

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER

A GLOBAL BRANCH OF STEADY VORTEX RINGS C. J. Amick ${ }^{1}$ and R. E. L. Turner ${ }^{2}$

Technical Summary Report \#2953
August 1986

ABSTRACT

Abstract

A steady vortex ring of prescribed strength and propagation speed can be - ; described in terms of a Stokes stream function \quad. flux constant k measures the flow through the center of the axisymmetric vortex ring. For $k=0$, Hill in 1894 found an explicit solution for the semi-linear elliptic equation satisfied by . In this paper it is shown that there is an unbounded, closed, connected branch of solutions emanating from Hill's vortex In the space of pairs (k, ϕ).

AMS (MOS) Subject Classifications: 76C05, 35B32, 35R05, 35R35.

Key words: Steady vortex rings, degree theory, global bifurcation.
Work Unit Number 1 - Applied Analysis.
${ }^{1}$ Department of Mathematics, University of Chicago.
${ }^{2}$ Department of Mathematics and Mathematics Research Center, University of Wisconsin-Madison.

[^0]
Abstract

A number of existence theorems for steady vortex rings and some properties of solutions have been established in the last fifteen years. However it is not known whether the vortex rings found for various physical parameter ranges can be connected through parameter changes. Numerical calculations indicate that the known vortex rings are so connected. In this paper it is established that there is an unbounded, connected branch of vortex rings emanating from the well-known Hill's vortex. This supports the results of numerical calculations and paves the way toward establishing specific characteristics along the branch.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.

A GLOBAL BRANCH OF STEADY VORTEX RINGS

C. J. Aadck ${ }^{1}$ and R. E. L. Turner ${ }^{2}$

1. Introduction

The physical problem under consideration in this paper concerns steady vortex rings in an ideal fluid occupying all of m^{3}. A more complete description of the physical problem may be found in [11] and other existence results in [2], [6] - [10], [12], [19]-[21]. The only explicit solution known is that due to Hill [15] in 1894 and our purpose is to prove the exiscence of an unbounded, closed, connected branch of solutione emanating from 1t.

An axisymatric flow is sought and thus the independent coordinates are taken to lie in the haif plane

$$
\Pi=\{(x, z): x>0,-\infty<z<\infty\}
$$

The mathematical problem is to find a flux parameter $k>0$; a bounded, open vortex "core" $A \subset A_{;}$and a stream function $=\varphi(x, z) \in C^{\prime}(\bar{\Pi}) \cap C^{2}(\mathbb{I}-\partial A)$ such that

$$
\begin{gather*}
\Sigma \psi \equiv r\left(\frac{1}{r} Y_{r}\right)_{r}+Y_{2 z}=\left\{\begin{array}{cc}
-\lambda r^{2} & \text { in } A \quad, \\
0 & \text { in } \Pi \cdot \bar{A}, \\
\left.Y\right|_{\partial A}=0,\left.Y\right|_{r=0}=-k
\end{array}\right. \tag{1.1}
\end{gather*}
$$

and

$$
\begin{equation*}
Y(r, z)+\frac{1}{2} W z^{2}+k \rightarrow 0, \frac{Y}{z}+0, \frac{Y}{r}+-W \tag{1.3}
\end{equation*}
$$

as $r^{2}+z^{2} \rightarrow$ in $\overline{\mathfrak{I}}^{2}$. The vortex-strength parameter $\lambda>0$ and the propagation speed w >0 are given.
${ }^{\text {TDepartment of Mathematice, Univeraity of Chicago. }}$
${ }^{2}$ Department of Mathematics and Mathemetice Research Center, University of Wisconsinmadison.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National Science foundation under Grant Nos. DMS-8203338 and MCS-8200406. The first author was also supported by the sloan Foundation.

The use of the strong maximum principle in conjunction with (1. 1) - (1. 3) showithat $\Psi<0$ in II $-\bar{A}$ and $Y>0$ in A so that the core in

$$
A=\{(x, z) \in \Pi: Y(r, z)>0\}
$$

In cylindrical coordinates (r, θ, z), the velocity field \vec{q} has the components $-p_{2} / x$, 0 , $\psi_{\mathbf{r}} / r$, respectively. Since \vec{q} is to be continuous, the condition $\mathcal{Y} C^{\prime}(\bar{I})$ is to be expected. The vorticity, curl \dot{q}, has cylindrical components $(0,-(L y) / x, 0)$, so that (1.1) gives a jump in vorticity across ∂A. This causes a jump in the second derivatives of across $3 A$ and allows one to have smooth merely in I - $\%$. For ary value of k, the function $=-\frac{1}{2} W r^{2}-k$ satisfies (1.1)-(1.3) with $A=\emptyset$ these are trivial solutions, and we shall be interested in non-trivial solutions. With the aid of the Heaviside function

$$
f_{0}(t)= \begin{cases}0, & t<0 \tag{1.4}\\ 1, & t>0\end{cases}
$$

the equation (1.1) may be expressed in the form $L Y=-\lambda r^{2} f_{0}(\%)$. Define ψ by the formula

$$
\Psi(x, z)=\psi(x, z)-\frac{1}{2} w x^{2}-k .
$$

Then the equation (1.1) becomes

$$
\begin{equation*}
L \psi=-\lambda r^{2} E_{0}\left(\psi-\frac{1}{2} w r^{2}-k\right) \text { in } n \tag{1.5}
\end{equation*}
$$

and the boundary conditions can be expressed roughly as

$$
\begin{equation*}
\psi \rightarrow 0 \text { on } 2 I I \tag{1.6}
\end{equation*}
$$

by which one should understand that $\psi=0$ for $r=0$ and ψ and $\frac{1}{r} \nabla \psi$ approach zero at infinity. These conditions are not made more precise here for the problem will be reformulated in the next section in such a way as to prescribe a precise function space for $\%$. In (1.5), (1.6) the numbers λ and w are still prescribed and a solution pair (k, ψ), with $k>0$, is to be determined. Implicit in (1.5), (9.6) is that

$$
A=\left\{(r, z): \psi(x, 2)>\frac{1}{2} w_{r}^{2}+k\right\}
$$

is to be bounded, open subset of $I 1$. The problem (1.5), (1.6) is a special case of a more general problem in which one replaces f_{0} by a general vorticity-distribution

Eunction f. A class of distributions, other than the Heaviside function, which has received considerable attention in recent years consists of functions which are zero for non-positive arguments, smooth, and non-decreasing. The papers [2], [7], [11], [12] and [19] include results for this class, proved largely by variational techniques.

For the Heaviside vorticity digtribution and flux $k=0$ Hill [15], nearly a century ago, found the solution

$$
W_{H}(r, z)= \begin{cases}\frac{1}{2} \omega_{r}^{2}\left(\frac{5}{2}-\frac{3}{2} \frac{p^{2}}{a^{2}}\right), & 0 \leqslant \rho<a \tag{1.7}\\ \frac{1}{2} \omega_{r}^{2} a^{3} / \rho^{3} & p \geqslant a\end{cases}
$$

where $\rho^{2}=r^{2}+z^{2}$ and

$$
\begin{equation*}
\lambda a^{2}=15 w / 2 \tag{1.8}
\end{equation*}
$$

The core A for hill's solution is merely a semi-circle of radius a outside of which the vorticity vanishes. In [3] it was shown that ${ }_{H}$ is the unique solution when viewed in a natural weak formulation (cf (1.10)).

For sanall $k>0$ Norbury $\{20$] proved that there are solutions near Hiil's vortex, each enlution having a core homenorphic t, torms when viewed in R^{3}. The analysis in (20) was based on a contraction principle in a ball of radius k centered at Hill's solution and hence other solutions near (J, \mathcal{F}_{H}) were not ruled out. In [4] it was shown that thig local branch of soiations (k, ψ) emanating from $\left(0, \psi_{H}\right)$ constitute the only solutions in a reighborhood of $\left(0, \psi_{H}\right)$ for prescribed positive values of λ and w. Consequently, the local branch will be a subset of the global branch we find in this paper. A glohal branch is suggested by the numerical calculat lons of Norbury \{21\}.

A resuit of Esteban $\{8\}$ for solutions of (1.5), (1.6) with guite yeneral, but smooth, vorticity distributions f, shows that solutions must always be symetric about a line $z=$ constant. An analogous result holds for the Heaviside distribution f_{y} : one uses the Arguments of Gidas, Ni, and Nirenberg ;13] with the extension given in [3]. Hence, without
loss of generality, we ma assume our solutions are even functions of z. An inner product occurring naturally in conjunction with the operator L is

$$
\begin{equation*}
\left\langle\phi_{,}\right\rangle_{\mathrm{H}}=\int_{\mathrm{II}} \frac{1}{r^{2}}\left[\phi_{r} \phi_{r}+\psi_{2} \phi_{z}\right) r \mathrm{Irdz} \tag{1.9}
\end{equation*}
$$

The space in which solutions are sought is $H(I I)$, the completion of the functions in $C_{0}^{\infty}(I)$, even in z, in the norm corresponding to the inner product (1.9). With this notation, equations (1.5), (1.6) have the weak formalation

$$
\begin{equation*}
\langle\phi, \psi\rangle_{H}=\lambda \int_{I I} f_{0}\left(\psi-\frac{1}{2} w r^{2}-k\right) \phi r d r d z, \psi \in H(\pi) \tag{1.10}
\end{equation*}
$$

and a solution (k, ψ) is to be understood in the sense of (1.10).
The main result of the paper can now be stated.

