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Abstract  14 

Glacier outburst floods are sudden releases of large amounts of water from a glacier. They are a 15 

pervasive natural hazard worldwide. They have an association with climate primarily via glacier mass 16 

balance and their impacts on society partly depend on population pressure and land use. Given the 17 

ongoing changes in climate and land use and population distributions there is therefore an urgent 18 

need to discriminate the spatio-temporal patterning of glacier outburst floods and their impacts. This 19 

study presents data compiled from 20 countries and comprising 1348 glacier floods spanning 10 20 

centuries. Societal impacts were assessed using a relative damage index based on recorded deaths, 21 

evacuations, and property and infrastructure destruction and disruption. These floods originated 22 

from 332 sites; 70 % were from ice-dammed lakes and 36 % had recorded societal impact. The 23 

number of floods recorded has apparently reduced since the mid-1990s in all major world regions. 24 

Two thirds of sites that have produced > 5 floods (n = 32) have floods occurring progressively earlier 25 

in the year. Glacier floods have directly caused at least: 7 deaths in Iceland, 393 deaths in the 26 

European Alps, 5745 deaths in South America and 6300 deaths in central Asia. Peru, Nepal and India 27 

have experienced fewer floods yet higher levels of damage. One in five sites in the European Alps has 28 

produced floods that have damaged farmland, destroyed homes and damaged bridges; 10 % of sites 29 

in South America have produced glacier floods that have killed people and damaged infrastructure; 30 

15 % of sites in central Asia have produced floods that have inundated farmland, destroyed homes, 31 

damaged roads and damaged infrastructure. Overall, Bhutan and Nepal have the greatest national-32 

level economic consequences of glacier flood impacts. We recommend that accurate, full and 33 

standardised monitoring, recording and reporting of glacier floods is essential if spatio-temporal 34 

patterns in glacier flood occurrence, magnitude and societal impact are to be better understood. We 35 
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note that future modelling of the global impact of glacier floods cannot assume that the same trends 36 

will continue and will need to consider combining land-use change with probability distributions of 37 

geomorphological responses to climate change and to human activity. 38 

 39 

Key words: jökulhlaup; GLOF; glacier lake; proglacial; hazard; risk 40 

 41 

Highlights: 42 

 1348 floods from 332 sites, and 36 % of these sites have recorded societal impact 43 

 Over 12,000 deaths recorded globally due to glacier floods 44 

 Recurrence intervals calculated based on volume, discharge and damage 45 

 Damage type and index determined per event, per country and per major world region 46 

 47 

1. Introduction and rationale 48 

Glacier outburst ĨůŽŽĚƐ͕ Žƌ ͚ũƂŬƵůŚůĂƵƉƐ͕͛ ĂƌĞ ƐƵĚĚĞŶ ƌĞůĞĂƐĞƐ ŽĨ ůĂƌŐĞ ĂŵŽƵŶƚƐ ŽĨ water from a 49 

glacier. These floods typically have hydrograph characteristics of dam break floods since they are 50 

often initiated by failure of ice, moraine or landslide dams impounding glacial lakes (Tweed and 51 

Russell, 1999). They also include a subset of floods generated near-instantaneously by subglacial 52 

volcanic or geothermal activity and by heavy rainfall routed through glacier catchments (Roberts, 53 

2005).  54 

 55 

Glacier outburst flood occurrence and hydrograph characteristics are linked to climate via glacier 56 

downwasting and consequent meltwater production (Haeberli and Beniston, 1998). The formation 57 

and evolution of ice- and moraine-dammed lakes are related to environmental factors which are, in 58 

turn, heavily dependent on climatic conditions (Carrivick and Tweed, 2013). In particular, the 59 

attributes of some glacier outburst floods including timing (date of initiation) and peak discharge can 60 

be controlled by climate (e.g. Ng et al., 2007; Kingslake and Ng, 2013, respectively). 61 

 62 

Present global deglaciation is increasing the number and extent of glacial lakes around the world (e.g. 63 

Paul et al., 2007; Wang et al., 2011; Gardelle et al., 2013; Carrivick and Tweed, 2013; Carrivick and 64 
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Quincey, 2014; Tweed and Carrivick, 2015). There is a causal relationship between deglaciation and 65 

volcanic activity (e.g. Maclennan et al., 2002; Tuffen, 2010; McGuire, 2013) and volcanic activity 66 

beneath ice masses can generate glacier outburst floods both through the near-instantaneous 67 

melting of ice and from the drainage of meltwater temporarily stored as a water pocket or glacier 68 

lake. 69 

 70 

Glacier outburst floods have been recorded for many centuries, particularly in Iceland and in Europe 71 

where there are records from the 1500s onwards. The societal impact of glacier floods most obviously 72 

includes direct destruction and damage to infrastructure and property, disruption to communities 73 

and loss of life, as has been reported from Iceland (e.g. Thorarinsson, 1939, 1974; Rist, 1984; Ives, 74 

1991; Tómasson, 1996; Björnsson, 1976, 2003), the European Alps (e.g. Haeberli et al., 1989; 75 

Raymond et al. 2003; Huss et al., 2007), South America (e.g. Carey, 2005; Iribarren Anacona et al., 76 

2015) and the Himalaya (e.g. Mool et al., 2001; Ives et al., 2010). Repeated glacier outburst floods 77 

from Lac du Mauvoisin, Switzerland, which killed hundreds of people and destroyed houses and 78 

infrastructure (Tufnell, 1984; Woodward, 2014), have been recognised as influencing the direction of 79 

scientific thinking on glacial geology and geomorphology, thus developing modern science. Firstly, in 80 

͚PƌŝŶĐŝƉůĞƐ ŽĨ GĞŽůŽŐǇ͕͛ LǇĞůů (1830) effectively challenged catastrophism and paved the way for 81 

scientific theory that recognised the former existence of ice ages and therefore a changing climate. 82 

Secondly, Ignaz Venetz, who was an engineer asked to drain water from Lac du Mauvoisin in 83 

Switzerland, and was subsequently asked to make the first survey the glaciers of the Alps. His ground-84 

breaking field work, alongside that of Jean de Charpentier, Jens Esmark, William Buckland and 85 

ultimately Louis Agassiz, explored the links between glacial fluctuations and environmental change.  86 

 87 

Recent major studies of glacier outburst floods have concerned the conceptualisation of sources, 88 

triggers and mechanisms (e.g. Tweed and Russell, 1999; Björnsson, 2003), physical mechanisms 89 

governing meltwater generation and routing through a glacier (e.g. Roberts, 2005; Kingslake, 2013, 90 

2015; Flowers, 2015) and landscape impacts (e.g. Shakesby, 1985; Maizels, 1991, 1997; Carrivick et 91 

al., 2004a,b; Carrivick, 2007; Russell et al., 2006). Whilst these and other regionally-focused research 92 

papers (see citations in Table 1) frequently refer to the impacts of glacier outburst floods as being an 93 
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important rationale for research, there has not yet been a comprehensive global assessment of the 94 

impacts of glacier outburst floods on communities and economies.  95 

 96 

The aim of this study is to provide the first global analysis of the societal impacts of glacier floods. 97 

We focus primarily on descriptive statistics of glacier floods and of their relative impact, because as 98 

it will be shown, a precise definition of the absolute impact of most events is impossible given the 99 

nature of existing records. In ƚŚŝƐ ƐƚƵĚǇ ǁĞ ĚĞĨŝŶĞ ͚ƐŽĐŝĞƚĂů͛ ĂƐ ͚ŽĨ Žƌ ƌĞůĂƚŝŶŐ ƚŽ ƚŚĞ ƐƚƌƵĐƚƵƌĞ͕ 100 

organisation or functioning of human communities (AHD, 2011)͘ WĞ ĂůƐŽ ƐŚŽƌƚĞŶ ͚ŐůĂĐŝĞƌ ŽƵƚďƵƌƐƚ 101 

