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ABSTRACT

A steady vortex ring of prescribed strength and propagation speed can be

described in terms of a Stokes stream function 'A. A flux constant k

measures the flow through the center of the axisymmetric vortex ring. For

k = 0, Hill in 1894 found an explicit solution for the semi-linear elliptic

equation satisfied by 1. In this paper it is shown that there is an

unbounded, closed, connected branch of solutions emanating from Hill's vortex

in the space of pairs (k,t).
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SIGNIFICANCE AND EXPLANATION

A number of existence theorems for steady vortex rings and some

properties of solutions have been established in the last fifteen years.

However it is not known whether the vortex rings found for various physical

parameter ranges can be connected through parameter changes. Numerical

calculations indicate that the known vortex rings are so connected. In this

paper it is established that there is an unbounded, connected branch of vortex

rings emanating from the well-known Hill's vortex. This supports the results

of numerical calculations and paves the way toward establishing specific

characteristics along the branch.
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1. Introduction

The physical problem under consideration in this paper concerns steady vortex rings in

an ideal fluid occupying all of I3
. 

A more coqplete description of the physical problem

may be found in [1 and other existence results in [2], [6] - [10], [12], [19] - (21).

The only explicit solution known is that due to Hill [15] in 1894 and our purpose is to

prove the existence of an unbounded, closed, connected branch of solutions emanating from

it.

An axisymmetric flow is sought and thus the independent coordinstes are taken to lie

In the half plane

1II {(r,z) : r > 0, - < z <

T.he mathematical problem is to find a flux parameter k > 0; a bounded, open vortex "core"

A C n1; and a stream function I - Y(r,z) c C
1 

( ) C
2
(II-%A) such that

rT -r2 in A (1.

r r r + 2 in -

VIA - 0 , r=- -k (1.2)

and

1 W2 -- r W 13

Y(r,z) + -r + k 0 0, * , -W (1.3)
2r r

es r
2 

+ z
2 

+ in a. The vortex-strength parameter ) > 0 and the propagation speed

W > 0 are given.
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The use of the strong maximum principle in conjunction with (1.1) - (1.3) shows that

Y < 0 in fl-A and Y > 0 in A so that the core is

A- ((r,z) c I : Y(r,z) > 0)

In cylindrical coordinates (r,e,z), the velocity field + has the components -#/r, 0,

*r/r, respectively. Since q Is to be continuous, the condition Y c C (i) is to be

expected. The vorticity, curl q, has cylindrical components (0, - (LY)/r, 0), so that

'1.1) gives a jump in vorticity across 3A. This causes a jump in the second derivatives

of Y across 3A and allows one to have V smooth merely in 11-aA.

For any value of k, the function 1 - Wr2 - k satisfies (1.1) - (1.3) with
2

A - *z these are trivial solutions, and we shall be interested in non-trivial solutions.

With the aid of the Heaviside function

f0 (t) I (1.4)
, t > 0

the equation (1.1) may be expressed in the form LY = -Ar
2
f0 (Y). Define * by the formula

1 2

V(r,z) = (r.z) -- Wr
2 

- k

Then the equation (1.1) becomes

L -Ir f( - - k) in 9 11.5)

and the boundary conditions can be expressed roughly as

,p + 0 on a11 (1.6)

1
by which one should understand that * = 0 for r = 0 and # and I V* approach zero at

r

infinity. These conditions are not made more precise here for the problem will be

reformulated in the next section in such a way as to prescribe a precise function space

for ,. In (1.5), (1.6) the numbers A and W are still prescribed and a solution pair

(k,*), with k o ), is to be determined. Implicit in (1.5), (1.6) 13 that

A- {(r,z) : O(r,z) >1Wr + k)

2

is to be a bounded, open subset of U. The problem (1.5), (1.6) .1.8 a special case of a

more general problem in which one replaces f0  by a general vorticity-distribution

-2-
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A

function f. A class of distributions, other than the Heaviside function, which has

received considerable attention in recent years consists of functions which are zero for

non-positive arguments, smooth, and non-decreasing. The papers (21, (71, [ 11J, (12J and

[19] include results for this class, proved largely by variational techniques.

For the Heaviside vorticity distribution and flux k - 0 Hill 115J, nearly a century

ago, found the solution

m f 2
-r 2 2-, 0 -p a

A*H(rz) 2 2 3 a (1.7)

1Wr a/ , p ) a

where p2 - r
2 

4 z
2 

and

Xa
2 

_ 15W/2 • (1.8)

The core A for Hill's solution is merely a semi-circle of radius a outside of which the

vorticity vanishes. In f31 it was ahown that 4H is the unique solution when viewed in a

natural weak formulation (.f (1.10)).

For small k > 0 Norbury [20] proved that there are solutions near Hill's vortex,

each r'lution having a core homeomorphic to a torus when viewed in R3. The analysis in

[20] was based on a contraction principle in a ball of radius k centered at Hill's

solution and hence other solutions near (JPR) were not ruled out. In [4] it was shown

that this local branch of solutions (k,O) emanating from (0,0H) constitute the only

solutions in a neighborhood of (
0
,*M) for prescribed positive values of A and W.

Consequently, the local branch will be a subset of the global branch we find in this paper.

A global branch is suggested by the numerical calculations of Norbury [21).

A result of Esteban 'aJ for solutions of (1.5), (1.6) with quite general, but smooth,

vorticity distributions f, shows that solutions must always be synmuetric about a line z

I. constant. An analogous result holds for the Heaviside distribution f0: one uses the

arguments of Gidas, Ni, and Nirenberg "13j with the extension given in (3]. Hence, without

-3-
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los of generality, we may assume our solutions are even functions of z. An inner prodict

occurring naturally in conjunction with the operator L is

'O>H f L' tor + 4z# )rfrdz (1.9)
2 ror z z

r

The space in which solutions are sought is H(1), the completion of the functions in

C (11), even in z, in the norm corresponding to the inner product (1.9). With this

notation, equations (1.5), (1.6) have the weak formulation

f . r2 - k)o rdrdz , V # c 1(U) (1.10)H fa fo(O _

and a solution (k,#) is to be understood in the sense of (1.10).