Theorem 1.1. Let $\lambda>0$ and $\omega>0$ be given and let ψ_{H} be Hill's solution (1.7), (1.8).
(a) There exists an unbounded, closed, connected set $C \subset(0, \infty) \times H(\pi)$ of solutions (k, ϕ) of $(1,10)$ with $c \cap(\{0\} \times H(\pi))=\left\{\left(0, \phi_{H}\right)\right\}$.
(b) There existg an $\varepsilon>0$ and a continuous function $g:\{0, \varepsilon] \rightarrow H(\pi)$ with $g(0)=$ ϕ_{H} such that $\{(k, g(k)): k \in\{0, \varepsilon]\} \subset C$ and constitutes the only solutions of (1.10) in a neighborhood of $\left(0, 中_{H}\right)$.
(c) If $\{k, \phi) \in C$, then the following hold: The vortex core
$A=\left\{(x, z): \phi(x, z): \frac{1}{2} W r^{2}+k\right\}$ is bounded; $\forall \in c^{1+\alpha}\langle\bar{I}\rangle \cap c^{2}(I I-\partial \lambda)$ for any $a \in(0,1) \%$ is an even function of $z ; \psi_{z}(x, z)<0$ for $z>0$ and at infinity. $\phi=0\left(1 / \sqrt{x^{2}+z^{2}}\right)$ and $\left|\nabla_{\psi}\right|=O\left(1 /\left(x^{2}+z^{2}\right)\right)$.

The new aspect of the theorem is part (a). Part (b) is the main result of (4) while (c) Is standard from the estimates of Fraenkel and Berger [11]. To prove (a), we begin aection 2 with a further reformalation of the problem. The change of variables $p(x, z)=$ $r^{2} v(r, z)$ is made, and if v is considered as a function in n^{5} with $r^{2}=\sum_{i=1}^{4} x_{i}^{2}$ and $z=x_{5}$, then the operator corresponding to L is the Laplacian. This fortuitous fact has been used in [3] and [19] in analyzing the vortex ring problem. If the Laplacian is

Abstract

formally inverted, functional equation of the type $v-N(k, v)=0$ arises. Degree theury and global bifurcation methods suggest themelves. However, two difficulties are encountered. Firat, the underlying domain is the whole space \mathbf{R}^{5} and so the inverse of the Laplacian is not compact This is handled by working first in a ball of radius b In \boldsymbol{f}^{5}. Second, the intervening function f_{0} is discontinuous, making N discontinuous. By approximating f_{0} by continuous function f_{5} which converges to $F_{0} a s \quad \delta \rightarrow 0$, a continuous and differentiable map is obtained. In this setting, for $k=0$, a degree computation is made about a solution $v_{b, \delta}$ of the altered problem. The degree is shown to be -1 from which one concludes that a branch of solutions emanates Erom $\left(0, v_{b, ~}\right)$. In section 3 we return to the original problem by lettang 6 o 0 and then letting $b *$ showing in the process that the desired continuum of solutions results. In section 4 we consider the nature in which this set of solutions is unbounded. The numerical calculations of Norbury [21] suggest that the branch extends to $k=\infty$ and that solutions with large k approach a class of solutions examined by Fraenkel [9]. [10]. We conjecture that the branch is unbounded in the k-direction and provide some evidence to show that if this is false, then the solutions converge to a 'singular' solution which is a Eunction of r alone and has infinite norm.

2. An Equivalent Problem

2.1. Preliminaries

The purpose of this section is to derive a transformed problem in R^{5} which is equivalent to (1.10). The notation follows that from [3]. Let $\lambda>0$, $W>0$ be fixed and let $(k, \psi) \in(0, \infty) \times\left(H(\Pi) \cap C^{2}(\Pi-\partial A)\right)$ satisfy (1.5). We first rescale variables by setting $\tilde{k}=2 k / \mathrm{wa}^{2}$, with a as in $(1,8)$, and $\tilde{\psi}(r, z)=2 \psi(a r, a z) / a^{2} w$ so that ($\left.\tilde{k}, \tilde{\phi}\right)$ satisfies

$$
\begin{equation*}
L \psi=-15 x^{2} f_{0}\left(\psi-x^{2}-k\right) \tag{2.1}
\end{equation*}
$$

In the sequel we restrict attention to (2.1) and its corresponding wak form.
Consider R^{5} and let (r, z) with $r^{2}=\sum_{i=1}^{4} x_{i}^{2}$ and $z=x_{5}$ be cylindrical coordinates. Under the chanae of variables $\psi(r, z)=r^{2} v(r, z)$, there results

$$
\begin{equation*}
\frac{1}{I^{2}} L \psi=\Delta v \tag{2.2}
\end{equation*}
$$

where Δ, throughout the paper, denotes the Laplacian in \mathbf{R}^{5}. Hence (2.1) corresponds to

$$
\begin{equation*}
\Delta v=-15 f_{0}\left(v-1-\frac{k}{r^{2}}\right) \text { in } R^{5} \tag{2.3}
\end{equation*}
$$

The occurrence of the Laplacian was used in a crucial way in [3] and [19], and will be the key to a tractable analysis here. We anticipate bounded solutions of (2.3) and thus $\psi=r^{2} v$ will vanish at $r=0$. The condition

$$
\begin{equation*}
|v| \rightarrow 0 \text { as }|x| \rightarrow \infty \text { in } R^{5} \tag{2.4}
\end{equation*}
$$

is allied to (1.6). Indeed, the function space setting for v will ultimately give decay of tine order $|x|^{-3}$ so that $\psi=r^{2} v$ approaches zero at infinity.

Note that from the form (2.3) with $k=0$ it is a simple matter to write down Hill's solution. In this setting it is the radial function

$$
v_{H}(r, z)=\left\{\begin{array}{cc}
\frac{5}{2}-\frac{3}{2} p^{2} & 0<\rho \leqslant 1 \tag{2.5}\\
1 / p^{3} & p \geqslant 1,
\end{array}\right.
$$

where $p^{2}=r^{2}+z^{2}=\sum_{i=1}^{5} x_{i}^{2}$. When $k=0$ tire analysis in [3] shows that the methods of

Gidas, Ni and Nirenberg [13] are applicable and so any solution is a radial function. Thus Hill's solution in (2.5) is unique.

Let \quad and ϕ be in functions in $C_{0}^{\infty}(I)$ and let v and u beyindrically symmetric functions on R^{5} (that $1 s$, depending only on r and z) defined by $(x, z)=$ $r^{2} v(r, z)$ and $\phi(r, z)=r^{2} u(r, z)$, as earider in this ection. Let

$$
\begin{equation*}
\langle u, v\rangle_{E}=\frac{1}{2 \eta^{2}} \int_{R^{5}} \nabla u(x) \cdot \nabla v(x) d x \tag{2.6}
\end{equation*}
$$

Then from (2.2) or from a direct computation one has

$$
\left\langle\phi, \psi_{\mathrm{H}}=\left\langle u_{\mathrm{E}}, v\right\rangle_{\mathrm{E}}\right.
$$

It is natural to define a space E_{c} as the completion with respect to the norm 1 induced by $\langle\bullet, \bullet\rangle$ of the cylindrically symmetric functions in $C_{0}^{\infty}\left(\boldsymbol{R}^{5}\right)$ which are even in 2 . The following lemma follows from section 2.2 of [3].

Lemma 2.1. (a) The spaces $H(I)$ and E are isometrically isomorphic under the
correspondence $\psi \leftrightarrow \tau^{2} v$.
(b) Apair $(k, \psi) \in[0, \infty) \times H(\pi)$ satisfies the weak eguation

$$
\begin{equation*}
\langle\phi, \psi\rangle_{H}=15 \int_{I I} f_{0}\left(\psi-r^{2}-k\right) \phi r d r d z \tag{2.7}
\end{equation*}
$$

for all $\phi \in H(I) \quad$ if and only if $\left(k, v=\frac{1}{2}\right) \in[0, \infty) \times E$ gatisfies

$$
\begin{equation*}
\langle u, v\rangle_{E}=\frac{15}{2 \pi^{2}} \int_{R^{5}} f_{0}\left(v-1-\frac{k}{r^{2}}\right) u d x \tag{2.8}
\end{equation*}
$$

for all u $\in E$.

Lemma 2. $1(b)$ shows that it will suffice for Theorem 1.1 to show there exists an

2.2. The transformed problem on bounded domains

Let $B(b) x\left\{x \in \mathbb{R}^{5}: i x \mid<b\right\}$ and in analogy with the definition of E. let $E(b)$ $\left(E_{c}(b)\right)$ be the completion in the E norm of the (cylindrically symmetric) functions in $C_{0}^{\infty}(B(b))$ which are even in 2 . Corresponding to (2.8) is the problem: Find $v \in E_{c}(b)$ such that

$$
\begin{equation*}
\langle u, v\rangle_{2}=\frac{15}{2 \pi^{2}} \int_{B(b)} f_{0}\left(v-1-\frac{k}{r^{2}}\right) u, \quad \forall u \in E(b) \tag{2.9}
\end{equation*}
$$

Its solution can be regarded as a fixed point problem. For given $k \geqslant 0$ and $v \in E_{c}(b)$ let $w E(b)$ be the solution of

$$
\begin{equation*}
\langle u, w\rangle_{E}=\frac{15}{2 \pi^{2}} \int_{B(b)} f_{0}\left(v-1-\frac{k}{r^{2}}\right) u, \quad v \in E(b) \tag{2.10}
\end{equation*}
$$

The existence and uniqueness of W follows from standard elliptic theory [14]. That $w \in E_{c}(b)$ follows from the arguments for Lemma 2.3(b) in [3]. If w is denoted by $N(k, v i b)$ then a fixed point of N is a solution of (2.9). The function w is a weak solution of $-\Delta w=15 f_{j}\left(v-1-k / x^{2}\right)$ in $B(b)$ and since $|\Delta v| \leqslant 15$ standard regularity theory [1] gives $W \in W^{2, p}(B(b)) \cap \stackrel{\circ}{ }^{1,2}(B(b))$ for all $p \in[1, \infty)$. Sobolev embeddings then yield $w \in c^{1+\alpha}(\overline{B(b)})$ for all $a \in(0,1)$. If $A=\left\{x \in R^{5}: v>1+k / r^{2}\right\}$, then with u $=w$ in (2.10) one obtains

$$
\begin{align*}
\|w\|^{2} & \leqslant \frac{15}{2 \pi^{2}} \int_{A}|w| \\
& \left.<\frac{15}{2 \pi^{2}}\left(\int_{A}|w|^{10 / 3}\right)^{3 / 10} \cdot \right\rvert\, A!_{5}^{7 / 10} \tag{2.1i}\\
& \leqslant \text { const. }|w| \cdot b^{7 / 2}
\end{align*}
$$

where $1 / 5$ denotes Lebesque measure in \mathbb{R}^{5} and the constant is independent of b, w, and x (see Lemma 2.1 of [3]). Since $\|w\|$ const $b^{7 / 2}$, the elliptic regularity arquments now insure that the bounds on w in $w^{2}, P(B(b))$ and in $c^{1+a}(B(b))$, which depend on b, p, and a, will, however, be independent of k and v.

