m1L1/2 + m2L1),

α5 = m2gL2/2 and the parameters are such that 2 ≤ m1 ≤
8 Kg, 1 ≤ m2 ≤ 5 Kg, 1 ≤ L1 ≤ 2 m, 0.5 ≤ L2 ≤ 1.5 m,
0.1 ≤ I1 ≤ 0.4 Kg m2, 0.05 ≤ I2 ≤ 0.2 Kg m2, 10 ≤ F1 ≤
20 Kg m2/s, 10 ≤ F2 ≤ 20 Kg m2/s, g = 9.8 m/s2. The
cartesian position of the end effector [x, y]T is described by

the kinematic equations

x = L1 cos(q1) + L2 cos(q1 + q2)

y = L1 sin(q1) + L2 sin(q1 + q2) . (23)

We assume that the robot arm is at rest at t = 0 and its initial
configuration is such that 0 < q2(0) < π with x(0) = 0.75 m
and y(0) = 0.3 m. Moreover, in the simulations m1 = 5
Kg, m2 = 3 Kg, L1 = 1.5 m, L2 = 1 m, I1 = 0.2 Kg m2,
I2 = 0.2 Kg m2, F1 = 10 Kg m2/s and F1 = 15 Kg m2/s.
The reference output velocity profiles ẋr(t) and ẏr(t), which
are periodic with known period T = 18 sec, are shown in
Figure 1 and correspond to the planar trajectory depicted in
Figure 2 (xr(0) = 0.7 and yr(0) = 0.1) which is such that
qr(t) ∈ C6, as required by Assumption 2.1, and B0 = 3.5,
B1 = 2, B2 = 5. The desired trajectory in joint coordinates
is obtained either by assuming the knowledge of the robot
kinematics (23) or by a suitable teaching procedure.
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0 2 4 6 8 10 12 14 16 18
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0.4

t(s ec) fig a

ẏr

Fig. 1. (a):dx(t)/dt (b): dy(t)/dt.
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Fig. 2. Planar reference trajectory.
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A. Design steps

1) The bounds defined in Properties 2.2-2.4 are computed
taking into account the uncertainties on the robot’s
dynamics: Hm = 0.6, HM = 48.82, HDM = 30,
kH = 30, CM = 30, kC = 30, EM = 896.7,
kE = 896.7, FM = 164.

2) According to (4) the bound B(0) = 1528.8 is com-
puted. Set the parameters r = B(0) = 1528.8, α = 0.1
and a = 50 and the maximum number of Fourier
coefficients to be estimated: p = 31 ≥ max {p1, p2}.

3) The values Ap = 0.02 and Av = 0.005 of the max-
imum steady state tracking errors ||q̃(t)|| and || ˙̃q(t)||
are set.

4) The minimum values of the control parameters k and
γ are computed: k ≥ k̄ = 6.1 · 1014 and γ >
max1≤i≤15 {γ̄i} = 16 which are in general highly
conservative values.

We consider k = 500, γ = 1 and apply the control law (11)

u = −ΦT Θ̂ −
[

500 0
0 500

]
q̃ −

[
500 0
0 500

]
˙̃q

˙̂
Θ = 50 proj

[
Φ˙̃q + Φ

q̃

1 + 2 ‖q̃‖2 , Θ̂

]
(24)

with Θ̂(0) = 0, p1 = 21, p2 = 21 so that dim(Θ̂) = 42.
Applying the proposed control law (24) to the robot arm,
we obtain the output planar trajectories of Figure 3. Figure
3 shows also the input signals applied to each joint of the
robot arm and the position errors x − xr and y − yr: after
four periods the position errors become smaller than 0.5 mm
and the steady state design specifications are satisfied.

IV. CONCLUSIONS

For robot arms with all revolute joints the problem of
tracking a smooth periodic output reference, with known
period, has been addressed and solved assuming that some
constant bounds on the robot parameters are known. The
control structure is independent of the system’s nonlineari-
ties: global asymptotic and local exponential convergence to
zero or to an arbitrarily small residual set is guaranteed.
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