The main result of the paper can now be stated.

Theorem 1.1. Let A > 0 and W > 0 be given and let #, be Hill's solution (1.7),

(1.8).

(a) There exists an unbounded, closed, connected set C C [0,-) x H(11) of solutions

(k,#) of (1.10) with C n ({0) x H(U)) #H))

(b) There exists an e > 0 and a continuous function 9 : (0,cj * 1(R1) with g(0) -

such that ((k,q(k)) : k c [0,c)} C C and constitutes the only solutions of (1.10) in

a neighborhood of (0,#H).

(c) If (k,*) c C, then the following hold: The vortex core

A - ((r,z) : #(r,z) > Wr
2 
+ k) is boundeds # C C1( q) n C2( -_3A) for any

a c (0,I)i 4 is an even function of zi *(r,z) < 0 for z > 0; and at infinity,

* 21/r + z
2
) and I'V* = 0(1/(r

2 
+ z2)).

The new aspect of the theorem is part (a). Part (b) is the min result of [4] while

(c) is standard from the estimates of Fraenkel and Berger [11]. To prove (a), we begin

section 2 with a further reformulation of the problem. The change of variables #(r,z) =

r
2
v(r,z) is made, and if v is considered as a function in &S with r

2 
. 1 x

2 
and

i-I

z - x5, then the operator corresponding to L is the Laplacian. This fortuitous fact has

been used in [3] and [19] in analyzing the vortex ring problem. If the Laplacian is

-4-



formally inverted, a functional equation of the type V - N(k,v) - 0 arises. Degree

theory and global bifurcation methods suggest themselves. However, two difficulties are

encountered. First, the underlying domain is the whole space R
5 

and so the inverse of

the Laplacian is not compact This is handled by working first in a ball of radius b

in 31
5
. Second, the intervening function f0  is discontinuous, making N

discontinuous. By approximating f0 by a continuous function f, which converges to

to as 6 + 0, a continuous and differentiable map is obtained. In this setting, for

k - 0, a degree computation is made about a solution vb, 6 of the altered problem. The

degree is shown to be -1 from which one concludes that a branch of solutions emanates

from (Ovb,6). In section 3 we return tq the original problem by letting 6 + 0 and then

letting b * - showing in the process that the desired continuum of solutions results. In

1section 4 we consider the nature in which this set of solutions is unbounded. The

numerical calculations of Norbury (21] suggest that the branch extends to k - and that

solutions with large k approach a class of solutions examined by Fraenkel (9], [10]. We

conjecture that the branch is unbounded in the k-direction and provide some evidence to

show that if this is false, then the solutions converge to a 'singular' solution which is a

function of r alone and has infinite norm.

* -5-
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2. An Equivalent Problem

2. 1. Preliminaries

The purpose of this section is to derive a transformed problem in R
5 

which is

equivalent to (1.10). The notation follows that from (3]. Let I > 0, W > 0 be fixed and

let (k,#) c (0,-) x (H(n) n C
2
(I[-8A)) satisfy (1.5). We first rescale variables by

2 2
setting k 2k/Wa , with a as in (1.8), and *(r,z) - 24(ar,az)/a W so that (k,)

satisfies

4L - -15r
2
f0 (, - r

2 
- k) (2.1)

In the sequel we restrict attention to (2.1) and its corresponding weak form.

4
Consider R5 and let (r,z) with r2 x2 and z x5 be cylindrical

i=

coordinates. Under the chanae of variables O(r,z) - r
2
v(r,z), there results

- L$ - Av (2.2)
2

r

5where A, throughout the paper, denotes the Laplacian in R
5 . 

Hence (2.1) corresponds to

Av = -15fO(V - - ) in R5 (2.3)

r

The occurrence of the Laplacian was used in a crucial way in (3] and (19], and will be the

key to a tractable analysis here. We anticipate bounded solutions of (2.3) and thus

* = r
2
v will vanish at r - 0. The condition

lvi - 0 as jxj + - in R5 (2.4)

is allied to (1.6). Indeed, the function space setting for v will ultimately give decay

of the order Ix!
- 3 

so that r 2v approaches zero at infinity.

Note that from the form (2.3) with k - 0 it is a simple matter to write down Hill's

solution. In this setting it is the radial function

v H(r,z) - (2.5)
1/P 

3  
p ) I

5

where p2 r
2 

+ z' x?. when k =0 tile analysis in (3] shows that the methods of
i-i

% V
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Gidas, Ni and Nirenberg [13J are applicable and so any solution Is a radial function. Thus

Hill's solution in (2.5) is unique.

Let * and 4 be in functions in Co(M) and let v and u be cylindrically

J1 symmetric functions on R (that is, depending only on r and z) defined by *(r,z) =

2 2
r v(r,z) and O(r,z) = r u(rz), as earlier in this section. Let

<u, -- 1 f Vu(x)-Vv(x)dx • (2.6)2w
2

R

Then from (2.2) or from a direct computation one has

', , , ,,<UV>
E

It is natural to define a space Ec as the completion with respect to the norm I I

induced by <,">, of the cylindrically symmetric functions in C(RJ which are even

in z. The following lemma follows from section 2.2 of [3].

Lemma 2.1. (a) The spaces H(I) and Ec are isometrically isomorphic under the

correspondence * * r
2
v.