The solutions of $v-N(0, v ; b)=0$ are known explicitly from [3]. One is

$$
v_{b}(x, z)= \begin{cases}\frac{1}{1-c}\left(\frac{5}{2}-c-\frac{3}{2} \frac{\rho^{2}}{a^{2}}\right), & 0<p<a \tag{2.12}\\ \frac{1}{1-c}\left(\frac{a^{3}}{\rho^{3}}-c\right), & a<p<b\end{cases}
$$

where $a=1+\frac{1}{b^{3}}+O\left(b^{-6}\right)$ is the smaller root of

$$
\begin{equation*}
a^{2}\left(1-\frac{a^{3}}{b^{3}}\right)=1 \tag{2.13}
\end{equation*}
$$

and $c=a^{3} \rho^{3}$. We assume $b>\left(\frac{5}{3}\right)^{1 / 2}\left(\frac{5}{2}\right)^{1 / 3}$ so that (2.13) has two distinct roots $a_{1}(b)<a_{2}(b)$ in $(0, b)$. Corresponding to the root a_{2} is a solution \tilde{v}_{b} with $a=a_{2}$ in (2.12). Note that while $a_{1}(b)+1$ as $b+\infty, a_{2}(b) / b \rightarrow 1$ as $b * \infty$ so that $\tilde{v}_{b}>1$ on essentialiy the whole ball $B(b)$. If v_{b} if extendes to be zero outside $B(b)$ one calculates from (2.12) and (2.13) that $\mid v_{H}-v_{b} \| 0$ as $b \rightarrow \infty$ and sis we shall be interested in golutions emanating from ($0, v_{b}$). The explicit estimates

$$
\left.\begin{array}{l}
\left\|v_{b}\right\|^{2}=\frac{40}{7} \tag{2.14}\\
\|\left.\tilde{v}_{b}\right|^{2}=\frac{12}{7} b^{7}
\end{array}\right\} \text { as } b+\infty
$$

can be found in Appenaix B of [3].
The reqularity estimates given above ensure that the map $(k, v) \rightarrow N(k, v, b)$ is compact Erom $[0, \infty) \times \varepsilon_{c}(b)$ into $E_{c}(b)$. Unfortunately N is not continuous since convergence in $E_{c}(b)$ does not satisfactorily control the level sets on which $v(r, z)=1+k / r^{2}$. Hence, a degree argument for the equation $v=N(k, v ; b)=0$ is not immeaiately applicable. This difficulty can be surnounted by smoothing out the discontinuity in f_{0}.
2.3. The regularized problem for finite b.

For each $\delta>0$ let $f_{\delta}(t)$ be the plecewise linear function

$$
\mathbf{f}_{\delta}(t)= \begin{cases}0, & t<0 \\ t / \delta, & 0<t<s \\ 1, & t>\delta,\end{cases}
$$

For eac: $(k, v) \in(0,0) \times E_{c}(b)$ and for $b>0, \delta>0$, let $w=N(k ; v ; b, \delta) \in E_{c}(b)$ denote the unique solution of

$$
\begin{equation*}
\langle u, w\rangle_{E}=\frac{15}{2 \pi^{2}} \int_{B(b)} F_{f}\left(v-1-\frac{k}{r^{2}}\right) u, \quad u \in E(b) \tag{2.15}
\end{equation*}
$$

and define $N(k, v, b, 0)$ to be $N(k, v, b)$ from (2,10). The addes regularity of f_{5} mates

Abstract

the map $N(\cdot, \cdot, b, \delta):(0, \infty) \times E_{c}(b) \rightarrow E_{c}(b)$ continuous as well as compact, and a degree-

 theoretic argument is suitable for the equation$$
\begin{equation*}
v-N(k, v ; b, \delta)=0 . \tag{2.16}
\end{equation*}
$$

When $k=0$, equation (2.16) is equivalent to

$$
\begin{align*}
-\Delta v & =15 f_{\delta}(v-1) \text { in } B(b) \\
v & =0 \text { on } \partial B(b) . \tag{2.17}
\end{align*}
$$

Since f_{δ} is Lipschitz continuous any solution lies in $c^{2+\alpha}(\overline{B(b)})$ for each $a \in(0,1)$. Since $f_{s} \geqslant 0$, a solution v is non-negative and, in fact, mast be positive in $B(b)$ with a maxitum larger than unity or be identically zero, by the strong maximum principle. From [13], v is a function of $\rho=\left(\sum_{1}^{5} x_{i}^{2}\right)^{1 / 2}$ and $v^{\prime}(\rho)<0$ for $\rho \in(0, b$]. It follows that v satisfies the ordinary differential equation

$$
\begin{align*}
-\frac{1}{5} \frac{d}{d \rho}\left(\rho \frac{d v}{d \rho}\right) & =15 f_{f}(v(\rho)-1), \rho \in(0, b] \tag{2.18}\\
v(b) & =0
\end{align*}
$$

We now prove that if b is sufficiently large and δ is sufficiently small, then (2.18) has a unique solution $v_{b, \delta}$ in a neighborhood of the function v_{b} givell in (2.12).

Lemma 2.2. There exist positive numbers ${ }^{5} 0^{\prime} b_{0}$, and ε_{0} such tiat for each $b>b_{0}$ anc $\delta \in\left(0,5_{0}\right]$ the problem

$$
\begin{align*}
-\Delta v & =-15 f_{g}(v-1) \text { in } B(b) . \\
v & =0 \text { on } \quad \mathrm{B}(\mathrm{~b}) . \tag{2.19}
\end{align*}
$$

has anique solusion $v_{b, 5}$
Moreovex,

$$
\lim _{s \rightarrow 0} \| v_{b, \delta}-v_{b} E_{E_{e}}(b)=0
$$

Proof. The solution with $\delta>0$ can be expected to be close to v_{b} given in (2.12), which satisties

$$
b^{4} v_{b}^{\prime}(b)=\frac{-3 a^{3}}{1-c}=-3
$$

for b large. For a fixed, large value of b let $v=v(0, \sigma, \delta)$ be that solution of (2.18) which vanishes at $p=b$ and satisfies

$$
b^{4} v^{\prime}(b)=\sigma
$$

The idea is to find a value of σ near -3 for which $v^{\prime}(0)=0$, eventually using the implicit function theorem. As long as $v<1, v^{\prime}(\rho)=\sigma / \rho^{4}$ and thus

$$
v(p)=-\frac{\sigma}{3}\left(\frac{1}{p^{3}}-\frac{1}{b^{3}}\right) \text { on }[a, b]
$$

where $a=a(\sigma)=\left(-3 \sigma^{-1}+b^{-3}\right)^{-1 / 3}$. For σ near $-3, v^{\prime}(a)<0$ and so v, assumed to lie in c^{1}, will be larger than unity on an interval to the left of a. There v satisfies

$$
\begin{align*}
& v^{\prime \prime}(p)+\frac{1}{0} v^{\prime}(0)=\frac{-15}{6}(v(p)-1) \\
& v(a)=1, v^{\prime}(a)=\frac{\sigma}{a^{4}} \tag{2.20}
\end{align*}
$$

For σ near -3 and b_{0} large, $i s$ approximately 1 and we expect (2.20) to be satisfied on an interval $[\beta, \alpha]$ where $\alpha-\beta=\delta / 3$ and $v(\beta)=1+\delta$. To see that this is the case and to find the dependence of B on σ and δ, let

$$
v(p)=1+\delta v(s)
$$

where $\rho=\alpha-6 s$. Then $w=w(s ; 0, \delta)$ satisfies

$$
\begin{align*}
& \frac{d^{2} w}{d s^{2}}-\frac{4 \delta}{\alpha-\delta s} \frac{d w}{d s}+15 \delta w=0 \tag{2.21}\\
& w(0)=0 \quad, \frac{d w}{d s}(0)=-\frac{0}{x^{4}}
\end{align*}
$$

The solution w is analytic in all its variablea for $<a / 6$, and for $\delta=0$ is the linear function $w(s)=-\frac{\sigma}{a^{4}} s$. The value $s=-a^{4} / \sigma$ gives $w=1$ and since $3 w / a s \neq 0$
for this value of s, the implicit function theoren yields a unique analytic function e($0, \delta$) defined for (0,8) in a neighborhood Q of ($-3,0$) such that

$$
\begin{equation*}
w(s(0, \delta) ; \sigma, \delta) \equiv 1 \tag{2.22}
\end{equation*}
$$

In this case Q will be independent of b for all b larger than some b_{0}. Taking Q smaller, if necessary, we can assume $\partial w / \partial s>0$ for $(0, \delta) \in Q$ and $0 \leqslant s \leqslant s(0, \delta)$. This yields a function v which is monotone decreasingin ρ for $p \in\{B, a\rangle$ where $B=a(\sigma)-$ $\delta s(\sigma, \delta)$. By construction, $\quad v(\beta)=1+\delta$.