ĨůŽŽĚƐ͛ ƚŽ ŐůĂĐŝĞƌ ĨůŽŽĚƐ ĨŽƌ ƐŝŵƉůŝĐŝƚǇ ŚĞƌĞŽŶ ŝŶ ƚŚŝƐ ƚĞǆƚ͘  102 

 103 

2. Data sources and methods 104 

We created our own database of glacier floods by initially extracting data from published glacier flood 105 

inventories (see citations in Table 1). These flood inventories have generally focused on timing and 106 

to a lesser degree on magnitude and whilst both are interesting from a phenomenological 107 

perspective, the ͚ĚĂƚĞ͛ ĂŶĚ ͚ƉĞĂŬ ĚŝƐĐŚĂƌŐĞ͛ ĂƚƚƌŝďƵƚĞƐ reported in the literature are not consistently 108 

recorded or calculated, as will be discussed below. In this study, we used several physical attributes 109 

together with societal impact attributes primarily to estimate the first-order global societal impact of 110 

glacier floods, but also to recognise linkages between physical characteristics and thus to assist 111 

correct interpretation of the potential landscape and societal responses to climate and land use 112 

change (Pelletier et al., 2015). 113 

 114 

Physical and societal impact data was compiled from published literature and available 115 

regional/national reports, with guidance from a number of key research experts, to whom we are 116 

indebted for their helpful advice and assistance (Table 1). Overall we have compiled records of 1348 117 

glacier floods (Figure 1; Table 2). This is the biggest single compilation of the occurrence and 118 

characteristics of glacier floods to date. Of this total, 9 % were in Scandinavia, 22 % were in the 119 

European Alps, 6 % were in South America, 16 % were in central Asia, 25 % were in north-west 120 

America, 20 % were in Iceland and 2 % were in Greenland. Definition of these global regions was 121 
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informed by the most recent and most comprehensive global glacier mapping project by Pfeffer et 122 

al. (2014). 123 

 124 

We stress that our study is based on records of events that we were able to identify and access and 125 

for which attributes are available. We acknowledge that there will be events that: (i) we have not 126 

been able to capture due to lack of data recording and/or availability, and (ii) we are aware of, but 127 

for which attributes are either missing or inconsistent. For example, we know of a few glacier 128 

outburst floods that have occurred in New Zealand (e.g. Davies et al., 2003; Goodsell et al., 2005), 129 

Svalbard (e.g. Wadham et al., 2001; Cooper et al., 2002), the Canadian high arctic (e.g. Cogley and 130 

McCann, 1976) and on the Antarctic Peninsula (e.g. Sone et al., 2007), but these floods do not have 131 

a full date (day/month/year) associated with them nor records of any other attributes and therefore 132 

are not considered further in this study. We have not included glacier floods from supraglacial lakes 133 

in western Greenland or from subglacial lakes in Antarctica for the same reason.  134 

 135 

2.1 Physical attributes  136 

Lake name, glacier name, location/region/river, country, latitude, longitude, date, volume, peak 137 

discharge, trigger mechanism and dam type were recorded in this study. It was difficult to 138 

discriminate glacier flood records from other ͚ĨůŽŽĚƐ͛ in publically-available natural hazards 139 

databases, so cross-ĐŚĞĐŬŝŶŐ ĂƚƚƌŝďƵƚĞƐ ŽĨ ĚĂƚĞ ĂŶĚ ƉůĂĐĞ ĂŶĚ ͚name͛ ǁĂƐ vital. In a minority of cases, 140 

extra cross-checking was required ƚŽ ŵĂŬĞ ƚŚĞ ĐŽƌƌĞĐƚ ĚĞĨŝŶŝƚŝŽŶ ŽĨ ƚŚĞ ĂƚƚƌŝďƵƚĞ ͚ŶĂŵĞ͛ ďĞĐĂƵƐĞ ŝƚ 141 

was not necessarily obvious if that name pertained to a lake or to a glacier, or perhaps even to a 142 

catchment, valley river or region. Glacier floods that have been reported without an exact source 143 

being known include those in Canada (Geertsema and Clague, 2005), and in the Shimshal region of 144 

Pakistan (e.g. Iturrizaga, 2005), for example. Additionally:  145 

 A single glacier can have multiple lakes that have drained; 146 

 A single lake can drain multiple times: well-documented examples include Tulsequah Lake in 147 

Canada (e.g. Marcus, 1960), Merzbacher Lake in Kyrgyzstan (Ng et al., 2007), Gornersee in 148 

Switzerland (Huss et al., 2007) and Grímsvötn and Grænalón in Iceland (Björnsson, 1976; 149 

2003);  150 
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 Large floods can have multiple outlets and inundate multiple rivers and this is probably more 151 

common than apparent in the records due to a tendency to report from the largest river only.  152 

 The same event can occur in different countries, because some events are trans-boundary, 153 

originating in one country and routing into another.  154 

 155 

We determined latitude and longitude for 77 % of our records (Supplementary Information), and 156 

have converted the varying coordinate systems used in the literature to a standard (global latitude 157 

and longitude in format of decimal degrees, geoid WGMS84). Regarding the ͚ date͛ attribute, the most 158 

ĐŽŵŵŽŶůǇ ƌĞƉŽƌƚĞĚ ĨŽƌŵĂƚ ǁĂƐ ƐŝŵƉůǇ ͚ǇĞĂƌ͛ ďƵƚ > 50 % also have month and day, which permits 159 

analyses of seasonality and assists discrimination of multiple events from the same site within a single 160 

year. Since glacier floods often span several days we usually remained uncertain as to whether the 161 

day reported pertained to that of the flood onset at source, the time of peak discharge, or to the time 162 

of any gauging or flood impact down valley. To give an indication of the spatial scales being 163 

considered Mason (1929) reported a 21 m rise in river level at 300 km from source, and also 164 

destruction of the village of Abadan 400 km from source in the 1926 Shyok floods in Pakistan. 165 

  166 

We also encountered many cases where the timing of a glacier flood as reported in the literature had 167 

been constrained for example via remotely-sensed images that bracketed the flood in time. Some 168 

literature noted that some glacier lakes drained every year for several decades, but there were no 169 

other details available (e.g. Vatnsdalslón, Iceland reported in Thorarinsson, 1939; Glacier lake 170 

Moreno had about 24 events registered between 1917 and 2012 and Glacier lake Colonia had floods 171 

every summer between 1928 to 1958). Additionally, some glacier lakes are hydrologically connected 172 

so that as one drains it causes another in the cascade to do the same, for example at Brady Glacier 173 

(Capps and Clague, 2014) and in the Bhutanese Himalaya (Bajracharya et al., 2007). As well as cross-174 

checking dates between multiple literature sources, we converted all dates into the same date format 175 

(day/month/year) and to further assist numerical ĂŶĂůǇƐŝƐ ǁĞ ĂůƐŽ ŝŶĐŽƌƉŽƌĂƚĞĚ ĨŽƵƌ ĐŽůƵŵŶƐ ŽĨ ͚ ĚĂǇ͛, 176 

͚month͛, ͚year͛ and ͚JƵůŝĂŶ day of year͛.  177 

 178 
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In assessing flood magnitude, the attribute volume was compiled and converted to units of M m3. 179 