(b) A pair (k,O) c [0,-) x H(w) satisfies the weak equation

H = 15 fl f0 (* - r
2 

_ k)#rdrdz (2.7)

for all c H(I[) if and only( if (k,v e 1 0,-) x Ec  satisfies~~~-.~~ 2" 
__ _ _ _ __ _ _ _

% % is

% <~> --,_ f, f0(v -I -1-)udx (2-8)
for all u c E.

Lemma 2.1(b) shows that it will suffice for Theorem 1.1 to show there exists an

unbounded, cloied, connected set D of solutions of (2.8) with D __ ({0} x EC )  {(0,V)

*2.2. The transformed problem on bounded domains

Let B(b) - (x e R
5 

: ;xj -( b) and in analogy with the definition of Ec  let E(b)

(Ec(b)) be the completion in the E norm of the (cylindrically symmetrc) functions in

C0 (B(b)) which are even in z. Corresponding to (2.8) is the problem: Find

v C Ec(b) such that

V '
-7-

Ze Z

rJ-

%~~~~~~~~ ---- .... .-4 * V .. ... . .. ...... 'A



(u,v>E .212 fs(b) f0 (v - 1 2)u, V u C (b) (2.9)

2w r

Its solution can be regarded as a fixed point problem. For given k > 0 and v C Zc(b)

J .let w e 3(b) be the solution of

2.L 5 fBb)- f0 (v 2 1 " -)u, V u C E(b) . (2. 10)

4" 2,2 r

The existence and uniqueness of w follows from standard elliptic theory [14]. ThatIw C Ec(b) follows from the arguments for Lemma 2.3(b) in (3]. If w is denoted by

N(k,v;b) then a fixed point of N is a solution of (2.9). The function w is a weak

solution of -Aw = 15f 0(v - 1 - k/r
2
) in B(b) and since IAvI - 15 standard regularity

theory [1] gives w c W
2
'P(B(b)) n W12 (B(b)) for all p c ([1,w). Sobolev embeddings then

yield w C CI+ (( b)) for all a c (0,I). If A = [x c R
5 

: v > 1 + k/r
2
}, then with u

w in (2.10) one obtains

ol2 C'2 15 1

2w± ,( IV5lo/:3) 3/ lO o 7/10

15 10/3 31 IA!5 (2.11)
2w 

2

4 const. Iwl - b
7/ 2

where 1 denotes Lebesque measure in R
5 

and the constant is independent of b, w,

and k (see Lemma 2.1 of (3]). Since lwl 4 const b
7 /2

, the elliptic regularity

arguments now insure that the bounds on w in W
2
rP(B(b)) and in C

1
+a(B(b)), which

,epend on b, p, and a, will, however, be independent of k and v.

The solutions of v - N(O,vib) - 0 are known explicitly from L3]. One is

* ". 2
1 53 2-

_1L &-c i --2, o 2) P<
a

b(r,z)= (2.12)

1-c 3 C), a 4 p 4 b

where a = 1 +-- + O(b
-6

) is the smaller root of
3

b

%" - 8-



* -p 3

a -- - 1 (2.13)
b

and c a ,
3

/b3. We assm b > (.1 1/2 5j1/3 so that (2.13) has two distinct roots

)< in (0,b). Corresponding to the root a2  is a solution b with a =

in (2.12). Note that while a1 (b) + I as b + -, a2 (b)/b + I as b so that vb > I

on essentially the whole ball B(b). If v b  s extended to be zero outside B(b) one

calculates from (2.12) and (2.13) that Iv - v I + 0 as b + - and so we shall be
H b

interested in solutions emanating from (Ovb). The explicit estimates

2 40

~as b (2. 14)

l;bl2 
12 

b
7

can be found in Appendix B of (3].

The regularity esLimates given above ensure that the map (k,v) * S(k,vib) is compact

. from [0,-) x Ec (b) into Ec(b). Unfortunately N is not continuous since convergence

*2
in E (b) does not satisfactorily control the level sets on which v(r,z) -1 + k/r

Hence, a degree argument for the equation v - N(k,v;b) - 0 is not immediately

applicable. This difficulty can be surnounted by smoothing out the discontinuity in fo.

2.3. The regularized problem for fiaite b.

For each 6 > 0 let f6(t) be the plecewise linear function

m ¢0 , t < 0 ,

f a (t) - t/6 , 0 4 t ( 5

1 t>6

For each (k,v) c [0,") x Ec(b) and for b > 0, 6 > 0, let w - N(k;v;b,6) C Ec(b)

denote the unique solution of

'* ,15 k

<u'w>E= 1- fB(b) fS(v - I - 1-)u, V u e* E(b) (2. 15)
d2w

2  
r

and define N(k,v,b,0) to be N(k,v,b) from (2.10). The added regularity of f5  makes

-9-
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the map N(.,.ib,6) : 0ta,) x Ec(b) + Ec(b) continuous as well as compact, and a degree-

theoretic argument is suitable for the equation

v - N(k,v;b,6) - 0 (2.16)

When k = 0, equation (2.16) is equivalent to

-Av = 15 f6 (v-1) in B(b)

(2.17)

v = 0 on aB(b)

Since f6  is Lipschitz continuous any solution lies in C 2+(B(b)) for each a e (0,1).

Since f 0, a solution v is non-negative and, in fact, mast be positive in B(b)

with a maxirum larger than unity or be identically zero, by the strong maximum principle.

5 1/2

From [131, v is a function of p = 2' and v'(p) < 0 for p c (O,bJ. It follows

that v satisfies the ordinary differential equation

I d (p 42) = 15 f (v(p) - 1), p c (O0,b],
4 4dp dp

(2.18)

v(b) =0

We now prove that if b is sufficiently large and 6 is sufficiently small, then (2.18)

has a unique solution Vb,6 in a neighborhood of the function vb giveit in (2.12).