Since v is required to be c^{1} and $v^{\prime}(B)<0$, it follows that $v>1+\delta$ on an interval to the left of B and there satisftes

$$
\frac{1}{p^{4}} \frac{d}{d p}\left(p^{4} \frac{d v}{40}\right)=-15
$$

yielding $\frac{d v}{d \rho}=-3 f+$ const. $/ \rho$. We want a siope of zero at $\rho=0$ and thus

$$
\frac{d v}{d p}=-3 n \text { on }[0, B]
$$

The condition that derivatives match at $\rho=6$, expressed in terms of w, is

$$
\begin{equation*}
F(\sigma, \delta) \equiv \frac{d w}{d s}(s(\sigma, \delta) ; \sigma, \delta)-3(\alpha(\sigma)-\delta s(\sigma, \delta))=0 \tag{2.23}
\end{equation*}
$$

FOK $i=0$,

$$
F(\sigma, 0)=\frac{-\sigma}{\alpha^{4}(\sigma)}-3 \alpha(\sigma)
$$

which vanishes for the choice $a=a, \sigma=-3 a^{5}$ corresponding to the solution in in
(2.12). For later use we note that for this choice of parameters

$$
\begin{equation*}
s(0,0)=\frac{-a^{4}}{c}=\frac{1}{3 a} \tag{2.24}
\end{equation*}
$$

since $u^{\prime}(0)=-\alpha^{4} / \sigma^{2}$ in general.

$$
\begin{aligned}
\frac{\partial F}{\partial \sigma}(\sigma, 0) & =-\frac{1}{\alpha^{4}}+\frac{4 \sigma}{\alpha^{5}} a^{\prime}-3 \alpha^{\prime} \\
& =-\frac{1}{\alpha^{4}}-\frac{4}{\alpha \sigma}+\frac{3 \alpha^{4}}{\sigma^{2}} .
\end{aligned}
$$

For $\sigma=-3$ and b large, a is approximately iso $2 F / \partial \sigma(-3,0)$ is approximately $\frac{2}{3}$. The implicit function theorem applied to (2.23) yields an analytic function $\sigma(6)$, defined for δ in a neighborhood of zero which is independent of b, such that $P(\sigma(\delta), \delta) \equiv 0$. The function

$$
v_{b, \delta}(p)=v(p, \sigma(\delta), \delta)
$$

satisfies the equation and boundary condition in (2.19). As regards the diatance from $V_{b, \delta}$ to V_{b} it is clear from the construction that the distance in c^{1} approaches zero as δ to. Since $1 / \rho^{3}$ and its gradient are in L^{2} at infinity in R^{5}, the convergence In $e_{c}(b)$ follows as well, uniformiy for all large b. q.e.d.
2.3. The index of the solution $v_{b, f}$

Throughout this section it will be assumed that $b \geqslant b_{0}$ and $\delta \in\left[0, \delta_{0}\right]$ as in Lemma 2.2. Then $v_{b, f}$ is the only solution of $v-N(0, v, b, \delta)=0$ in $\bar{J}(b)$, where $J(b)$ is the open hall of radius ϵ_{0} centered at v_{b}. As all computations in this section are done for $k=0$ we suppress it writing $N(v i b, \delta)$ or merely $N(v)$ when the emphasis is on the behavior with respect to v. For $\delta>0$ the Frechet derivative of N at $v_{b, \delta}$ is

$$
\begin{equation*}
N^{\prime}\left(v_{b, 8}\right) \gamma=-\Delta^{-1} \cdot 15 f_{f}^{\prime}\left(v_{b, 8}-1\right) \gamma \tag{2.26}
\end{equation*}
$$

where $f_{\delta}\left(v_{b, \delta}-i\right)=\delta^{-1}$ when $v_{b, \delta}(\rho) \in(1,1+\delta)$ and is zero elsewhere. Note that $f_{\delta}(t)$ itseif fails to have derivative at $t=0$ and $t=\delta$ However, aince $v_{b, \delta}$ has A nonzero gradient where $v_{b, f}=1$ and $1+\delta$, one can, by viewing N as amp $15 f_{\delta}(v-1)$ from $E_{c}(b)$ to $L^{2}(B(b))$ followed by $-\Delta^{-1}$ from $L^{2}(B(b))$ to $E_{c}(b)$, verify that (2.26) is the derivative.

Standard theory $\{16]$ ensures that the Leray-Schauder degree of $I=N(*)$ relative to zero and $J(b)$ is equal to the degree of $I-N^{\prime}\left(v_{b, \delta}\right)$ relative to zero and $E_{c}(b)$. We will show that 1 is not an eigenvalue of N^{\prime} so this latter degree is well defined. In fact the constancy of degree follows from the homotopy

$$
t+Y=\frac{1}{t}\left[N\left(v_{b, \delta}+t Y\right)-N\left(v_{b, \delta}\right)\right], t \in[0,1]
$$

where, for $t=0$, the last expression is understood to be $Y-N^{4}\left(v_{b, \delta}\right) Y$. Using δ as a
homotopy parameter one sees that the degree of $I-N(\cdot)$ relative to zero and $J(b)$ is the same for all $6 \in\left(0, S_{0}\right]$ and so the degree of $I-N^{\prime}\left(v_{b}, \delta\right)$ is constant for all sufficiently small δ and large b. By standard theory the degree d(b, δ) in question is then $(-1)^{\text {ra }}$ where $m=m(b, \delta)$ is the total algebraic multiplicity of eigenvalues of $N^{\prime}\left(v_{b}, b, S\right)$ on the interval ($1, \infty$). Since N^{\prime} is selfadjoint m is the total geometric multiplicity associated with the interval.

Thentem 2.3. There exist $b_{1} \geqslant b_{0}$ and a positive $\delta_{1} \leqslant \delta_{0}$ such that $d(b, \delta)=-1$ 2f $5 \in(0.51]$ and $b \geqslant b_{1}$.

Proof. It will be shown that for all small δ and large b the largest eigenvalue of N^{*} is near $5 / 3$ while the second largest eigenvalue, counting multiplicity, is bounded above by approximateiy 5/7. This will show $m(b, \delta)=1$ for these parameter ranges. Let $\lambda(b, 5)$ denote the largest eigenvalue, as before, and let $\mu(b, \delta) \leqslant \lambda(b, \delta)$ denote the second largest. Let $u(b, \delta)$ and $v(b, \delta)$ denote corresponding eigenfunctions. It can be a.ssumed that $\langle u, v\rangle_{E}=0$.

We begin with a discussion of λ and u though much of it applies to μ and v as well. Recall that $f \hat{f}=\delta^{-1}$ precisely on the interval $I=(\beta(h, \delta), \alpha(b, \delta))$ and is zero elsewhere. Let x denote tue characteristic function of I. Then u satisfies

$$
\begin{align*}
-\Delta u & =\frac{15}{\lambda S} X(D) u \text { in } B(b) . \tag{2.27}\\
u & =0 \text { on } \partial B(b) .
\end{align*}
$$

Alternatively, for any test function

$$
\begin{equation*}
\langle u, \phi\rangle=\frac{15}{2 \pi^{2} \lambda \delta} \int_{B}^{\Omega} \rho^{4} d \rho \int_{S(\rho)} u(\rho, \Omega) \phi(\rho, \Omega) d \Omega \tag{2.28}
\end{equation*}
$$

where $S(\rho) \subset R^{5}$ denotes the sphere of radius ρ and $d \Omega$ is the area element on the unit sphere.

The eigenfunction u will be of one sign, will be radial by symmetrization, and will he harmonic where $x(0)=0$. The eigenvalue itself can be characterized by

$$
\begin{equation*}
\lambda(b, \delta)=\max _{w \in E_{c}(b)} \frac{\left\langle N^{1}\left(v_{b, \delta}\right) w, w\right\rangle}{\langle w, w\rangle}=\max \frac{\frac{15}{\delta} \int_{\beta}^{a} \rho^{4} d p \int_{S(\rho)^{w}(\rho, \Omega) d \Omega}}{\int_{B(b)}\left|\gamma_{w}\right|^{2}} . \tag{2.29}
\end{equation*}
$$

Recall that as $\delta * 0, a$ and β approach $a=a(b)=1$ and, from (2.24)

$$
\lim _{\delta \rightarrow 0} \delta^{-1} \int_{B}^{a} \rho^{4} d \rho=a^{4}(0,0)=\frac{a^{3}}{3} .
$$

From this discussion one would expect that

$$
\tilde{u}(o)=\left\{\begin{array}{l}
\frac{1}{a^{3}}-\frac{1}{b^{3}}, p \in[0, a], \tag{2.30}\\
\frac{1}{\rho^{3}}-\frac{1}{b^{3}}, p \in(a, b]
\end{array}\right.
$$

is a reasonable trial function for (2.29). With this function as w the quotient in (2.29) is well behaved as $\delta \rightarrow 0$ and $b \rightarrow \infty$. In the limit its value is

$$
\frac{15 \cdot \frac{1}{3} \cdot 1|\Omega|}{\int_{1}^{\infty} \rho^{4}\left|\frac{d}{d \rho}\left(\frac{1}{\rho^{3}}\right)\right|^{2} d \rho|\Omega|}=\frac{5}{3}
$$

where $|\Omega|$ is the measure of $S(1)$. This suffices to show that λ is bounded below by approximately $5 / 3$ for δ small and b large. In fact one can make sense of the eigenvalue problem in the limit as $5+0$ and u in (2.30) is the eigenfinction corresponding to the largest eigenvalue. To show this and to pave the way for estimating $\mu(b, \delta)$ we carry out such a limit.