However, in most cases we have been unable to determine whether the reported volume is: (i) 180 

measured outflow (with known lake bathymetry and lake drawdown) with consideration of any 181 

coincident internal water release (e.g. Huss et al., 2007; Anderson et al., 2003), or (ii) reconstructed 182 

from gauged (and separated baseflow) hydrograph analysis (e.g. Ng et al., 2007), (iii) pertaining to 183 

water and sediment (e.g. if from a gauged stage record), or only a water fraction (e.g. if from an 184 

empirical equation relating drained lake volume). Furthermore, if the peak discharge was gauged, we 185 

then have to ask whether baseflow was considered. Additionally, if the peak discharge was 186 

reconstructed or estimated, we could not necessarily determine whether the Clague-Mathews (1973) 187 

relationship, or one of its derivatives was used (e.g. Evans, 1986; Walder and Costa, 1996; Ng and 188 

Björnsson, 2003). We compiled all available details on the drainage mechanism and dam type for 189 

individual glacier floods (Fig. 1).  190 

 191 

2.2 Societal impact data  192 

Societal impact recorded in this study were primarily sourced from the academic literature, but we 193 

sought supplementary data from publically available natural hazards databases, specifically 194 

Dartmouth Flood Observatory (2015): Masterlist, Guha-Sapir et al. (2015): EM-DAT, and UNISDR 195 

(2015): DI-Stat. Securing societal data from a variety of sources was necessary to surmount the 196 

common problems with acquiring such information, which in summary are as described above for 197 

the physical attribute data; i.e. that records are not systematic, homogeneous, nor in compatible 198 

format (e.g. Petrucci, 2012; UNISDR, 2015; Iribarren Anacona et al., 2015). These natural hazards 199 

databases yielded some extra societal impact data and most crucially, these data were quantitative 200 

(such data is difficult to obtain) Overall 24 % of the glacier floods we have identified also had a 201 

recorded societal impact (Table 2). 202 

 203 

In this study, the societal attributes recorded were number of deaths, number of injured persons, 204 

number of evacuees/displaced, total affected area, livestock lost, farmland lost, houses/farms 205 

destroyed, total persons affected, road damage, bridges damaged, infrastructure damage and 206 

financial cost. We also recorded positive impacts wherever available; for example tens of glacier 207 
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floods in Norway were noted to have contributed additional water into hydropower reservoirs 208 

(Jackson and Ragulina, 2014). However, there was no single event for which we were able to populate 209 

all of these societal attributes. With specific regard to the publically available natural hazards 210 

databases, we found that many countries were not represented at all and we speculate that some 211 

countries have not released such data. This could be due to lack of monitoring, recording and 212 

communication of information or to the political sensitivity of particular locations.  213 

 214 

Additionally͕ ƚŚĞƌĞ ĂƌĞ ͚ǁŽƌĚ-of-ŵŽƵƚŚ͛ ƌĞƉŽƌƚƐ ŽĨ ŐůĂĐŝĞƌ ĨůŽŽĚƐ ǁŚŝĐŚ ĂƌĞ ĚŝĨĨŝĐƵůƚ ƚŽ substantiate; 215 

for example Vivian (1979) was told that several thousand people were killed when a huge flood was 216 

generated from ice fall into a proglacial lake in Tibet (see Tufnell, 1984). In general, we encountered 217 

problems in matching the societal records of glacier flood impacts to the physical data because the 218 

date and place of an impact can be different to the date and place of flood origin͘ TŚŝƐ ͚ŵŝƐ-ŵĂƚĐŚ͛ 219 

meant that laborious manual cross-checking was the only way to compare the two sets of records. 220 

Most commonly, if deaths, injuries, evacuees/displaced persons were reported, they were not 221 

ƋƵĂŶƚŝĨŝĞĚ͘ “ŝŵŝůĂƌůǇ͕ ͚ůŝǀĞƐƚŽĐŬ ůŽƐƚ͕͛ ͚ĨĂƌŵůĂŶĚ ůŽƐƚ͕͛ ͚ŚŽƵƐĞƐ͛ͬ͛ĨĂƌŵƐ ĚĞƐƚƌŽǇĞĚ͕͛ ĂŶĚ ͚ƌŽĂĚ ĚĂŵĂŐĞĚ͛ 222 

were mentioned quite frequently, for example in the Icelandic (e.g. Thorarinsson, 1939; 1958) and 223 

central Asian (e.g. Hewitt, 1982; 1985) literature, but were often unquantified. Perhaps a village 224 

ŶĂŵĞ ǁĂƐ ŐŝǀĞŶ͕ ďƵƚ ƚŚĞ ƐŝǌĞ ŽĨ ƚŚŝƐ ǀŝůůĂŐĞ ǁĂƐ ŶŽƚ͕ ĨŽƌ ĞǆĂŵƉůĞ͘ IŶ ĐŽŶƚƌĂƐƚ ͚ďƌŝĚŐĞƐ ĚĞƐƚƌŽǇĞĚ͛ ĂŶĚ 225 

͚ŝŶĨƌĂƐƚƌƵĐƚƵƌĞ ĚĂŵĂŐĞ͛ ĨƌĞƋƵĞŶƚůǇ ŶĂŵĞĚ ƚŚĞ ďƌŝĚŐĞ;ƐͿ Žƌ ƚŚĞ ŝŶĨƌĂƐƚƌƵĐƚƵƌĞ͕ ǁŚŝĐŚ ŝŶĐůƵĚĞĚ 226 

hydropower installations, irrigation canals, communal buildings, and tourist facilities, and thus a 227 

rudimentary tally of impacts was more easily compiled. Costs reported were often costs of remedial 228 

work, and sometimes whilst there was mention of elaborate emergency measures implemented, 229 

such as helicopter evacuations of people and emergency pumping of water for example, no costs 230 

associated with this emergency action were given. 231 

 232 

2.3 Derivation of societal impact of glacier outburst floods 233 

Approaches to assessing glacier flood impacts usually disregard any socio-economic factors (Messner 234 

and Meyer, 2006). Those few approaches that do exist to assess the direct impact of floods (and other 235 

natural hazard phenomena) can be more or less complex, not least depending on data availability, 236 
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but also on the scale and intentions of the study. In this study, we were motivated to provide a 237 

quantitative comparison between glacier flood events; i.e. of their relative direct impact, rather than 238 

an attempt to precisely define the absolute impact of any individual event. Indeed the latter is 239 

probably not possible given the problems with reporting of this data as noted in section 2.2 above. 240 

Therefore, we applied the simplest (and most clearly documented) societal relative impact 241 

classification present in the peer-reviewed literature, which can be employed at both local and 242 

regional scale, and which was performed by establishing a priori three damage levels (c.f. Petrucci, 243 

2012; Table 3).  244 

 245 

The total impact per glacier flood was then converted to a total impact per country, IC, or per major 246 

geographical region (regions as in Figure 1), IR as the sum of relative damage Di caused, as based on 247 

the concept that relative damage is the product of relative value, Vi, of a damaged element and the 248 

relative level of loss, Li, that it suffered (Varnes, 1984): 249 

IR = ɇDŝ 250 

where: 251 

Di = Vi x Li 252 

where Vi and Li values were derived using the criteria in Table 3 and as adapted from Petrucci (2012). 253 

We added deaths to the quantification of impact most simply whereby one death was given a value, 254 

Vi of one and an level, Li, of one. We gathered country area data (CIA, 2016), national population 255 

data (ESA, 2016) and national Gross Domestic Product (GDP) data (World Bank, 2016) in order to 256 

normalise Di by both a population density and by a measure of economic wealth. Thus we provide a 257 

crude measure of national susceptibility and national capability to respond, respectively (c.f. Barredo, 258 