Lerma 2.2. There exist positive numbers 5.1 b0, an 0d e such t~iat for each b ) b0 anc

C (O00 the problem

- Av = -15 f6 (v-1) in B(b)

v = 0 on 4B(b) (2.19)

1v-v I C 0
VVblE () 0 €

c

has a unique solution vb,i -

Moreover,

lm IV -vb E (b) - 0
5+0 b,

-10-
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Proof. The solution with 6 > 0 can be expected to be close to vbI given in (2.12),

which satisfies

4 -3a3 -3

b4vb(b) -€

for b large. For a fixed, large value of b let v = v(ps0,6) be that solution of

(2.18) which vanishes at P - b and satisfies

b
4
v'(b) - a

The idea is to find a value of o near -3 for which v'(0) - 0, eventually using the

implicit function theorem. As long as v < 1, v' (p) a/p 
4 

and thus

vW --' on [a,b]

where a - (e) - (-3o
" 

+ b
3

)
"1 3

. For a near -3, v'Cu) < 0 and so vo assumed to

lie in C
1
, will be larger than unity on an interval to the left of a. There v

satisfies

4 -15

v"(p) + v'(0) - (v()-1)

(2.20)

• m 4

For a near -3 and b0  large, a is approximately 1 and we expect (2.20) to be

satisfied on an interval 10,a] where a-B - 6/3 and v(B) - 1+6. To see that this is

the case and to find the dependence of B on a and 6, let

v(P) - I + 4 w(S)

where p a--s. Then w = w(sia,6) satisfies

2
dw 44 dv + 15 aw 0

tin2 ai-6s ds

(2.21)
dw a

w(M) - 0 , (0) - -

The solution w is analytic in all its variables for a < a/8, and for 8 - 0 is the

linear function w(s) - - s. The value s = .i4/o gives w - I and since 3w/3s $ 0

-11-
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for this value of a, the implicit function theorem yields a unique analytic function

s(a,6) defined for (a.8) in a neighborhood Q of (-3,0) such that

w(s(0,6)1U,6) 
=

1 (2.22)

In this case Q will be independent of b for all b larger than some bO. Taking Q

smaller, if necessary, we can assume aw/as > 0 for (a,6) e Q and 0 4 s 4 s(o,8). This

yields a function v which is monotone decreasing in p for p r [Sa] where B a(a) -

6s(a,f). By construction, v(B) - 1+8.

Since v is required to be C
I 

and v'(8) < 0, it follows that v > 1+6 on an

interval to the !eft of 8 and there satisfies

1 d .4 dv 1

dv0 4 . -15 

yielding dv - -3p + const.!p. We want a slope of zero at p - 0 and thus

d..v --3 a on 10, 0)
dp

'i'he condition that derivatives match at p - 5, expressed in terms of w, is

• dw
F(O,5) (s(u,6)jo,6) - 3(a(o) - Ss(a,6)) - 0 (2.23)

For 0,

F(a,0) - -- - 3a(a)

a 4(CF)

which vanishes for the choice a 
= 
a, a - -3a5 corresponding to the solution vb in

(2.12). For later use we note that for this choice of parameters

4
s(o,0) - = -- 

(2.24)
c 3a

Since u'(,) le_ In general,

3F 1 4a
(o,0) = - - + - al - 3a

a a

1 4 3a
4

4 ao 2a

-12-
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For a - -3 and b large, a is approximately 1 so 3F/Ba(-3,O) is approximately

~2
i. The implicit function theorem applied to (2.23) yields an analytic function a(6),

defined for 6 in a neighborhood of zero which is independent of b, such that

F(a(8),6) =- 0. The function

Vb, (0) - v(pO(s),a)

satisfies the equation and boundary condition in (2.19). As regards the distance from

Vb,6 to vb it is clear from the construction that the distance in C1 approaches zero

as 6 + 0. Since I/p
3 

and its gradient are in L
2 

at infinity in R
5, 

the convergence

in 9c (b) follows as well, uniformly for all large b. q.e.d.

2.3. The index of the solution vb,d

Throughout this section it will be assumed that b - b0 and 8 c (OA.0 as in Lemma

2.2. Then vb,d is the only solution of v - N(0,v,b,S) - 0 in S(b), where J(b) is

the open ball of radius co centered at vb. As all computations in this section are done

for k - 0 we suppress it writing N(vib,8) or merely N(v) when the emphasis in on the

behavior with respect to v. For 6 > 0 the Frechet derivative of N at Vb,6  is

N'(v,)y --A
1
.15f(v - l)y (2.26)

b,6 8 vb,8

where f;(vb, - 1) - J-' when vb,6(p) e (1,1+6) and is zero elsewhere. Note that

f6 (t) itself fails to have a derivative at t - 0 and t - S. However, since vb, 6 has

a nonzero gradient where vb,8 - I and I + 6, one can, by viewing N as a map 15f6(v-1)

from Ec(b) to L 2(B(b)) followed by -A-
I 

from L (B(b)) to Ec(b), verify that

(2.26) is the derivative.

Standari theory [161 ensures that the Leray-Schauder degree of I - N(o) relative to

zero and J(b) is equal to the degree of I - O'(vb,5 ) relative to zero and Ec(b). We

will show that I is not an sigenvalue of N' so this latter degree is well defined. In

fact the constancy of degree follows from the homotopy

t *4 Y - [(v + ty) -N(v,) t C [0,1]

where, for t - 0, the last expression is understood to be y - NI(vb,6 )y. Using 6 as a

. 13-
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n

homotopy parameter one sees that the degree of I - N(.) relative to zero and J(b) is

4 the same for all 8 c (0,60] and so the degree of I - N'(vb,6 ) is constant for all

sufficiently small 8 and large b. By standard theory the degree d(b,6) in question is

then (-I)
m 

where m = m(b,6) is the total algebraic multiplicity of eigenvalues of

N'(Vb,b,S) on the interval (I,-). Since N' is selfadjoint m is the total geometric

multiplicity associated with the interval.

