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ABSTRACT
“a steady vortex ring of prescribed strength and propagation speed can be
described in terms of a Stokes stream function {!: A flux constant k
measures the flow through the center of the axisymmetric vortex ring. For
k = 0, Hill in 1894 found an explicit solution for the semi-linear elliptic
equation satisfied by :?. In this paper it is shown that there is an
unbounded, closed, connected branch of solutions emanating from Hill's vortex

in the space of pairs (k,¥).
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SIGNIFICANCE AND EXPLANATION

A number of existence theorems for steady vortex rings and some
properties of solutions have been established in the last fifteen years.
However it is not known whether the vortex rings found for various physical
parameter ranges can be connected through parameter changes. Numerical
calculations indicate that the known vortex rings are so connected. 1In this
paper it is established that there is an unbounded, connected branch of vortex
rings emanating from the well-known Hill's vortex. This supports the results

of numerical calculations and paves the way toward establishing specific

characteristics along the branch.
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A GLOBAL BRANCH OF STEADY VORTEX RINGS

C. 3. Amick! and R. E. L. Turner

1. Introduction

2

The physical problem under consideration in this paper concerns steady vortex rings in

an ideal fluid occupying all of 13.

may be found in [11] and other existence results in [2], (6]

- (1],

A more complete description of the physical problem

(12}, 119) - [21).

The only explicit solution known is that due to Hill [15) in 1894 and our purpose is to

prove the existence of an unbounded, closed, connected branch of solutions emanating from

it.

An axisymmetric flow is sought and thus the independent coordinates are taken to lie

in the half plane
T={(rsz) t x>0, =<z =}

The mathematical problem is to find a flux parameter k > 0;

a bounded, open vortex "core"”

AC I; and a stream function ¥ = ¥(r,2) ¢ C‘(i) N c3(1-38) such that
1 -Arz in A ,
LY = r(;-!t)t + ’zz = - (1. 1)
0 in T -4a ,
aa =0 , Yiap =k (1.2)
and
1 2 ?z 'r
Y(r,z) + 2 W +k+ 0, - + 0, - > -9 (1.3)
ag rz + zz * @ {n ﬁ. The vortex-strength parameter )\ > 0 and the propagation speed

W >0 are given.

1Departmcnt of Mathematics, University of Chicago.
Department of Mathematice and Mathematics Research Center, University of wisconsin-
Madison.

Sponsored by the United States Army under Contract No. DAAG29-80-C~0041 and the National
Science Foundation under Grant Nos. DMS-=8203338 and MCS-B200406. The first author was also
supported by the Sloan Foundation.
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The use of the strong maximum principle in conjunction with (1.1) = (1.3) shows that
¥¢0 in M-A and ¥ >0 in A so that the core is
A= {(r,z) e T : ¥(r,=z) > 0} .
In cylindrical coordinates (r,0,z), the velocity field a has the components -0‘/t, o,
wt/r, regpectively. Since ; is to be continuous, the condition ¥ ¢ C‘(i) is to be
expected. The vorticity, curl ;, has cylindrical components (0, - (L¥)/r, 0), so that
{1.1) gives a jump in vorticity across 09A. This causes a jump in the second derivatives
of ¥ across 3A and allows one to have ¥ smooth merely in [-3A.
For any value of %, the function ¥ = - %-Hrz - k satisfies (1.1) - (1.3) with
A = §; these are trivial solutions, and we shall be interested in non-trivial solutions.
With the aid of the Heaviside function
0, t<0
£,(t) = (1.4)
1, t£t>0 .
the equation (1.1) may be expressed in the form LY = -xrzfo(!). Define ¢ by the formula

¥(r,z) = y(x,2) ~ %-Hrz -k .

Then the equation (1.1) becomes

Ly = -lrzfo(t - %'wrz -k) in I (1.5)

and the boundary conditions can be expressed roughly as

9+ 0 on dl (1.6)
by which one should understand that ¢§ = 0 for r =0 and ¢ and % Vy approach zero at
infinity. These conditions are not made more precise here for the problem will be
reformulated in the next section in such a way as to prescribe a precise function space
for #%. In (1.5), (1.6) the numbers )\ and W are still prescribed and a solution pair
(Xx,p), with k » 9, is to be determined. Implicit in (1.5), (1.6) i3 that

A= {(r,2) : Y(r,z) > -;' wl'z + k}

is to be a bounded, open subset of [NI. The problem (1.5), (1.6) is a special case of a

more general problem in which one replaces f, by a general vorticity-distribution
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function f. A class of distributions, other than the Heavlside’function, which has
received considerable attention in recent years consists of functions which are zero for
non-positive arguments, smooth, and non-decreasing. The papers (2], (7], {11], (12] and
{19] include results for this class, proved largely by variational techniques.