2009). We appreciate that, within national boundaries, regional differences will perturb these 259 

capacities and we also recognise that glacier floods are frequently transboundary, but we could not 260 

source consistent data to enable greater granularity in our assessment. 261 

 262 

2.4 Derivation of recurrence intervals 263 
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We calculated a recurrence interval = (n + 1 \ m), where n is the number of years on record and where 264 

m is the ordered rank of the event being considered. In this study we considered ranks of volume, 265 

discharge and damage. 266 

 267 

3. Results 268 

3.1 Spatial distribution of glacier floods 269 

Historical and modern glacier floods occur worldwide (Fig. 1). 70 % of glacier floods are from ice 270 

dammed lakes, 9 % are from moraine-dammed lakes, 16 % are from an unknown dam type/trigger, 271 

and 3 % are triggered by volcanic activity (Fig. 1). The amount of available information on dam type, 272 

trigger mechanism, volume and discharge varies considerably by major world region (Fig. 1). There 273 

are spatial differences in the apparent susceptibility of society to the impacts of glacier floods, 274 

because the number of events with recorded societal impact per country or per major world region 275 

does not correspond with the total number of glacier floods. This discrepancy between the number 276 

of floods and the number of floods with recorded impact is due to: (i) the fact that some glacier floods 277 

occur far away from people, property and infrastructure (e.g. many glacier floods in British Columbia: 278 

Canada, Alaska: USA, Iceland), (ii) some sites produce multiple floods and some yearly floods (Fig. 2), 279 

(iii) inconsistent reporting between countries and major world regions regarding event occurrence 280 

and physical attributes. We have partially addressed the latter issue by focusing on societal impacts 281 

because records are more likely if there has been a preceding flood and more likely to be more 282 

detailed if there was societal impact.  283 

 284 

3.2 Temporal distribution of glacier floods 285 

Glacier floods have occurred throughout recorded history (Fig. 3). It is useful to consider here for the 286 

first time, both for each major region (Fig. 3A) and globally (Fig. 3B), the number of glacier floods on 287 

timescales from centuries to days because: (i) it documents some of the raw data for our further 288 

investigation of seasonality and recurrence intervals, (iii) it helps hint at process mechanisms, and 289 

(iii) this will help future studies put glacier floods in the context of other natural hazards. Interestingly, 290 

all major world regions (Fig. 3A) and Figure 3B show an apparent decline in the trend of the number 291 

of glacier floods being recorded from the mid-1990s onwards and this is discussed below. There is a 292 
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predominance of glacier floods in summer months, and this temporal clustering is weaker in the cases 293 

of Europe and South America, and more pronounced in the cases of Iceland and central Asia (Fig. 4). 294 

Scandinavia is unusual for having a seasonally bimodal distribution, with many floods recorded in the 295 

winter month of January (Fig. 4). We do not have a trigger mechanisms recorded for > 90 % of our 296 

Scandinavia records, but we speculate that a possible reason for a peak in glacier flood activity in 297 

January in Scandinavia is that is a time is when freeze-thaw cycles are pronounced and resultant 298 

rockfalls could route into glacier lakes. 299 

 300 

For sites that have produced more than three floods, the days of the year on which a flood from a 301 

given site has occurred are presented in Figure 5. Figure 5 shows that most northern hemisphere 302 

sites are experiencing floods earlier in the year and that in South America, whilst there are only a 303 

couple of sites with multiple floods recorded in both of these cases, the day of the year on which a 304 

flood occurs is apparently becoming later. This pattern is discussed below and may be partly 305 

explained by the apparent (though not statistically significant) reduction in glacier floods from ice-306 

dammed lakes (Fig. 6).  307 

 308 

3.3 Glacier flood recurrence intervals  309 

Recurrence intervals are presented for each major world region in Figure 7 and were calculated with 310 

consideration of flood magnitude, as defined either by volume (Fig. 7A) discharge (Fig. 7B) or a 311 

damage index (Fig. 7C). These estimates of recurrence intervals are fits to past events and not 312 

predictions of future ones. The lack of error margins on these graphs reflects our inability to define 313 

the magnitude of likely inaccuracies in volume or peak discharge because the method of calculation 314 

for these attributes is often not reported. For this reason it is the shape of these lines and the relative 315 

placing of the lines pertaining to each major region that is most important rather than the absolute 316 

values. For a given recurrence interval, north-west America experiences floods with the greatest 317 

volumes (Fig. 7A), but the least damage (Fig. 7C). In contrast, for a given recurrence interval the 318 

European Alps experience low volume (Fig. 7A) and low discharge (Fig. 7B) glacier floods, but 319 

moderate to high damage is caused (Fig. 7C). If a damage index of ten is considered, which describes 320 

impact such as a highway bridge destroyed, or a large village destroyed, or ten persons killed (Table 321 
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3), then in broad terms South America has experienced this level of impact on average every ten 322 

years, central Asia every twenty years, the European Alps every forty years, Scandinavia every 50 323 

years, Iceland every 60 years and north-west America every 1000 years (Fig. 7C). South America is 324 

the most vulnerable region to glacier floods causing societal impact of up to a damage index of ~30, 325 

and central Asia is the most vulnerable region to glacier floods causing societal impact > ~30 (Fig. 7C).  326 

 327 

3.4 Global impact of glacier floods  328 

The global impact of glacier outburst floods can be crudely assessed using the number of events 329 

recorded per country and per major world region (Fig. 8A). Using this measure, north-west America 330 

(mainly Alaska), closely followed by the European Alps (mainly Switzerland) and Iceland are the most 331 

susceptible regions to glacier floods (Fig. 8A). However, since many floods occur repeatedly from the 332 

same location, an assessment of the global impact should also consider the number of sites recorded 333 

to be affected by glacier floods, per country and per major world region (Fig. 8B). Given these 334 

conditions the European Alps is the most susceptible region, and Switzerland is the most susceptible 335 

country (Fig. 8B). Canada, Chile, Tibet and Iceland are other countries that all have ~ 30 sites 336 

producing glacier floods (Fig. 8B). 337 

 338 

The only societal impact attribute with standardised quantitative reporting was number of deaths. 339 

We could not find records of deaths due to glacier floods from Greenland, Scandinavia and north-340 

west America. From the records that we were able to access, glacier floods have directly caused at 341 

least 7 deaths in Iceland, 393 deaths in the European Alps, 5745 in South America and 6300 in central 342 

Asia. However, 88 % of these 12,445 recorded deaths are attributable to just two events: the 1941 343 

Huaraz, Peru (Carey, 2005) and the 2013 Kedarnath, India (Allen et al., 2015) disasters. The same two 344 

events account for 82 % of the total damage caused globally by glacier floods because of the 345 

contribution to the damage index of these exceptionally high numbers of reported deaths (Fig. 8C). 346 

Iceland and Canada are notable for having relatively high number of events, relatively high number 347 

of sites, yet low levels of damage, whereas Peru, Nepal and India have relatively few events yet very 348 

high damage (Fig. 8). 349 

 350 
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The totals by country of all other societal impact-related damage, excluding the exceptionally high 351 

numbers of deaths associated with Huaraz in Peru and Kedarnath in India, reveal that Nepal and 352 

Switzerland have the most recorded damage due to glacier floods with 22 % and 17 % of the global 353 

total, respectively (Fig. 8C). If the major world regions are ranked by damage due to glacier floods, 354 

central Asia is the most affected, followed by South America, then the European Alps, Iceland, 355 