Theorem 2.3. There exist b) b0 and a positive 8 1 60 such that d(b,6) = -1 if

SC (
10
' 1I and b > b1 .

Proof. It will be shown that for all small 6 and large b the largest eigenvalue of

N' is near 5/3 while the second largest eigenvalue, counting multiplicity, is bounded

aDove by approximately 5/7. This will show m(b,6) I for these parameter ranges. Let

)(b,6) denote the largest eigenvalue, as before, and let M(b,8) 4 Adb,6) denote the

second largest. Let u(b,6) and v(b,S) denote corresponding eigenfunctions. It can be

a:assumed that <u,v>E = 0.

We begin with a discussion of A and u though much of it applies to p and v as

well. Recall that fj - 6
"
1 precisely on the interval I - ($(b,6), a(b,6)) and is zero

elsewhere. Lt-t X denote ttie characteristic function of I. Then u satisfies

15
- U X(P)u in B(b)

(2.27)

u = 0 on 3B(b)

Alternatively, for any test function +

<u,#> - a 4 dp f u(p,n)#(p,Q)dQ (2.28)

2w 2- 8 p )

where S(p) C R
5 

denotes the sphere of radius p and d2 is the area element on the unit

sphere.

The eigenfunction u will be of one sign, will be radial by symmetrization, and will

he harmonic where X(p) - 0. The eigenvalue itself can be characterized by

-14-
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<N' (V ,)l,w> r_- fa 4do (p,nlldQ

X(b,6) - max b, max fspw(2.29)
weZc (b) <Ww> fB(b) I.12

Recall that as 6 * 0, a and B approach a - a(b) a I and, from (2.24)

3

ha- 6- 1 p0 - a',(o,0) - -
+0 3

From this discussion one would expect that

ap 3 
(0,a

U(P) 1 (2.30)

3 b3 ,P c (a,b]

is a reasonable trial function for (2.29). With this function as w the quotient in

(2.29) is well behaved as 6 + 0 and b + -. In the limit its value is

15 • I I Ju1
3 I 5

P

where 1fl is the measure of S(1). This suffices to show that X is bounded below by

J approximately 5/3 for 6 small and b large. In fact one can make sense of the

eigenvalue problem in the limit as 8 + 0 and u in (2.30) is the eigenfunction

corresponding to the largest eigenvalue. To show this and to pave the way for estimating

u(b,6) we carry out such a limit.

From embedding theory ((17j, p. 316)

Ifs(p) u(pnl) (p)dQ 4 lul L 8/31SlO)) 9/5(S( ))

__ 
c;oner lul • I41 W1,10/7 (~)

L Sp) L (S(p))

Hence from (2.28)

I<u,#l const nul n* W1

where the constant is independent of 6. By duality,

L -1 5-

[I6

%.
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lul W 1 const lul (2.31)

for a constant independent of 6. Now pick a sequence 8n * 0. n - 1,2,... so that

A(b,6 n ) + A(b) - 11m sup X(b,6). Let un  denote the corresponding norualized

650

eigenfunction. Pick an e > 0 and let

Ke B (b) r){P de(a -~,+

1Te functions u are harmonic in K for large n and so a subsequence, still denoted

Un, will converge In C
1 

on each connected component of K to a harmonic function. On

the other hand

f 1% n1 
2 

4 const e2/51u n2 1,10/3

n 1,/3W (B(b))

which, from (2.31), is of order c2/5
, 

independently of n. It follows that un

converges in Ec(b) to a nonnegative radial function u which is harmonic in the

ccmplement of S(a); i.e., to a multiple of u(P) in (2.30). As noted, the traces on

spheres are well-behaved and the limiting function satisfies

-p 3

A<u,#> -- 
a 
2 S(a) u(a,O)#(a,n)d11 (2.32)

2.
2

'or ill p c Ec(b) where A = A(b). In fact, the limits as 6 + 0 of u(b,6) and A(b,d)

exist, for any subsequence of eigenfunctions will converge to a multiple of u in (2.30).

The discussion of limits holds equally well for jj(b,6) and v(b,S) as 6 + 0

yielding a pair (u,v) satisfying

L3
Su<v,O> = 

5  
fS~a) v(a,n)#(a.) (2.33)

2 2.. 2,

for all * C Ec(b). Naturally, <u,v>, = 0 for the limiting functions. Since all

eigenfunctions are harmonic in the complement of S(a) and hence determined by their

values on the sphere it is natural to examine more closely their behavior on spheres in

R
5
. Recall that the functions under consideration are functions of r and z. Consider

instead coordinates p and s where 0 - /r2 + z
2
, as before, and s = sin 6 where

-16-
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r - p cos and a - p *in 0. Lot U be defined by

u(r,z) - u(p a, Ps) " U(p,s)

and let V, 0 correspond to v, #, respectively. We have

<U,#> E - <U#> G (2.34)

where

<U,O>G f 1 1-s
2
)as fbto U0 + a 

2
(1-s

2
)U 9 sdp (2.35)

and hence the elgenvalue equation (2.32) is expressed as

G  5a
3 

f!1(1-s)U(a,sa)(a,s)ds (2.36)

for all # for which 0,>G ( -, with an analogous equation for U and V. Of course,

<UV>G  0 . (2.37)

The function U corresponding to u is a function of p alone and so is constant on

S(A) yieldang

f.1(1-s
2
)V(a,s)ds - 0 (2.38)

from (2.36), (2.37). In fact V(p,sJ is orthogonal to I (with the weight 1-s2) on

each sphere. To see this let

7(p) _ fl'(11a2)V slds (2.39)