From embedding theory ((17), p. 316)

$$
\begin{aligned}
\| \int_{S(\rho)} u(\rho, \Omega) \phi(\rho, \Omega) d \Omega & \leqslant\|u\|_{L^{8 / 3}(S(D))}{ }_{L^{8 / 5}(S(\rho))} \\
& <\text { const }\|u\| \cdot\|\phi\| \|_{N, 10 / 7}^{1 B(b))}
\end{aligned}
$$

Hence from (2.28)

$$
|\langle u, \phi\rangle|<\text { const Iui - I申\| }, 1,10 / 7(\mathrm{~B}(\mathrm{~b}))
$$

where the constant is independent of δ. By duality,

$$
\begin{equation*}
\|u\|_{w} 1,10 / 3_{(B(b))} \text { < const Iul } \tag{2.31}
\end{equation*}
$$

for a constant independent of δ. Now pick a sequence $\delta_{n}+0, n=1,2, \ldots$ so that $\lambda\left(b, \delta_{n}\right)+\lambda(b)=\underset{\delta \rightarrow 0}{1 \min _{\delta \rightarrow 0}} \lambda(b, \delta)$. Let u_{n} denote the corresponding normalized
eigenfunction. Pick an $c \geqslant 0$ and let

$$
X_{\varepsilon}=\overline{B(b)} \cap\left\{\rho<\left(a-\frac{\varepsilon}{2}, a+\frac{\varepsilon}{2}\right)\right\}
$$

The functions u_{n} are harmonic in K_{E} for large n and so a subsequence, still denoted u_{n}, will converge in c^{1} on each connected component of k_{E} to a harmonic function. On the other hand

$$
\int_{a-i<\rho<a+\varepsilon}\left|\nabla u_{n}\right|^{2}<\text { const } \varepsilon^{2 / 5} \operatorname{lu}_{n} \|_{w}^{2} 1,10 / 3(B(b))
$$

which, from (2.31), is of order $\varepsilon^{2 / 5}$, independently of n. It follows that u_{n} converges in $E_{c}(b)$ to a nonnegative radial function u which is harmonic in the complement of $s(a): 1 . e$. to a multiple of $\tilde{u}(p)$ in (2.30). As noted, the traces on spheres are well-behaved and the limiting function satisfies

$$
\begin{equation*}
\lambda\langle u, \phi\rangle=\frac{5 a^{3}}{2 \pi^{2}} \int_{S(a)} u(a, \Omega) \phi(a, \Omega) d \Omega \tag{2.32}
\end{equation*}
$$

for $111 p \in E_{c}(b)$ where $\lambda=\lambda(b)$. In fact, the limits as $\delta \rightarrow 0$ of $u(b, \delta)$ and $\lambda(b, \delta)$ exist, for any subsequence of eigenfunctions will converge to multiple of \tilde{u} in (2.30).

The discussion of limits holds equally well for $\mu(b, \delta)$ and $v(b, \delta)$ as $\delta+0$ yielding a pair (μ, v) satisfying

$$
\begin{equation*}
\mu\langle v, \phi\rangle=\frac{5 a^{3}}{2 \pi^{2}} \int_{S(a)} v(a, \Omega) \phi(a, \Omega) \tag{2.33}
\end{equation*}
$$

for all $\phi \in E_{c}(b)$. Naturally, $\langle u, v\rangle_{E}=0$ for the limiting functions. Since all eigenfunctions are harmonic in the complement of $S(a)$ and hence determined by their values on the sphere it is natural to examine more closeiy their behavior on spheres in \boldsymbol{m}^{5}. Recall that the functions under consideration are functions of r and z. Consider instead coorinates ρ and s where $\rho=\sqrt{r^{2}+z^{2}}$, as before, and $s=s$ in θ where
$r=p \cos \theta$ and $z=\rho$ sin θ. Let U be defined by

$$
u(x, z)=u\left(p \sqrt{1-s^{2}}, \rho s\right)=v(\rho, s)
$$

and let v, correspond to $v, \$$, respectively. We have

$$
\begin{equation*}
\langle u, \phi\rangle_{\mathrm{E}}=\left\langle U, \phi_{\mathrm{G}}\right. \tag{2.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle 0, \phi\rangle_{G}=\int_{-1}^{1}\left(1-s^{2}\right) d s \int_{0}^{b}\left[\rho u_{\rho} \varphi_{\rho}+\rho^{2}\left(1-s^{2}\right) u_{s} \varphi_{s}\right\} d \rho \tag{2.35}
\end{equation*}
$$

and hence the eigenvalue equation (2.32) is expressed as

$$
\begin{equation*}
\lambda\langle U, \theta\rangle_{G}=5 a^{3} \int_{-1}^{1}\left(1-s^{2}\right) U(a, s) \phi(a, s) d s \tag{2.36}
\end{equation*}
$$

for all for which $\langle\phi, \phi\rangle_{G} \leqslant=$, with an analogous equation for μ and V. of course,

$$
\begin{equation*}
\langle U, V\rangle_{G}=0 \tag{2.37}
\end{equation*}
$$

The function J corresponding to u is a function of p alone and so is conatant on S(a) yieldang

$$
\begin{equation*}
\int_{-1}^{1}\left(1-s^{2}\right) V(a, s) d s=0 \tag{2.38}
\end{equation*}
$$

from (2.36), (2.37). In fact $V(p, B)$ is orthogonal to 1 (with the weight $1-s^{2}$) on each spliere. To see this let

$$
\begin{equation*}
\bar{V}(0)=\int_{-1}^{1}\left(1-8^{2}\right) V(0,8) d s \tag{2.39}
\end{equation*}
$$

If in the eigenvalue equation for H, V one admits only radial test functions (ρ), the result is

$$
\begin{aligned}
u \int_{0}^{b} \rho^{4} \bar{v}_{\rho} \oplus_{0} & =5 a^{3} \bar{v}(a) \oplus(a) \\
& =0
\end{aligned}
$$

for all such *. It follows that $\overline{\mathrm{V}}(\mathrm{p})$ is a radial, harmonic function on $\mathrm{B}(\mathrm{b})$, vanishing for $p=a$ and thus identically zero. That is,

$$
\begin{equation*}
\int_{-1}^{1}\left(1-s^{2}\right) V(\rho, s) d s=0 \text { for } p \in(0, b) \text {. } \tag{2.40}
\end{equation*}
$$

A collection of polynomigls which is orthogonal with respect to the weight $1-s^{2}$ and complete in the weighted L^{2} apace on $[-1,1]$ is

$$
S_{n}(s)=\frac{d}{d s} P_{n}(s) \quad, \quad n=1,2 \ldots
$$

where P_{n} is the $n^{\text {th }}$ Legendre polynomial. Fron the Rodrigues" formala one easily sees that

$$
\int_{-1}^{1}\left(1-s^{2}\right) S_{n} S_{m}=\int_{-1}^{1}\left(1-s^{2}\right) S_{n}^{\prime} S_{m}^{1}=0 \text { if } m \neq n
$$

while standard formulae ([23], Chap. XV) show that

$$
\int_{-1}^{1}\left(1-s^{2}\right) s_{n}^{2}=\frac{2 n(n+1)}{2 n+1}
$$

and

$$
\int_{-1}^{1}\left(1-s^{2}\right)\left(S_{n}^{\prime}\right)^{2}=\frac{2 n(n+1)\left(n^{2}+n-2\right)}{2 n+1}
$$

Set

$$
\begin{equation*}
V(p, s)=\sum_{n=1}^{\infty} c_{n}(p) s_{n}(s) \tag{2.41}
\end{equation*}
$$

where

$$
c_{n}(0)=\frac{2 n+1}{2 n(n+1)} \int_{-1}^{1}\left(1-s^{2}\right) V(0, s) s_{n}(s) d s \quad .
$$

Now $S_{1}, S_{3}, S_{5}, \ldots$, are even functions of s while $S_{2}, S_{4}, S_{6}, \ldots$ are odd. Since $v(x, z)$ is even in $z, V(\rho, 8)$ is even in s and thus $c_{2}(p)=c_{4}(\rho)=\ldots=0$. Since $S_{1}(s) \equiv 1,(2.40)$ gives $c_{1}(\rho) \equiv 0$ and so the sum in (2.41) starts at $n=3$. The absence of the first two terms in (2.41) makes an effective estimate of μ possible. The eigenvalue equation for μ and V becomes

$$
\begin{align*}
&\left.\mu \sum_{n=3}^{\infty} \frac{2 n(n+1)}{2 n+1} \int_{0}^{b} \rho^{4}\left(c_{n}^{\prime}\right)^{2}+\sum_{n=3}^{\infty} \frac{2 n(n+1)\left(n^{2}+n-2\right)}{2 n+1} \int_{0}^{b} \rho^{2} c_{n}^{2}\right]=5 a^{3} \sum_{n=3}^{\infty} \frac{2 n(n+1)}{2 n+2} c_{n}^{2}(a) \\
& \text { Since } n^{2}+n-2 \geqslant 10 \text { for } n \geqslant 3 \\
& \sum_{n=3}^{\infty} \frac{n(n+1)}{2 n+1}\left\{\mu \int_{0}^{b}\left[\rho^{4}\left(c_{n}^{\prime}\right)^{2}+10 \rho^{2} c_{n}^{2}\right]-5 a^{3} c_{n}^{2}(a)\right\} \leqslant 0 \tag{2.43}
\end{align*}
$$

A simple variational argument shows

$$
c_{n}^{2}(a)<\Lambda(b)\left\{\int_{0}^{b}\left\{p^{4}\left(c_{n}^{0}\right)^{2}+10 p^{2} c_{n}^{2} J\right\}\right.
$$

for $111 n$ where $\Lambda(b)+1 / 7$ as $b \rightarrow \infty$. It follows that

$$
\mu<5 a^{3} A(b)
$$

```
and as b f e the upper bound for }\mu\mathrm{ converges to 5/7. Hence for 0< < < %, and
b 2 b, where \delta, and b, are suitable constants, N'(vo,j;b,\delta) has only the eigenvalue
\lambda(b,\delta)=5/3 on the interval [1,\infty). q.e.d.
```


3. The Existence of Global Branches

3.1. The case $\delta \in\left(0, \delta_{1}\right)$ and $b \geqslant b_{1}$

We return to the equation $(k, v ; b, \delta) \equiv v-N(k, v ; b, f)=0$ for $k \geqslant 0$. Consider the collection of nontrivial solutions

$$
P_{b, \delta}=\left\{(k, v) \in[0, \infty) \times E_{c}(b):(k, v ; b, \delta)=0 \text { and } v \neq 0\right\}
$$

The next result sumarizes properties of these solutions.