Scandinavia, north-west America and Greenland (Fig. 8C). 356 

 357 

Societal impacts of glacier floods are relatively rarely recorded for floods in Scandinavia and north-358 

west America (Fig. 9A). These are both geographical regions that might be expected to have some of 359 

the most detailed records due to their economic development and likely monitoring capability and 360 

so this lack of impact is not likely to be an artefact of reporting bias. Where impacts were recorded 361 

in Scandinavia and in north-west America, then they only constituted loss of farmland productivity 362 

(50 % of events in Scandinavia), and loss of bridges, trails, tracks and other tourist-related 363 

infrastructure (< 5 % of events in north-west America) (Fig. 9A). In contrast, < 10 % of all events in 364 

the European Alps and in central Asia and < 15 % of all events in South America have produced 365 

impacts across the spectrum of impact types (Fig. 9A).  366 

 367 

If damage types are calculated as a proportion of the number of sites (Fig. 9B), in comparison to the 368 

number of flood events: (i) the global severity of glacier floods apparently increases, and (ii) the type 369 

of impacts recorded are more diverse, in comparison to calculations made as a proportion of all 370 

events (Fig. 9A). For example, one in five sites in the European Alps has produced floods that have 371 

damaged farmland, destroyed homes, and damaged bridges; 10 % of sites in South America have 372 

produced glacier floods that have killed people and damaged infrastructure; 15 % of sites in central 373 

Asia have produced glacier floods that have inundated farmland, destroyed homes, damaged roads 374 

and damaged infrastructure (Fig. 9B).  375 

 376 

Mapping the relative damage index reveals that susceptibility to glacier outburst floods has a global 377 

coverage and that the highest levels of relative impact occur in all major world regions except north-378 

west America (Fig. 10a). Normalising Di by population density homogenises the global distribution, 379 

and actually in comparison to the raw Di values (Fig. 10a) emphasises Alaska, Peru and Iceland and 380 
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diminishes the prominence of central Asian countries (Fig. 10b). This normalisation by population 381 

density is a crude measure of vulnerability (c.f. Alcántara-Ayala, 2002). Italy and Norway, France, 382 

Pakistan and Iceland all have a very similar relative damage index (~ 200), but are more (Iceland) or 383 

less (Pakistan) vulnerable because of very high or low population density, respectively. Normalising 384 

Di by country GDP (Fig. 10c) is a crude measure of the ability of a country to mitigate, manage and 385 

recover from the impacts of glacier floods. Using this measure Iceland, Bhutan and Nepal are the 386 

countries with the greatest economic consequences of glacier flood impacts (Fig. 10c).   387 

 388 

4. Discussion 389 

4.1 Data recording  390 

Investigating, compiling and analysing the data in this study has revealed disparate detection and 391 

monitoring of glacier floods and non-standardised data reporting via scientific, public and 392 

governmental sources. These concerns are not unique to glacier floods, but potentially retard hazard 393 

mitigation and emergency preparation (Lindell and Prater, 2003). Accurate, full and standardised 394 

data on glacier floods is needed by regional governments and agencies to determine if external 395 

assistance is necessary and, if so, how much and in what form(s). National governments and natural 396 

hazards authorities need to estimate glacier flood damage to report to taxpayers and to identify 397 

communities - often relatively isolated communities - that have been (or might be) 398 

disproportionately affected. Planners need to develop damage predictions to assess the effects of 399 

alternative hazard adjustments, to quantify expected losses and to understand the extent to which 400 

those losses could be reduced, all in combination to implement cost-effective mitigation strategies: 401 

for example, to protect hydropower installations on rivers fed from glaciated regions and to 402 

safeguard valuable agricultural land. Road and rail transport requires rivers to be bridged, which are 403 

then put at risk from glacier outburst floods; in locations where there are repeated floods, there is a 404 

need to protect such communication routes (e.g. Mason, 1929; Stone, 1963; Bachmann, 1979; 405 

Tufnell, 1984). Insurers need data on the maximum damage and the most likely damage. These issues 406 

of data acquisition and sharing are nowhere more important than for less economically-developed 407 

countries where: (i) most deaths from natural disasters occur (Alcántara-Ayala, 2002; Kahn, 2005), 408 

(ii) where primary industries such as agriculture and fishing can represent a substantial part of a 409 
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ŶĂƚŝŽŶ͛Ɛ ĞĐŽŶŽŵǇ͖ Ĩor example some glacier floods in west Greenland discharge so much sediment 410 

into the fjords and off the coastline that fishing, which is a mainstay of the local and national 411 

economy, is severely disrupted (Adam Lyberth, pers. comm.), and (iii) where hydropower dominates 412 

Ă ŶĂƚŝŽŶƐ͛ GDP and socio-economic development potential, such as for Bhutan (Tshering and Tamang, 413 

2016). However, the monitoring of events has resource implications and in locations where such 414 

resources are scarce, other priorities frequently and unsurprisingly take precedence. 415 

 416 

Whilst several natural hazards databases (e.g. Dartmouth Flood Observatory, 2015: Masterlist, Guha-417 

Sapir et al. 2015: EM-DAT, and UNISDR, 2015: DI-Stat) purport long-term records, they are in reality 418 

biased towards more recent events. For example, the EM-DAT database (Guha-Sapir et al., 2015) has 419 

ƚŚĞ ĨŝƌƐƚ ͚ŚǇĚƌŽůŽŐŝĐĂů ĨůĂƐŚ ĨůŽŽĚ͛ Ğǀent in Austria occurring in 1952, and the first for Iceland in 1974. 420 

Yet the scientific literature confirms that there have only been a few glacier floods in Austria since 421 

1947 and many tens of floods in Iceland before 1974. For Nepal, Whiteman (2011, page XXX) 422 

ĐŽŵŵĞŶƚƐ ƚŚĂƚ ͞ŚŝƐƚŽƌŝĐĂů ƌĞĐŽƌĚƐ ŝŶĚŝĐĂƚĞ ƚŚĂƚ ĞǀĞŶ ĚƵƌŝŶŐ ƚŚĞ ĨŽƵƌ ĚĞĐĂĚĞƐ ƵƉ ƚŽ ϭϵϳϬ ƐĞǀĞƌĂů 423 

GLOFs occurred in Nepal, although a GLOF in 1977 in the Khumbu Himal seems to have been the first 424 

to have received significant scientific study (KattelmanŶ͕ ϮϬϬϯͿ͘͟ FƵƌƚŚĞƌŵŽƌĞ͕ ŶĂƚƵƌĂů ŚĂǌĂƌĚƐ 425 

databases can apparently report an ͚ĂŐŐƌĞŐĂƚĞ͛ Žƌ ͚ĐŽŵƉŽƐŝƚĞ͛ ŝŵƉĂĐƚ͕ ĨŽƌ ĞǆĂŵƉůĞ there are 426 

circumstances in which heavy rain triggers flash flooding over a catchment area, but only part of the 427 

resulting  flood is due to a glacier flood. This is suggested by some of the records in the EM-DAT 428 

database (Guha-Sapir et al., 2015) in which an individual entry can span several weeks. Toya and 429 

Skidmore (2007) mentioned that developing countries have an incentive to exaggerate damage to 430 

receive higher amounts of international assistance and therefore data may not be entirely reliable. 431 

However, as a generalisation less economically developed countries are perhaps less likely to have 432 

agencies responsible for gathering damage data due to different priorities, resource constraints and 433 

political settings, for example, as suggested earlier. In short, despite the comprehensive efforts we 434 

have made to gather available records of glacier floods in this study, if a flood was not recorded it 435 

does not mean there was no flood, and if no impact was recorded for a flood it does not mean that 436 

there was no impact. Our global assessment, country totals and damage index are therefore minima.  437 