If in the eigenvalue equation for U, V one admits only radial test functions 0(p), the

result is

U b 0 
4 
V 5a

3 
V(a)#(a)

-0

for all such t. tt follows that V(p) is a radial, harmonic function on B(b),

vanishing for p - a and thus identically zero. That is,

f~j(1-s2)V(p,s)ds - 0 for P c (0,b) . (2.40)

A collection of polynomials which is orthogonal with respect to the weight 1 - 92 and

coplete in the weighted L
2 

space on [-1,1] is

-17-



S (a) P a) , n = 1,2...
nl do n

where Pn is the nth Legendre polynomial. From the Rodrigues' formula one easily sees

that

fl,(,-s
2
,SnS. = f/!(i-s2,SnS _ 0 if m n

while standard formulae ((23], Chap. XV) show that

f, (1-s
2
)S2 . 2n(n+l)

n 2n+ 1

and

1 lll-s2 ) (SI)2 . 2n(n+l)(n2 +n-2)
S 2n+1

Set

V(P,s) = Cn(P)SnCs) (2.41)

n-1

where

2n+1 fI (1-s 2)( S)s
n 2n(n+l) -1  )V(P (s)ds

Now S1, 3 , S5P,..., are even functions of s while S2, S4 , S6 ,... are odd. Since

v(r,z) s even in z, V(p,s) is even in s and thus c 2 (p) = C4 (P) -..- 0. Since

S 1 (s) - 1, (2.40) gives cl(p) - 0 and so the sum in (2.41) starts at n - 3. The

absence of the first two terms in (2.41) makes an effective estimate of U possible. The

eigenvalue equation for U and V becomes

rc') 2n+1 Jo 4n
2  

2n4n+l)ln2+n-2) b 2 2 3 a 2r(n+l)
2n+1 JO P n 2no+1 0 

P  
nn 2n+2b1 = I3 _ 5a c . (2.42)

3 n=3 n3

Since n
2 

+ n - 2 ) 10 for n ) 3

n(n+1) I, fO
L

(cn')2 + OP2c2] - 5
3 2

(a) ( 0 (2.43)
3 2n+1 0n , n(a ) 0t . 3

n=3

A simple variational argument shows

c 2a) 4 A(b)ffbi
4
(c,)2 221,:)

n 0 n n

for all n where A(b) + 1/7 as b + -. It follows that

u C 5a
3
A(b)

- S -1 8
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4 and as b * the upper bound for p converges to 5/7. Hence for 0 < 6 4 6, and

b 1 bi, where 61 and b1 are suitable constants, NI(vb,6sb,6) has only the eigenvalue

X(b,6) 5/3 on the interval [1,i). q.e.d.

a

4
a,'

,," -19-
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3. The Existence of Global Branches

3.1. The case 6 c (0,61] and b 0 bi

We return to the equation *(k,vjb,6) 2 v - N(k,v;b,5) - 0 for k > 0. Consider the

collection of nontrivial solutions

Pb,6 - {(k,v) e (0,-) x Ec (b) : 4(k,v;b,6) = 0 and v 1 01

The next result summarizes properties of these solutions.

Theorem 3.1. The set Pb,8 is closed and bounded. Moreover (kv) c Pb,6 satisfies:

(a) v is cylindrically symmetric in R
5 -

vr.,) where__ 2 _ .2 *+...+ 2 and z - x

(r) c e2+a r__5

(b) ~C 2 ~(9(b) ) and

7/2
I ! (, < const IvI 4 const b

C ((b))

4i 2 const b7/
2
/6

c (,(b))

11/2
IkI 4 const b

where the constants depend on a c (0,1) but are independent of k, v, b, and 6.

(c) v is an even function of z and

.- < 0 on B(b)-- ) (z > 0)

az

Proof. (a) This is just a restatement of v Ec (b).

(b) Since JAv I < 15, it follows from [1] and embedding theorems that

IVI ( const(lv + !vI ,0/3) < const Iv#

and by an inequality completely analogous to (2.11), IvI 4 const b
7/ 2

. The estimate for

the C
2
t
a 

norm is similar but now depends on the Lipschitz constant 1/6 for f . If

(k,v) C Pb,S then for some e B S(b), v(x) 0 1 + k/jx ) k/b
2
. Hence

k b 2v( () 4 const b
1 1/ 2 .

-20-
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Note that the boundedness of Fb,a has now been established. As to its being closed

one need merely show that no trivial solution is in the closure. From the arguments above,

a limiting solution would have to satisfy v(;) )p at some point and so is nontrivial.

(c) This follows from [13]. q.e.d.

Let Db, 6 denote the maximal connected subset of Pb,6 containing (Ovb, d.

Theorem 3.2. Suppose 6 e (0,61J and b a b,. Then Db,d contains a solution (0,V 6 )

with Vb,8 P vb,6 .

Proof. This is a variant of a result of Leray and Schauder [18] and can be shown using the

techniques in the paper of Rabinowitz (cf. (22), Lemma 1.2). If the bounded set Dh,6

contains only (
0
,Vb,6 ) in the "slice" at k - 0, then by the use of a suitable open

neighborhood of Db, 6 one can derive a contradiction. For the degree of t(0,.;b,6) at

vb, 6  (and hence on any large bell in Zc(b)) would be -1 by Theorem 2.3 while for k

sufficiently large #(k,*;b,6) = 0 has no solutions and thus ha6 degree zero on every open

set.