Theorem 3.1. The set $P_{b, \delta}$ is closed and bounded. Moreover $(k, v) \in P_{b, \delta}$ satisfies:
(a) v is cylindrically symmetric in R^{5} : $v=v(x, z)$ where $r^{2}=x_{1}^{2}+\cdots+x_{4}^{2}$ and $z=x_{5}$.
(b) $v \in c^{2+a}(\overline{B(b)})$ and

$$
\begin{aligned}
& \mid v c_{c}^{1+a}(\overline{B(b)})<\text { const }|v| \leqslant \text { const } b^{7 / 2} \text {. } \\
& \left\{v{\underset{c}{ }}_{2+a}^{(\overline{B(b)})} \leqslant \text { const } b^{7 / 2} / 6 .\right.
\end{aligned}
$$

$$
|k| \leqslant \text { const } b^{11 / 2}
$$

where the constants depend on $a \in(0,1)$ but are independent of k, v, b, and δ.
(c) v is an even function of z and

$$
\frac{\partial v}{\partial z}<0 \text { on } \overline{B(b)} \cap\{z>0\}
$$

Proof. (a) This is just a restatement of $v \in E_{c}(b)$.
(b) Since $|\Delta v|<15$, it follows from [1] and embedding theorems that

$$
|v|_{C} 1+\alpha<\text { const }\left||v|+|v|_{L} 10 / 3\right) \leqslant \text { const } \| v \mid
$$

and by an inequality completely analogous to (2.11), Ivi \leqslant const $b^{7 / 2}$. The estimate for the $c^{2+\alpha}$ norm is similar but now depends on the Lipschitz constant $1 / 8$ for f. If $(k, v) \in F_{b, \delta}$ then for some $\tilde{x} \in B(b), v(\tilde{x}) \geqslant 1+k /|\tilde{x}|^{2} \geqslant k / b^{2}$. Hence $k \leqslant b^{2} v(\tilde{x}) \leqslant$ const $b^{11 / 2}$.

Note that the boundedneas of $P_{b, f}$ has now been established. As to its being closed one need meraly show that no trivial colution is in the clowure. From the arguments above, a liaiting solution would have to eatiaty $v(\tilde{x}) \geqslant 1$ at some point and so is nontrivial.
(c) This follow from [13]. q.e.d.

Let $D_{b, \delta}$ denote the meximel connected subset of $P_{b, f}$ containing ($0, v_{b, f}$).

Theorem 3.2. Suppose $\delta \in\left(0, \delta_{1}\right)$ and $b \geqslant b_{1}$ Then $D_{b, \delta}$ containg a solution $\left(0, \tilde{v}_{b, \delta}\right)$ with $\tilde{v}_{b, \delta} \neq v_{b, \delta}$.

Proof. This ie a variant of a result of Leray and Schauder [18] and can be shown using the techniques in the paper of Rabinowitz (cf. [22], Lemme1.2). If the bounded set $D_{b, 0}$ contains only $\left(0, v_{b, f}\right)$ in the "elice" at $k=0$, then by the use of a suitable open neighborhood of $D_{b, \delta}$ one can derive a contradiction. For the degree of $(0, \cdot ; b, \delta)$ at $\mathbf{v}_{\mathrm{b}, \delta}$ (and hence on any large ball in $\mathrm{E}_{\mathrm{c}}(\mathrm{b})$) would be -1 by Theorem 2.3 while for k sufficiently large $(k, \cdot ; b, 6)=0$ has no solutions and thus has degree zero on every open set.
3.2. The case $\delta=0$ and $b \geqslant b$,

We $E i x \quad b \geqslant b_{1}$ and consider the 11 mit of the branches $D_{b, \delta}$ as $\delta \rightarrow 0$. Some definitions are needed. If x is a metric space and $\left\{A_{n}\right\}_{n=1}^{\omega}$ a sequence of subsets of x, then liminf λ_{n} is defined to consist of points $p \in X$ such that every neighborhood of p has nonempty intersection with all but a finite number of the A_{n}. In constrast, lim sup A_{n} consists of points p such that every neighborhood of p has nonempty intersection with infinitely many of the A_{n}. The following result from Whyburn (24) is useful for taking limits of connected sets.

Leman 3.3. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a sequence of connected sets in a metric space such that
(a) $\bigcup_{n=1}^{\infty} A_{n}$ is precoupact
and
(b) lin inf $A_{n} \neq$

$$
-21-
$$

Then lim sup A_{n} is a compact, connected set.

Theorem 3.4. There exists a compact, connected set $D_{b} \subset[0, \infty) \times E_{c}(b)$ of solutions of $v-N(k, v, b, 0)=0$. Moreover
(a) $D_{b} \cap\left(\{0\} \times E_{c}(b)\right)=\left\{\left(0, v_{b}\right)\right\} \cup\left\{\left(0, \tilde{v}_{b}\right)\right\}$ where v_{b}, \tilde{v}_{b} are, respectively, the "small" and "large" solutions from section 2.2 (cf. eq. 2.12).
(b) If $(k, v) \in D_{b}$ then v is cylindrically symmetric in R^{5} and

$k \leqslant \operatorname{const} b^{11 / 2}$.

$$
\frac{\partial v}{\partial z}<0 \text { on } \overline{B(b)} \cap\{z>0\}
$$

where the constants are independent of b, k, and v.

Proof. For fixed $b \geqslant b_{1}$ let $\delta_{n} \in(0, \delta) n=1,2, \ldots$ be a sequence converging to zero. According to Thencem 3.1 there is a closed bounded set $X \subset R \times E_{c}(b)$ which containg $D_{b, \delta_{n}}$ for all n. To use Leman 3.3 let $A_{n}=D_{b, \delta_{n}}$. The bounds on v in $c^{\text {lta }}$ and on k from Theorem 3.1(b) are independent of δ and so the use of Arzela's Theorem shows -
, A_{n} is precompact in X. Accordin'z to Lemma $2.2, v_{b, \delta} * v_{b} a s \quad \delta \rightarrow 0$ and so $\left(0, v_{b}\right) \in \lim$ inf A_{n}. According to the previous lemma $D_{b} \equiv 1 i m$ sup A_{n} is a compact, connected set and contains ($0, v_{b}$). With the exception of the strict negatirity of $\partial y / \partial z$ the remainder of (b) follows immediately from Theorem 3.1 since the relevant estimates are independent of 6 .

To corplete the proof of (b) consider an element (k, v) $\in D_{b}$. It can be assumed that (k, v) is the limit in $R \times C^{1}(B(b))$ of a sequence $\left(k_{n}, v_{n}\right) \in A_{n}$. sizase v_{n} is bounded in $W^{2,2}(B(b))$ uniformly in s, by elliptic theory, v is also the weak limit in $\omega^{2,2}$ of v_{n}. To show $\partial v / \partial z$ has one sign on $B^{+}=B(b) \cap\{z>0\}$ we use a weak form of the maximum principle. Let be an element of $C_{0}^{\infty}\left(B^{+}\right)$with $\phi \geqslant 0$. Then

$$
\begin{aligned}
\int_{B^{+}} \nabla \frac{\partial v_{n}}{\partial z} \nabla_{\phi} & =\int_{B^{+}}\left(\Delta v_{n}\right) \frac{\partial \phi}{\partial z} \\
& =-15 \int_{B^{+}} f_{\delta_{n}}\left(v_{n}-1-\frac{k_{n}}{r^{2}}\right) \frac{\partial \phi}{\partial z} \\
& =15 \int_{B^{+}} f_{\delta_{n}}^{\prime}\left(v_{n}-1-\frac{k_{n}}{r^{2}}\right) \frac{\partial v_{n}}{\partial z} \phi
\end{aligned}
$$

$\leqslant 0$
since $\partial v_{n} / \partial z<0$ in B^{+}. Taking a limit yields

$$
\begin{equation*}
\int_{B^{+}} \nabla \frac{\partial v}{\partial z} \nabla_{\phi} \leqslant 0 \tag{3.1}
\end{equation*}
$$