 438 
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Furthermore, even when physical attributes are reported, they are far more ambiguous than may be 439 

immediately realised. Continuously-recording river stage gauges are not common (although a few 440 

countries such as Iceland and Norway have relatively good coverage due to their national monitoring 441 

programmes) and are often located many tens of kilometres down valley from a glacier. Furthermore, 442 

gauging sites are often destroyed by larger discharges (Haeberli et al., 1989) so records are likely to 443 

be biased towards events with lower flow. We suspect that the Clague-Mathews (1973) relationship 444 

between drained lake volume and peak discharge has been used to determine many of the reported 445 

͚discharge͛ ǀĂůƵĞƐ͘ Whether a reported discharge was measured at a gauge, or reconstructed using 446 

the Clague-Mathews (1973) relationship, it cannot be an accurate reflection of the peak discharge of 447 

water released from the glacier because it ignores the evolution of a dam-break type flood 448 

hydrograph with time/distance down valley (e.g. Russell et al., 2010; Carrivick et al., 2013). From the 449 

records of glacier floods that we analysed, it was often unclear ǁŚĞƚŚĞƌ ƚŚĞ ͚ĚŝƐĐŚĂƌŐĞ͛ ŽĨ Ă ƌĞƉŽƌƚĞĚ 450 

glacier flood included consideration of baseflow or of water already in the glacier hydrological 451 

system, since both introduce difficulty when constraining the water balance of a glacier flood (e.g. 452 

Huss et al., 2007). Very simply, we draw attention to the fact that uncertainty is almost always 453 

unreported in both the volume and the discharge estimated for an individual glacier flood.  454 

 455 

Mindful of these uncertainties in glacier flood attributes, it perhaps seems prudent to consider using 456 

empirical hydrograph reconstructions (Herget et al., 2015) and stochastic simulations of inundation 457 

(Watson et al., 2015). These approaches contrast with the detailed knowledge needed for 458 

mechanistic modelling that preferably relies on lake level changes or else an input hydrograph, plus 459 

down-valley observations of hydraulics, plus a high- resolution digital elevation model, plus expertise 460 

to run the model (e.g. Carrivick et al., 2009, 2010). Morphodynamic models of glacier floods, which 461 

could be more accurate than hydrodynamic-only models where there is widespread and intense 462 

sediment transport (e.g. Staines and Carrivick, 2015; Guan et al., 2015), are even more 463 

computationally demanding. Perhaps most importantly for quantifying socio-economic damage, 464 

there are emerging modelling techniques to consider impacts on the scale of individual buildings (e.g. 465 

Jenkins et al., 2015). 466 

 467 
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4.2 Global impact of glacier floods 468 

The number of sites recorded and reported to have produced glacier outburst floods is very small in 469 

comparison to the number of glaciers and the numbers of glacier lakes, whether on a global, regional 470 

or country scale. For example, Wang et al. (2013) identified 1667 glacier-fed lakes > 0.1 km2 in the 471 

Tian Shan and 60 of these as potentially dangerous at present, yet our study only found nine sites 472 

that have ever been recorded to have produced glacier floods in this area. As a proportion of the 473 

number of (individual mountain or outlet) glaciers in each major world region (Pfeffer et al., 2014), 474 

just 5.6 % in Iceland have been recorded to produce glacier floods, and this figure falls to 2.2 % for 475 

the European Alps, 0.8 % for Scandinavia, 0.3 % for South America and for Canada and US (0.04 % for 476 

Alaska) and 0.2 % for central Asia. Globally, the percentage of glaciers that have been recorded to 477 

produce glacier floods is 0.17 %. We consider all these percentages to be minima due to the issues 478 

of detecting and publically recording glacier flood data, as outlined above. 479 

 480 

An apparent decline in the number of glacier floods recorded from the mid-1990s onwards (Fig. 3) is 481 

unlikely to be due to issues of detection, given that it is a global pattern and given that improvements 482 

in earth observation and monitoring have gained spatio-temporal coverage. The apparent decline in 483 

floods is conspicuous given the continued increase in number and size of glacier lakes worldwide 484 

(Carrivick and Tweed, 2013). The apparent decline in reported glacier floods could speculatively be 485 

ascribed to: (i) successful efforts to stabilise glacier lake moraine dams (e.g. Grabs and Hanisch, 1992) 486 

but the number of corresponding engineering projects is very small compared to the number of 487 

GLOFs reported, (ii) the fact that successive floods ĐĂŶ ͚ĂƌŵŽƵƌ͛ flood channels (Ferrer-Boix and 488 

Hassan, 2015) and improve conveyance-capacity at the reach scale (Guan et al., 2016) thus enabling 489 

a river channel to more efficiently accommodate subsequent similar, (iii) local populations becoming 490 

more aware and more resilient (c.f. Carey, 2005), (iv) that over the last 50 years ice-dammed lakes 491 

seem to be generating floods less often whereas there is no such trend for moraine-dammed lakes 492 

(Fig. 6), nor is there such a trend in the occurrence of glacier floods from englacial water pockets or 493 

from volcanic activity (not graphed). 494 

 495 
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It has been previously documented that some sites are experiencing floods earlier in the year (Fig. 496 

5). Thorarinsson (1939), for example, noted that Vatnsdalslón in Iceland drained gradually earlier in 497 

the summer season between 1898 and 1938. Other well-documented examples include Lake 498 

Merzbacher in Kyrgyzstan (Ng and Liu, 2009) and Gornersee in Switzerland (Huss et al., 2007). 499 

Diminishing flood magnitude with successive events is also typical of the late stage of a ͚ũƂŬƵůŚůĂƵƉ 500 

ĐǇĐůĞ͛ in settings that have ice dams (Mathews and Clague, 1993). In these circumstances, ice margin 501 

retreat and/or thinning over time reduces the depth of the lake that can be impounded and 502 

consequently the amounts of water that can be released on drainage (Evans and Clague, 1994). 503 

However, Huss et al. (2007) noted that there was no pattern of peak discharge variation with 504 

progression through a jökulhlaup cycle at Gornersee. In general, Tufnell (1984) suggested that three 505 

types of periodicity could be identified, namely: (i) annually or sub-annually and associated with 506 

retreating glaciers and ice-dammed lakes, e.g. Gornersee, (ii) irregularly, as associated with barrier 507 

lakes from glacier advances such as Allalin, Vernagt and Rutor glaciers in Switzerland, and with 508 

volcanogenic glacier floods, and (iii) isolated phenomena such as Tete Rousse, Switzerland in 1892. It 509 

must be noted however that the periodicity of floods at a site can change: Stone (1963) identified 510 

four stages of different periodicity in Alaskan ice-dammed lakes. 511 

 512 

Cycles of floods from the same site, and flood periodicity, are dependent on trigger and drainage 513 

mechanisms and in the context of societal impacts are important because to some degree they can 514 

be dependent on climate and hence may become predictable (e.g. Kingslake and Ng, 2013). Most 515 

obviously the key relationship is that between lake water depth and the thickness of damming ice, 516 

as well as with hydrologic connections within the glacier (Clague and Evans, 1997; Tweed and Russell, 517 

1999; Roberts et al., 2005; Walder et al., 2006; Carrivick and Tweed, 2013; Tweed and Carrivick, 518 