3.2. The case 5-0 and b b1

We fix b > b) and consider the limit of the branches Dbd as 8 + 0. Some

definitions are needed. If X is a metric space and (Anln=1 a sequence of subsets of

X, then li inf An is defined to consist of points p c X such that every neighborhood

of p has nonempty intersection with all but a finite number of the A . In constrast,n

lia sup An consists of points p such that every neighborhood of p has nonempty

intersection with infinitely many of the An. The following result from Whyburn [24] isn•

useful for taking limits of connected sets.

Lemma 3.3. Let {An} be a sequence of connected sets in a metric space such that

(a) U A is preconvact

n-=I n

and

(b) lim inf An it

-21-
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Then lim sup Au is a compactj connected set.

Theorem 3.4. There exists a compact, connected set Db C [0,-) x E c(b) of solutions of

v - N(k,v,b,0) - 0. Moreover

(a) Db r 1({0 x Ec(b)) - {(O,Vb) ) U {(OVb)I where vb• lb are, respectively, the

1. Ismall" and *large" solutions from section 2.2 (cf. eq. 2.12).

S(b) If (k~v) e Db  then v is cylindrically symmetric in R5and

- const Ivi 4 const b
7
/
2

10C J+L((b))

11/2
k ( const b

3v
Z 

< 
0 on B(b) ) [z>0}

where the constants are independent of b, k, and v.

Proof. For fixed b > b1  let 6n c (0,6] n - 1,2,... be a sequence converging to zero.

According to Theorem 3.1 tnere is a closed bounded set X C R x E c(b) which contains

D b for all n. To use Lemma 3.3 let An - Db, . The bounds on v in Cl
+
* and on

k from Theorem 3.1(b) are independent of 8 and so the use of Arzela's Theorem shows

j,, A n is precompact in X. Accordin-3 to Lemma 2.2, vb, S * vb as 0 and so
% n= I

(O vb) e lir inf An . According to the previous lemma Db - lir sup An  is a compdct,

connected set and contains (O,vb). With the exception of the strict negativity of

3v/3z the remainder of (b) follows immediately from Theorem 3. 1 since the relevant

estimates are independent of 6.

To complete the proof of (b) consider an element (k,v) c Db . It can be assumed

thAt (k,v) is the limit in R x C I(B(b)) of a sequence (kn,vn) C An . Si-ice vn is

bounded in W
2
'
2
(B(b)) uniformly in S, by elliptic theory, v is alio the weak limit

in W
2 ,2 

of vn " To show 3v/3z has one sign on B
+ 

- B(b) r) (z>0} we use a weak form

of the maximum principle. Let * be an element of Cm(B
+
) with *P 0. Then

-22-
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.34

f + 3 n f +(AVn) Z
B' BB n x

k4.%. n " - " n- 1 5i f f -n
a + (n 2r a'...B a

151 (v- -- k 3,,

15fB + 2 r

( 0

since v n/az < 0 in B
+
. Taking a limit yields

f v+.!h 7 0 . (3.1)
B

Since, in the limit 3v/az ( 0 in B
+
, Theorem 8.19 of [14] applied to (3.1) ensures that

either av/az < 0 in B or 3v/3z 0 there. The latter would imply v =_ 0 in

B(b), an impossibility, since each vn, and hence v, must exceed unity somewhere on

3(b). To show that 8v/3z < 0 at a point q c aa(b) ) {z>)0} note that v n(q) - 0 soIn

Ivnj 4 - in a neighborhood Q of q, uniformly in n. Since f(v n - 1 -k/r)=0

on Q, v n  is harmonic there, as is the limiting function v. Hence 3v/az < 0 at q by

the maximum principle.

Next we show that (kvj c is a solution of the limiting equation, that is, that

'B(b) VV • 15 fB(b) fo(v - I - k/r ) (3.2)

for all # e E (b). We consider the sequence (knoV n ) from the previous paragraph and

need merely show convergence of the right-hand member of (3.2) evaluated at (kn, n ). Pick

an e > 0 and let

T {(r,z) c B(b) r ), and Izi )I

2 1 -2

On T the function v n v - - r converges in C to v-v-i - k/r as
n n

n * -. Since 3v/az is bounded away from zero on T , so is avn/3z for all large n.

Say both are less than -s < 0 where z > 0. Let * be a smooth function in E (b).

Pick a > 0 and assume n is large enough so that 0 < 6 n < a and - ( on T .

Then

-23-
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fT f (v)+ f f V4 f 1. 

C n T Ov n <) n T C r(; )-ci}

- + f I + 0

T fl(v>O)
C

Since a is arbitrary,

lim fT fS (;n)4 " fT Yo £n.Oft C n

But since e is arbitrary and meas(B(b)\T,) = 0(c)

nim IB(b) E ( =n) ' Is(b) fo(v)+

As smooth functions are dense in c(b) the equation (3.2) holds.

For part (a) recall that, by Theorem 3.2 and Lemma 2.2 Db,6 contains a solution

(0b, 6 ) such that 1;b,S - 'bi ) to 
> 

0 with CO independent of 5. A subsequence of

(0,b,) must converge in E (b) to a solution (0,v) with Iv-vb' )' E However, v
b,6 Cb 0 b

from section 2.2 is the only solution for k - 0, other than vb. Hence (
0
,b ) must

belong to Db . In fact every subsequence, and hence the whole sequence converges to

(",vb). q.e.d.

3.3. The case 5 0 and b +

Once again we shall use Lemms 3.3 to take limits of solution branches as b + -. The

main result is

Theorem 3.5. There exists an unbounded, closed, connected set D C [0,-) x Ec of

nontrivial solutions of v - N(k,v,,0) 
- 
0%

15 v -R-
5  ) " fA(kfv)33

R R r

where A(k,v) = (x c v(x) > I + k/r
2

}. Moreover

(a) D n ({01 x Ec) {(0,VH )) where vH is given in (2.5).