Since, in the limit $\partial v / \partial z \leqslant 0$ in B^{+}. Theorem 8.19 of [14] applied to (3.1) ensures that either $\partial v / \partial z<0$ in $B^{+} \quad o r \quad \partial v / \partial z \equiv 0$ there. The latter would imply $v \equiv 0$ in $B(b)$, an impossibility, since each v_{n}, and hence v, mast exceed unity somewhere on $B(b)$. To show that $\partial v / \partial z<0$ at a point $q \in \partial B(b) \cap\{z>0\}$ note that $v_{n}(q)=0$ so $\left|v_{n}\right| \leqslant \frac{1}{2}$ in a neighborhood Q of q, uniformly in n. since $f_{\delta}\left(v_{n}-1-k / r^{2}\right)=0$ on Q, v_{n} is harmonic there, as is the limiting function v. Hence $\partial v / \partial z<0$ at q by the maximum princtple. Next we show that $(k, v) \in D_{b}$ is a solution of the limiting equation, that is, that

$$
\begin{equation*}
\int_{B(b)} \nabla_{v} \cdot \nabla_{\phi}=15 \int_{B(b)} f_{0}\left(v-1-k / r^{2}\right) \phi \tag{3.2}
\end{equation*}
$$

for all $\in E_{v}(b)$. We consider the sequence $\left(k_{n}, v_{n}\right)$ from the previous paragraph and need merely show convergence of the right-hand member of (3,2) evaluated at (k_{n}, v_{n}). Pick an $\varepsilon>0$ and let

$$
T_{\varepsilon}=\{(x, z) \in B(b): r>\varepsilon \text { and }|z| \geqslant \varepsilon\}
$$

On T_{ε} the function $\tilde{v}_{n}=v_{n}-1-k_{n} / r^{2}$ converges in c^{1} to $\tilde{v}=v-1-k / r^{2}$ as $n \rightarrow \infty$. Since $\partial v / \partial z$ is bounded away from zero on T_{E}, so is $\partial v_{n} / \partial z$ for all large n. Say both are less than $-s<0$ where $z>0$. Let ϕ be a smooth function in $E_{c}(b)$. Pick $\sigma>0$ and assume n is large enough so that $0<\delta_{n}<\sigma$ and $\left|\tilde{v}_{n}-\tilde{v}\right|<\sigma$ on T_{E}. Then

$$
\begin{aligned}
\int_{T_{\varepsilon}} f_{\delta_{n}}\left(\tilde{v}_{n}\right) \phi & =\int_{T_{\varepsilon} \cap\left\{0<\tilde{v}_{n}<\sigma\right\}} f_{\delta_{n}}\left(\tilde{v}_{n}\right) \phi+\int_{T_{\varepsilon} \cap\left(\tilde{v}_{n}>\sigma\right\}} 1 \cdot \\
& =0\left(\frac{\sigma}{z}\right)+\int_{T_{\varepsilon} \cap(\tilde{v}>0)} 1 \cdot \phi+0\left(\frac{\sigma}{s}\right)
\end{aligned}
$$

Since σ is arbitrary,

$$
\lim _{n \rightarrow \infty} \int_{T_{\varepsilon}} f_{\delta_{n}}\left(\tilde{v}_{n}\right) \phi=\int_{T_{\varepsilon}} f_{0}(\tilde{v}) \phi .
$$

But since ε is arbitrary and meas($\left.B(b) \backslash T_{\varepsilon}\right)=O(\varepsilon)$

$$
\lim _{n+\infty} \int_{B(b)} f_{\delta_{n}}\left(\tilde{v}_{n}\right) \phi=\int_{B(b)} f_{0}(\tilde{v}) \phi
$$

As smooth functions are dense in $E_{c}(b)$ the equation (3.2) holds.
For part (a) recall that, by Theorem 3.2 and Lemma $2.2 \quad D_{b, \delta}$ contains a solution $\left(0, \tilde{v}_{b, \delta}\right)$ such that $\| \tilde{v}_{b, 5}-\tilde{v}_{b} \geqslant \varepsilon_{0}>0$ with ε_{0} independent of δ. A subsequence of $\left(0, \tilde{v}_{b, \delta_{n}}\right.$) mast converge in $E_{f}(b)$ to a solution $(0, v)$ with $\left.\| v-v_{b}\right\rangle \varepsilon_{0}$. However, \tilde{v}_{b} from section 2.2 is the only solution for $k=0$, other than v_{b}. Hence ($0, \tilde{v}_{b}$) urust belong to D_{b}. In fact every subsequence; and hence the whole sequence converges to $\left(0, \check{v}_{b}\right)$. q.e.d.
3.3. The case $s=0$ and $b \rightarrow \infty$

Once again we shall use Leman 3.3 to take limits of solution branches as $b \rightarrow 0$. The main result is

Theorem 3.5. There exists an unbounded, closed, connected set $D=[0, \infty) \times E_{c}$ of
nontrivial solutions ot $v-N(k, v ; \infty, 0)=0$:

$$
\begin{equation*}
\int_{R^{5}} \nabla u \cdot \nabla \phi=15 \int_{R^{5}} f_{i}\left(v-1-\frac{k}{r^{2}}\right) \phi=15 \int_{A(k, V)^{V}} \quad v \in E \tag{3.3}
\end{equation*}
$$

where $A(k, v)=\left\{x \in R^{5}: v(x)>1+k / r^{2}\right\}$. Moreover
(a) $D \cap\left(\{0\} \times E_{C}\right)=\left\{\left(0, v_{H}\right)\right\}$ where v_{H} is given in (2.5).

The following properties hold for any $(k, v) \in D$.
(b) v is cylindrically syametric, $v \in c^{2}\left(R^{5}-\partial \lambda(k, v)\right) \cap c^{i+a}\left(R^{5}\right)$ for each $a \in(0,1)$, and

$$
|v|_{c^{1+a}}<\text { const } \mid v i
$$

with constant depending on a.
(c) The set $A(k, v)$ is bounded while for $|x| \rightarrow \infty,|v(x)|=O\left(|x|^{-3}\right)$ and $|\nabla v(x)|=$ $0\left(|x|^{-4}\right)$.
(d) v is an even function of z and $\partial v / \partial z<0$ for $z>0$.

Proof. Each element of $E_{c}(b)$ is extended to be zero outside $B(b)$ arit considered as an element of \mathbf{E}_{c}. Let

$$
x_{j}=\left\{(k, v) \in(0, \infty) \times E_{c}=k^{2}+\|v\|^{2} \leqslant j^{2}\right\}
$$

where J is a fixed integer larger than $1 v_{k} \|$. Choose a sequence $b_{n} \rightarrow \infty, n=1,2 \ldots$ and let $A_{n}=D_{b_{n}} \cap X_{j}$. To show that $\bigcup_{n=1}^{\infty} A_{n}$ is precompact in $R \times E_{c}$ it suffices, as before, to show that aequence $(k, v) \in A_{n}, n=1,2, \ldots$ is precompact. One can suppose $k_{n} \rightarrow k \geqslant 0$ and that v_{n} converges weakly to element $v \in E_{c}$. To show strong convergence first note that from Theorem 3.4(b), v_{n} has a $c^{1+\alpha}$ bound independent of n since $\left\|v_{n}\right\| j$. Hence $\left\{v_{n}\right\}$ converges in c^{\prime} on any compact subset of R^{5}. It is shown in Theorem 5s of [11] that there is a ball $B(B) \subset R^{5}$, independent of n, such that $v_{n}(x, z)<1+k_{n} / r^{2}$ for (r, z) outside the ball $B(B)$. That is, v_{n} is harmonic outside $B(B)$. Since the norms $\| v_{n}$ are uniformiy bounded, it is elementary to show that for any $E>0$ there exists a $Y>B$ such that

$$
\int_{\gamma<p<b_{n}}\left|\nabla v_{n}\right|^{2} \leqslant \varepsilon
$$

ror all n. This last Inequality combined with the convergence on compact sets of R^{5} shows $v_{n}+v$ in E_{c}. Recall from section 2.2 that $v_{b} \rightarrow v_{H} a s b+\infty$ and thus $\left(0, v_{y}\right) \in \lim$ inf A_{n}. Lemma 3.3 yield a coupact, connected set D^{j} which can easily be seen, as before, to satisfy the equation (3.3). The set D^{j} contalns ($0, \mathrm{v}_{\mathrm{H}}$) and mast also contain a solution (k, v) satisfying $k^{2}+\|v\|^{2}=j^{2}$. For the branch $D_{b_{n}}$
connecting $v_{b_{n}}$ to $\tilde{v}_{b_{n}}$ nust, for all large n, intersect the set where $k^{2}+i v i^{2}=j^{2}$, implying liz sup A_{n} contains an element of the same closed set. Since each solution v mat exceed unity at some point, it is nontrivial. The unbounded solution set results from defining

$$
D=\underset{j}{U} D^{j}
$$

where the union is over all large integers j.
(a) This follows since v_{H} is the only cylindrically symmetric solution of (2.46) for $k=0$ according to [3].
(b) This follows from the previous theorem and standard estimates.
(c) It follows from the earlier discussion that $A(k, v) \subset B(B)$. The decay estimates are those for harmonic functions.
(d) One uses the maximum principle, as before. q.e.d.

The mapping $v \rightarrow \psi=r^{2} v \in H(I)$ yields an unbounded, closed, connected set C of solutions as required for the proof of Theoren 1.1(a).
4. Properties of D and some Conjectures

In this section, we consider briefly the sense in which D is unbounded in
$[0, \infty) \times \mathbf{E}_{\mathrm{c}}$. Some numerical result of Norbury $[21]$, when suitably rescaled, suggest there exigts a function $h=[0, \infty)+E_{c}$ such that $D=\{(k, h(k)): k \in[0, \infty)\}$. When $k=0$, the function $h(0)$ is Hill's solution $V_{H \prime}$ while $h(k)$ for large k corresponds to a family of vortex rings of small core shown to exist by Fraenkel [9], [10]. Aa $k+\infty$, the cores are asymptotic to smaller and smaller circles centered on the r-axis, and whose centers become unbounded. According to Norbury's calculations, these vortex rings are simpli-connected in II.