2015). In contrast, floods from Aniakchak in Alaska (Waythomas et al., 1996) are produced by 519 

geothermal and volcanic activity producing meltwater and so are independent of climate. In contrast, 520 

floods from Grímsvötn in Iceland decreased in volume but increased in frequency from 1934 to the 521 

mid-1970s (Preusser, 1976) because as ice thickness reduced, the threshold for ice-dam flotation 522 

diminished: thus even glaciers floods that might be assumed to be independent of climate can be 523 

controlled by glacier fluctuations and hence indirectly by climate.  524 
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 525 

The relative damage index is extremely heterogeneous whether considered on a global, world region 526 

or country scale or per event (Fig. 8). The occurrence with which types of impact are recorded is also 527 

very heterogeneous (Fig. 9). These two observations together with comparison of the recurrence 528 

interval curves by volume, discharge and by damage index together highlight that there is no 529 

relationship between the size (volume or peak discharge) of a glacier flood and the societal impact 530 

of that flood, as measured by a relative damage index (Fig. 7). Simply, recorded damage is not a 531 

function of the physical attributes of the flood. This lack of a relationship between flood size and 532 

flood impact is perhaps not surprising because elements of risk are not uniformly distributed in space, 533 

but additionally may be because the same material impact (e.g. footbridge or road washed away) can 534 

have fundamentally different consequences, i.e. secondary or indirect losses, that depend on social, 535 

political, cultural and economic contexts.  536 

 537 

Damage also varies with multiple floods from the same site (Fig. 2) as physical and societal adaptation 538 

or resilience develops. In terms of adaptation of the physical environment, two floods of similar size 539 

(volume or peak discharge) can have different impacts depending on sediment concentration and 540 

thus flow rheology, since the time since the last event conditions sediment availability due to 541 

geomorphological responses such as collapse of undercut banks infilling the channel, subsequent 542 

lower-magnitude flows infilling the channel with sediment, a channel becoming wider and straighter 543 

due to erosion by the first event and thus of improved conveyance capacity (e.g. Staines et al., 2015; 544 

Guan et al., 2015). Thus glacier floods can behave as a Newtonian fluid, or be of debris flow type (e.g. 545 

Huggel et al., 2003; Breien et al., 2008) or exhibit transitional flow regimes (e.g. Carrivick, 2010; 546 

Carrivick et al., 2009, 2010, 2011). The Jancarurish, Peru 1950 flood released 2 M m3 of water and 547 

transported 3 M m3 sediment and the Tête Rousse 1982 flood generated 0.2 M m3 water and 0.8 M 548 

m3 sediment (Liboutry, 1971; Vivian, 1974; Bachmann, 1979; Tufnell, 1984). Unfortunately the 549 

sediment-water ratio is rarely measured in glacier floods. 550 

 551 

In terms of human adaptation, activity such as progressive development of infrastructure and 552 

livelihoods on a floodplain, or conversely relocation to higher ground or even permanent removal of 553 
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people, property or infrastructure from risk, will change societal impact for a second flood of the 554 

same physical characteristics. The nature of these human activities also has a spatio-temporal 555 

evolution. Engineered flood defences in distal locations including walls and bunds to protect villages 556 

were common in European Alps even in the 18th Century (e.g. Venetz, 1823) but are only recently 557 

being constructed in the central Himalaya (Ives et al., 2010). The walls and bunds in Europe are now 558 

to a degree superseded by reservoir dams, sluice gates and check weirs in more proximal locations 559 

(Kantoush and Sumi, 2010)  560 

 561 

5. Conclusions 562 

This study has highlighted considerable spatio-temporal heterogeneity in the style of monitoring and 563 

reporting of glacier floods and of their associated societal impacts. Standardised reporting and 564 

sharing of data globally has been started most prominently by GRIDBASE (2016) and GAPHAZ (2016) 565 

and this study is a progression to a global analysis and data sharing, but there is still a problem that 566 

some countries do not have the economic or infrastructural capacity to achieve the necessary 567 

monitoring nor to prioritise it against other issues. This problem leads us to make key 568 

recommendations that there needs to be accurate, full and standardised monitoring and recording 569 

of glacier floods, in particular to preferably discriminate flood volume and peak discharge at source 570 

rather than at some distance down valley. Otherwise the physical mechanisms responsible for 571 

generation of the flood are masked by the effects of channel topography on flood evolution with 572 

distance down valley.  573 

 574 

With the available data analysed, our key over-arching findings are that:  575 

 Of 1348 recorded glacier floods, 24 % also had a societal impact recorded. 576 

 Of recorded floods from 332 sites, 36 % had recorded societal impact. 577 

 Recorded glacier floods have predominantly occurred from ice-dammed lakes (70 % of all 578 

recorded floods).  579 

 The number of recorded glacier floods per time period has apparently reduced since the mid-580 

1990s in all major world regions, but the reasons for this apparent trend are unclear.  581 



manuscript published in Global and Planetary Change 

 
 

21 
 

 Two thirds of sites that have produced > 5 glacier floods (n = 32) are doing so progressively 582 

earlier in the year, which hints at a global climatic control. However, there was no relationship 583 

found between timing and peak discharge of glacier floods 584 

 We have found records of ice-dammed lakes at 78 sites that have produced three or more 585 

glacier floods, some annually, including Tulsequah Lake in Canada at > 100 floods and 23 other 586 

sites with ten or more floods each. 587 

 North-west America experiences floods with the greatest volumes but with the least damage. 588 

In contrast, the European Alps experience low volume and low peak discharge glacier floods, 589 

but moderate to high damage. 590 

 South America is the most vulnerable world region to glacier floods causing high levels of 591 

societal impact (of up a damage index of ~30), and central Asia is the most vulnerable region 592 

to glacier floods causing extreme levels of societal impact (damage index > ~30). 593 

 Glacier floods have directly caused at least 7 deaths in Iceland, at least 393 deaths in the 594 

European Alps, at least 5745 in South America and at least 6300 in central Asia. However, 88 595 

% of these 12,445 recorded deaths are attributable to just two events: the 1941 Huaraz, Peru 596 

(Carey, 2005) and the 2013 Kedarnath, India (Allen et al., 2015) disasters. Thus a single event 597 

with a large impact can change the spatio-temporal pattern considerably. 598 

 Iceland and Canada are notable for having relatively high number of glacier floods and 599 

relatively high number of sites, yet low levels of damage; whereas Peru, Nepal and India have 600 

relatively few events, yet high levels of damage. 601 

 One in five sites in the European Alps has produced floods that have damaged farmland, 602 

destroyed homes, and damaged bridges; 10 % of sites in South America have produced glacier 603 

floods that have killed people and damaged infrastructure; 15 % of sites in central Asia have 604 

produced glacier floods that have inundated farmland, destroyed homes, damaged roads and 605 

damaged infrastructure. 606 

 Bhutan and Nepal are the countries with the greatest economic consequences of glacier flood 607 

impacts. 608 

 609 
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In future work, it is the intention to add to the records of glacier floods compiled and analysed in this 610 

study (Supplementary Information) because i) we invite correspondence from anyone with more 611 

data to fill any gaps, and ii) more glacier floods will occur in the future. Other studies may wish to 612 

include lake area and shape, since the hypsometry of a glacier lake is partly determined by the dam 613 

type (e.g. Cook and Quincey, 2015) and has an effect on the rate of water efflux. More sophisticated 614 

statistical analyses on the spatial and temporal attributes could be considered, such as by employing 615 

non-stationary time-series methods and by normalising impact by spatial density of socio-economic 616 

attributes such as building density, respectively. Comparison of our data to other records; of climate, 617 

of glacier changes, of socio-economic development, for example could be instructive. Secondary or 618 

indirect impacts such damage or disruption to utility services and local businesses, loss of revenue or 619 

increase in costs and emergency assistance and recovery expenses are very rarely mentioned in the 620 

scientific literature in connection with glacier floods. Neither is there ever any mention of intangible 621 

losses, which might include psychological impairments caused by both primary and secondary losses 622 

that people experience due to a flood. To our knowledge there has never been an assessment of 623 

societal impact in terms of response to a glacier flood, i.e. comparing a socio-economic situation 624 

immediately before and in the weeks and months after a flood (e.g. ECLAC, 2003).  625 