The following properties hold for any (k,v) c D.

-24-
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(b) v Is cylindrically symmetric, v C C
2
(R

5 
- MAlk,v)) n CI+(R

5
) for each

a (0,1), and

IV I +Q 4 const Ivi

"'with a constant depending on a.

(c) The set A(k,v) is bounded while for lxi - _, Iv(x)l _ 0(ixj-
3
) and IVv(x)I

O(C xI4)"

(d) v is an even function of z and av/3z ( 0 for z > 0.

Proof. Each element of SC(b) is extended to he zero outside B(b) and considered

as an element of Ec. Let

." X ((k,v) e (0,-) x Zc . k + ivl
2 

4 j2}

where j Is a fixed integer larger than Iv H. Choose a sequence b n +, n - 1,2... and
DMn

let A. D r) Xj. To show that U An  is precopact in R x Ec  it suffices, as
n n J,~n-l

* before, to show that a sequence (k,v) e An, n - 1,2, ... is precogipact. One can suppose

k n -0 k ) 0 and that vn converges weakly to a element v Ec . To show strong

convergence first note that from Theorem 3.4(b), vn has a C1
+
0 bound independent of n

since Iv I 4 j. Hence {vn} converges in C
1 

on any compact slibset of R
5
. It is shown

n

in Theorem 53 of (111 that there is a ball B(O) C R
5
, independent of n, such that

Vn(r,z) < I + k./r
2 

for (r,z) outside the ball B(O). That is, vn is harmonic outside

B(8). Since the norms 1v n are uniformly bounded, it is elementary to show that for any

e > 0 there exists a y > S such that

f IVvn 12 
4

y<o<b
Y£~n

for all n. This last inequality combined with the convergence on compact sets of R
5

shows vn o v in * . Recall from section 2.2 that vb + v
H  

as b + - and thus

-r(,v,) £ lrn mn An • Lemma 3.3 yields a conpact, connected set DJ which can easily be

ni" Dn Aontai

seen, as before, to satisfy the equation (3.3). The set DJ contains (Ov ) and must

also contain a solution (k,v) satisfying k
2 
+ ivl

2 
- j2. For the branch

-25-
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connecting vb to v must, for all large n, intersect the set where k 
2 
+ ily

2 
=2,

n b

implying lim sup An contains an element of the same closed set. Since each solution v

must exceed unity at some point, it is nontrivial. The unbounded solution set results from

defining

D -U Di

j

where the union is over all large integers j.

(a) This follows since v. is the only cylindrically symmetric solution of (2.46)

for k - 0 according to [31.

(b) This follows from the previous theorem and standard estimates.

(c) It follows from the earlier discussion that A(k,v) C B(O). The decay estimates

are those for harvOnic functions.

(1) One uses the maximum principle, as before. q.e.d.

The mapping v +* = r
2
v c HUT) yields an unbounded, closed, connected set C of

solutions as required for the proof of Theorem 1.1(a).

4
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4. Properties of D and some Conjectures

In this section, we consider briefly the sense in which D is unbounded in

[0,-) x Zc . Some numerical results of Norbury [21], when suitably rescaled, suggest there

exists a function h ( [0,-) + Ec such that D = {(k,h(k)) : k c [0,-)). When k = 0,

the function h(O) is Hill's solution vH, while h(k) for large k corresponds to a

family of vortex rings of small core shown to exist by raenkel [9), [10]. As k + -, the

cores are asymptotic to smaller and smaller circles centered on the r-axis, and whose

centers become unbounded. Accordlnq to Norbury's calculations, thene vortex rings are

simply-connected in R.

Our techniques do not allow us to confirm the numerical predictions implicit in the

work of Norbury that 0 is unbounded in the k-direction. Nor have we shown that the

cores {(r,z) e f : *(r,z) > r
2 

+ k} are always simply-connected. This is only known for

Hill's solution and for solutions in D near to it [4]. One might hope to use the

connectedness of D to show that a sequence of -ores could not lose their simply-

connectedness by pinching together.

In order to show that D is unbounded in the k-direction, we would need to establish

bounds of the form

sup IvI < (4.1)

for any solution (k,v) e D and any Z > 0. If (4.1) fails to hold, then there would

exist elements (kn ,vn ) e D with

kn + k e [0,) and Iv I + % as n * s • (4.2)" kn n

There dre two ways in which Iv I may become unboinded; the functions vn may develop a
n

singularity on some compact set or they may lose their decay rate at infinity. As regArds

the firs't point, we record that

sup lvi 1 const (4.3)

04kk C (a

for any solution (k,v) and any I 0. Here the constant depends only on a c (0,I) and

k. The proof of (4.3) is very technical and will not be presented here. We claim that if

-27-
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(4.2) occurs, then the core A(knV n) - f(r,z) e PS : vn(x) > 1 + kn/r2 must become

unbounded. Indeed, if not, then the vn would be harmonic outside some fixed compact set,

and would have a uniform decay rate at infinity: Ivn - 01((r
2 

+ 2)-2).

For each k > 0, our equation -Av - 15 fo(v-1-k/r
2
) has a singular solution v.

with infinite norm. Here v. is a function of r alone, and is given by

2 , 0<r 8,

4r) 2 + l- r - 5 ) < r < / + k (4.4)

8 + 30k r

15r 
15

Note that v. is the unique z-independent solution of our equation with v(r) * 0 as

r + -. There are other solutions which are also functions of r alone, lUut they do not

vanish as r + -. There are a number of partial results which suggest that if (4.2)

occurs, then the vn converge on compact sets to the singular solution (4.4). However, we

do not present them here since it is our firm conviction that (4.2) does not occur. In

such a case, e,ruation (4.1) would hold and the branch D would be unbounded in the k-

direction.
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