Our techniques do not allow us to confirm the numerical predictions implicit in the work of Norbury that D is unbounded in the $k-d i r e c t i o n$. Nor have we ghown that the cores $\left.\{(x, z) \in \Pi: \phi(x, z)\rangle r^{2}+k\right\}$ are always simply-connected. This is only known for Hill's solution and for solutions in D near to it $[4]$. One might hope to use the connectedness of D to show that a sequence of sores could not luse their simplyconnectedness by pinching tugether.

In orier to show that D is unbounded in the k-direction, we would need to establish bounds of the form

$$
\begin{equation*}
\sup _{0<k \leqslant \tilde{k}} \| v i<\infty \tag{4.1}
\end{equation*}
$$

for any solution $(k, v) \in D$ and any $\tilde{k} \geqslant 0$. If (4.1) fails to hold, then there would exist elements $\left(k_{n}, v_{n}\right) \in D$ with

$$
\begin{equation*}
k_{n}+k \in(0, \infty) \text { and }\left|v_{n}\right|+\infty \text { as } n+\infty \tag{4.2}
\end{equation*}
$$

There dre two ways in which $\left\|v_{n}\right\|$ may become unbounded; the functions v_{n} may develop a singularity on some compact set or they may lose their decay rate at infinity. As regards the first point, we record that

$$
\begin{equation*}
\sup _{0<k \leqslant \tilde{k}^{2}}|v| C^{1+a_{\left(R^{5}\right)}} \text { : const } \tag{4.3}
\end{equation*}
$$

for any solution (k, v) and any $\tilde{k} \geqslant 0$. Here the constant depends only on $a \in(0,1)$ and \tilde{k}. The proof of (4.3) is very technical and will not be presented here. We claim that if
(4.2) occurs, then the core $\lambda\left(k_{n}, v_{n}\right)=\left\{(x, z) \in x^{5}: v_{n}(x)>1+k_{n} / r^{2}\right\}$ muat become unbounder. Indeed, if not, then the v_{n} would be harmonic sutaide some fixed compact set, and would have a uniform decay rate at infinity: $\left.\left|\nabla v_{n}\right|=O\left(r^{2}+z^{2}\right)^{-2}\right)$.

For each $k>0$, our equation $-\Delta v=15 f_{0}\left(v-1-k / r^{2}\right)$ has a singular solution v_{s} with infinite norm. Here v_{s} la a function of r alone, and is given by

$$
v_{s}(r)=\left\{\begin{array}{c}
2,0<x<\sqrt{k}, \tag{4.4}\\
2+\frac{15 k}{4}-\frac{15 r^{2}}{8}-\frac{15}{8} \frac{k^{2}}{r^{2}}, \sqrt{k}<r<\sqrt{\frac{8}{15}+k} \\
\frac{8+30 k}{15 r^{2}} \quad,
\end{array}\right.
$$

Note that v_{s} is the unique $z-i n d e p e n d e n t$ solution of our equation with $v(r) * 0$ as $r+\infty$. There are other solutions which are also finctions of r alone, lut they do not vanish as $r \rightarrow \infty$. There are a number of partial results which suggest that if (4.2) sccurs, then the v_{n} converge on compact sets to the singular solution (4.4). However, we do not present them here since it is our firm conviction that (4.2) does not occur. In such a case, ecuation (4.1) would hold and the branch D would be unbounded in the k direction.

RETERENCES

1. AGMON, B., The L_{p} appronch to the Dirichlet problem. Ann. Scuola Norm. Sup. Plaa, (3) (1959), 405-448.
2. NBBROSEITI, A. and MANCINI, G. On some free boundary probleme. In Recent Contributiona to Nonlinear Partial Differential Equations (edited by H. Berestycki and H. Brétis), Pitan, 1981.
3. AMICX, C. J. and PRAENKEL, L. E., The uniquenese of Hili'a spherical vortex, Math. Res. Centar Raport 12820 (1985), University of Wisconsin-Madison. Also in Arch. Rat. Mech. Anal., 92 (1986), 91-119.
4. AMICK, C. J. and FRAENREL, L. E., The uniquenese of Norbury'e perturbation of hill'a spherical vortex, to appear.
5. AMICK, C. J. and PRAENKEL, L. E., Note on the equivalence of two variational principles for steady vortex rings, to appear.
6. BEMJAMIN, T. B., The alliance of practical and analytical intightis into the nonlinear problems of fluid mechanics. In Applications of methods of functional analysis to problem of mechanics, Lecture Notes in Math. 503. Springer, 1976.
7. BERESTYCKI. H. . Some free boundary problema in plaam phyeics and fluid mechanics. In Applications of Nonlinear Analysis in the Phyaical Sciences (edited by H. Amann, N. Bazeley, and K. Kirchgateser), Pitman, 1981.
8. ESTEBAN, M. J., Nonlinear elliptic problem in trip-like domaina: aymetry of positive vortex ringe. Nonlinear Analysie, Theory, Methods and Applications, 7 (1983), 365-379.
9. FRAENKEL, L. E. On eteady vortex ringe of mall cross-section in an ideal fluid. Proc. Roy. Soc. Lond., A 316 (1970), 29-62.
10. FRAENKEL, L. E., Examples of steady vortex rings of small cross-section in an ideal fluid. J. Fluid Mech. 119 (1972). 119-135.
11. FRAENEL, L. E. and BERGER, M. S., A global theory of steady vortex rings in an ideal fluid. Acta Math., 132 (1974), 14-51.
12. FRIEDMAN, A. and TURKINGTON, B., Vortex rings: existence and asyptotic estimates, Trans. Amer. Math. Soc., 268 (1981). 1-37.
13. GIDAS, B., NI, W.-M. and NIRENBERG, L., Symetry and related properties via the maximum principle. Com. Math. Phys., 68 (1979), 209-243.
14. GILBARG, D. and TRUDINGER, N. S. Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1977.
15. HILI, M. J. M., On a spherical vortex. Philos. Trans. Roy. Soc. London, A 185 (1894), 213-245.
16. KRASNOSELSKII, M. A., Tovological Methods in the Theory of Nonlinear Integral

Equations, Pergamon Press. New York, 1964.
17. KUFNER, A., JOHN, O. and FUCIR, S. Punction Spaces, Nordhoff International Publishing, Leyden, 1977.
18. LERAY, J. and SCHAUDER, J., Topologie st Gquations functionelles, Ann. Sci. Ecole Norm Sup (3) 51 (1934), 45-78.
19. NI, W.-4., Dn the existence of global mortex rings, J. d'Analyse Math., 37 (1980), 208-247.
20. NORBURY, J. A steady vortex ring close to Hill's spherical vortex, Proc. Cambridge Philos. Soc., 72 (1972), 253-284.
21. NORBURY, J., A family of steady vortex ringe. J. Fluid Mech., 57 (1973), 417-431.
22. RARINOWITZ, P. H., Some global resulte for nonlinear eigenvalue probleme, J. Functional Anal., 7 (1971), 487-513.
23. WHITTAKER, E. T. and WATSON, G. N. A Course of Modern Analysis, Cambridge University Press, Cambridge, 1946.
24. WHYBURN, G. T. Topological Analysis, Princeton University Press, Princeton, 1955.

REPORT DOCUMENTATION PAGE	KLAD INSTEUCTICNS BEFONE COMPLETING :OONM
1. REPORT MUMEER \#2953\quad2. GOVT ACCESSION NO $A D-A 6727$	3. RECIPIENTOSCATALOE NUMHER 4
4. TITLE (and Subillic) A GLOBAL BRANCH OF STEADY VORTEX RINGS	5. TYPE OF REPORT A PERIOC COVERED Summary Report - no specific reporting period
	6. PERFORMING ORG. KEPORT MIMBER
7. AUTMOR(*) C. J. Amick and R. E. L. Turner	E. CONTRACT OR GRANT NUMEER(O) DMS-8203338 \& MCS-8200406 DAAG29-80-C-0041
9. Performing organization name and adoress Mathematics Research Center, University of 610 Walnut Street Wisconsin Madison. Wisconsin 53705	10. PROGRAM ELEMENT. PROJECT, TASK AREA A MORK UNIT NUMOCRS Work Unit Number 1 Applied Analysis
II. CONTROLLIMG OFFICE NAME AND ADORESS See Item 18 below	12. REPORT OATE August 1986
	13. NUMBER OF PAGES 30
74. MONITORING AGENCY NAME A AODRESS(If difiormi fran Controllind Oflice)	15. SECURITY CLASS. (of inte report) UNCLASSIFIED
	15. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (Of mite Roport) Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (Of the ebotrect miterod in block 20. If differont fromm Report)	
10. SUPPLEMENTARY NOTES U. S. Army Research Office National Science Foundation P. O. Box 12211 Washington, DC 20550 Research Triangle Park North Carolina 27709	
19. KEY WOROS (Continue on reveret olde If neceseary and Idently by block number) Steady vortex rings, degree theory, global bifurcation	
20. Abstract (Condinue on reverob elde th neceoseny and identily by dicek number) A steady vortex ring of prescribed strength and propagation speed can be described in terms of a Stokes stream function Ψ. A flux constant k measures the flow through the center of the axisymmetric vortex ring. For $k=0$, Hill in 1894 found an explicit solution for the semi-linear elliptic equation satisfied by.Ψ. In this paper it is shown that there is an unbounded, closed, connected branch of solutions emanating from Hill's vortex in the space of pairs (k, Ψ).	

$$
\begin{array}{|l}
E N D \\
11-86 \\
D T I C
\end{array}
$$

[^0]: Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National Science Foundation under Grant Nos. DMS-8203338 and MCS-8200406. The first author was also supported by the sloan Foundation.