 626 

Overall, combining glacier flood data with societal impact data recognises the interactions of a non-627 

linear physical system with a human system, both of which can behave in a linear or non-linear 628 

manner and with threshold responses. Therefore if future studies attempt modelling of the global 629 

impact of glacier floods, be it of geomorphology or of populations or infrastructure, then the 630 

response of the EĂƌƚŚ͛Ɛ ƐƵƌĨĂĐĞ ƚŽ ĐůŝŵĂƚĞ ĐŚĂŶŐĞ ĂŶĚ ƚŽ ůĂŶĚ-use change must be combined with 631 

probability distributions of possible geomorphological responses (e.g. Alcántara-Ayala, 2002) and of 632 

human activity to statistically characterize risk (Pelletier et al., 2015). 633 
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glacier outburst floods. Other major sources that were not region-specific included Evans (1986) 1176 

and Walder and Costa (1996). 1177 
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Iceland Greenland Global 

Total records 118 301 86 216 335 270 22 1348 
Events with recorded 

impact (%) 74 39 7 25 10 7 5 24 
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Table 2. Summary of the total number of records of glacier outburst floods compiled in this study 1210 

and the number of those events with recorded societal impact. 1211 
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 1216 

Table 3. Types and sub-types of damaged elements. For each type and sub-type, the value considered 1217 

for damage assessment is Vi. The Level, Li are multiplying factors for assessing total glacier flood 1218 

impact per event and per country, I, and are 1, 0.5 and 0.25 for levels 1, 2 and 3, respectively. Adapted 1219 

from Petrucci (2012), Petrucci and Gullà (2009, 2010). 1220 

 1221 
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 1231 
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 1234 

 1235 

Figure 1. Overview by major region of the proportion of the glacier outburst flood records compiled 1236 

in this study that include physical attributes; namely volume, V, discharge, Q, flood water release 1237 

ĂŶĚͬŽƌ ƌŽƵƚŝŶŐ ŵĞĐŚĂŶŝƐŵƐ͕ ĂŶĚ ĚĂŵ ƚǇƉĞ͘ NŽƚĞ ƚŚĂƚ ͚ŝĐĞ͛ ŝŶĐůƵĚĞƐ subglacial, ice-marginal and 1238 

ƐƵƉƌĂŐůĂĐŝĂů ƐŝƚƵĂƚŝŽŶƐ͕ ĂŶĚ ƚŚĂƚ ͚ǀŽůĐ͘ ĞƌƵƉƚŝŽŶ͛ ŝŶĐůƵĚĞƐ ;ŝͿ ŝŶƐƚĂŶƚĂŶĞŽƵƐ ŽƵƚďƵƌƐƚ ŽĨ ŵĞůƚǁĂƚĞƌ 1239 

derived from ice melt due to volcanic activity, (ii) release of water that was temporarily stored 1240 

having been generated by ice melt due to volcanic activity , (iii) geothermal activity. Numbers on 1241 

pie charts are the number of floods per dam type/trigger.  1242 
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 1245 

Figure 2. Glacier outburst floods that 
have originated from the same 
source three times or more. Note 
ƚŚĂƚ ͚͍͛ ƌĞĨĞƌƐ ƚŽ ŵŝƐƐŝŶŐ ŝŶĨŽƌŵĂƚŝŽŶ 
usually because there was no 
visible/named lake (e.g. if subglacial 
Žƌ ĞŶŐůĂĐŝĂů ͚ǁĂƚĞƌ ƉŽĐŬĞƚ͛Ϳ͘ WŚŝƚĞ 
parts of bars denote documented 
but unconfirmed sources of floods. 



manuscript published in Global and Planetary Change 

 
 

39 
 

A global assessment of the societal impacts of glacier outburst floods 1246 

Jonathan L. Carrivick and Fiona S. Tweed 1247 

 1248 

 1249 

 1250 

 1251 

 1252 

 1253 

 1254 

 1255 

 1256 

 1257 

 1258 

 1259 

 1260 

Figure 3. Number of glacier outburst floods per 25 years by major region (A) and as a global 1261 

cumulative total (B). Note that for clarity the x-axis is limited to displaying records from the last 500 1262 

years. 1263 
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 1289 

Figure 4. PĞƌĐĞŶƚĂŐĞ ŽĨ ŐůĂĐŝĞƌ ŽƵƚďƵƌƐƚ ĨůŽŽĚƐ ŽĐĐƵƌƌŝŶŐ ƉĞƌ ŵŽŶƚŚ ďǇ ŵĂũŽƌ ƌĞŐŝŽŶ͘ NŽƚĞ ͚Ŷ͛ ŝƐ 1290 

number of records for which month is known and % in brackets is proportion of all records of 1291 

glacier floods in that major world region. 1292 
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 1298 
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 1304 

 1305 

Figure 5. Comparison by major region of the day of year on which glacier lakes have drained, for 1306 

glacier lakes for which the day of the year is known. Black lines are linear regression best fits. Note 1307 

that we only have record of three glacier outburst floods from Nevado del Plomo but is included here 1308 

because there are few multiple glacier lake drainages recorded in South America. Note only lakes 1309 

that have drained more than 5 times are depicted for clarity.  1310 

 1311 
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Figure 6. Number of recorded glacier outburst floods per year, discriminated by dam type. The 1333 

excessively high number of events in 2013 in Scandinavia, in 1996 in North America and in 2003 in 1334 

Iceland were events in the Lyngen Alps (Jackson and Ragulina, 2014), at Brady Glacier (Capps and 1335 

Clague, 2014) and at multiple lakes around Vatnajökull (Veðurstofa Íslands, 2016), respectively. 1336 

Glacier floods from volcanism, ice-dammed lake ʹ volcano interactions, bedrock-dams and from 1337 

englacial water pockets are not shown for brevity and clarity. 1338 
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 1343 

Figure 7. Global glacier outburst flood recurrence intervals calculated by magnitude as defined by 1344 

volume (A), discharge (B) and an index of damage (C). Note both x and y scales are logarithmic. Note 1345 

the lack of error margins because we cannot define the magnitude of likely inaccuracies in volume or 1346 

peak discharge, nor the effect of likely unreported impact. For this reason it is the shape of these 1347 

lines and the relative placing of the lines pertaining to each major region that is most important rather 1348 

than the absolute values. These estimates of recurrence intervals are fits to past events and not 1349 

predictions of future ones. 1350 
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 1372 

Figure 8. Total number of recorded glacier floods (A), sites with recorded glacier floods (B), and 1373 

damage index (C) per country and per major world region. The absolute value of the damage index 1374 

is somewhat arbitrary, but permits comparison between countries and between regions. 1375 
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 1380 

Figure 9. Proportion of all glacier outburst floods (A) and proportion of all glacier outburst flood 1381 

sites (B) that have some attributes of societal impact recorded. Note different y-scale for 1382 

Scandinavia.  1383 
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Figure 10. Global societal impact of glacier outburst floods as defined by a relative damage index 1392 

(A), and this index normalised by population density (B) and by country GDP (C). White circles 1393 

denote country value without exceptionally high numbers of deaths included. Note that it is the 1394 

spatial pattern rather than the absolute values that are of interest. 1395 
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