For the Heaviside vorticity distribution and flux k = 0 Hill [15), nearly a century

ago, fnund the solution

2
1.25 3
(‘5 wr (; -3 f;), 0<p<a ,

wﬂ(t.z) - (1.7)

3

5 Wr 03/0 ¢ pa ,
where pz = rz + z2 and

ra? = 15w/2 . : (1.8)

The core A for Hill's solution {3 merely a semi~circle of radius a outside of which the
vorticity vanishes. In 3] it was shown that ¥y 18 the unique solution when viewed in a
natural weak formulation (cf (1.10)).

For small k > 0 Norbury [20] proved that there are solutions near Hiil's vortex,
aach ¢nlution having a core homeomorphic tu a torus when viewed in RJ. The analysis in
(20) was based on a contraction principle in a ball of radius k centered at Hill's
solution and hence other scolutions near (J,vn) were not ruled out. In [4] it was shown
that this local branch of solutions (k,y) emanating from (O,WH) constitute the only
solutions in a neighborhood of (0,}y,) for prescribed positive values of 1 and W.
Consequently, the local branch will be a subset of the global hranch we find in this paper.
A globhal branch is suggested by the numerical calculations of Norbury (21].

A result of Esteban [8] for solutions of (1.5), (1.6) with quite general, but swooth,
vorticity distributinons £, shows that solutions must always be symwetric about a line z =
constant. An analogous result holds for the Heaviside distribution f,: one uses the

arguments of Gidas, Ni, and Nirenbe-rg (13} with the extension given in [3]. Hence, without
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loss of generality, we may assume our solutions are even functions of z. An inner product

S occurring naturally in conjunction with the operator L is
KN < > = + rirdz . 1.9
o 9>y Inztn (R R (1.9)
3N
Y The space in which solutions are sought is H(II), the completion of the functions in
Tt c;(m, even in 2z, 1in the norm corresponding to the inner product (1.9). With this
';\‘ notation, equations (1.5), (1.6) have the weak formulation
1
)
:"‘: <h, P> -x/  d -—1wx-2-k)¢ rdrdz ¥ ¢ ¢ H(N) (1.10)
1Y (13, H I 0(* 2 ’ ¢ .
i
::I.. and a solution (k,y) is to be understood in the sense of (1.10).
ba
The main result of the paper can now be stated.
TN
' L]
N‘: Theorem 1.1, Let A >0 and W > 0 be given and let Yy be Hill's solution (1.7),
L o
A (1.8).
Ip
. (a) There exists an unbounded, clogsed, connected get C C (0,») x H(I) of solutions
A/
s (k,9) of (1.10) with <N ({0} x H(M) = {(0,py)}.
B
N
-,g« {b) There exists an ¢ > 0 and a continuous function g : {0,e] + H() with g(0) =
K- . —_—
Y ¥y Ssuch that {(x,3(k)) : k € [0,e]} CC and constitutes the only solutions of (1.10) in
_' a neighborhood of (0,¢y).
X ,_',‘
53‘.4 (¢) If (k,¥) € C, then the following hold: The vortex core
B> 1 2 +a = 2
a:.'h’ A= {(r,z) s y(r,2z) > 3 W+ k} is bounded; ¢ ¢ C (M) NCT(N - 3A) for any
L8 |
. a € (0,12 9 is an even function of z; t‘(t,z) <0 for z > 0; and at infinity,
IR Y
:‘ v = o1/ + 2% ana Wy =o(1/ie? + 2.
?. ~
’: The new aspect of the theorem is part (a). Part (b) is the main result of (4] while
¥
04 (c) is standard from the estimates of Fraenkel and Berger [11]. To prove (a), we begin
section 2 with a further reformulation of the problem. The change of variables y(r,z) =
Y, 4
) tzv(r,z) is made, and if v is considered as a function in l5 with r2 « ): xf and
X i=1
[)
;‘;s z = xg, then the operator corresponding to L is the Laplacian. This fortuitous fact has
0
—— been used in [3] and [19]) in analyzing the vortex ring problem. If the Laplacian is
o8
) -f~
s.g 4
L9
)
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formally inverted, a functional equation of the type v - N(k,v) = 0 arises. Degree
theury and global bifurcation methods suggest themselves. However, two difficulties are
encountered. First, the underlying domain is the whole space Rs and so the inversge of
the lLaplacian is not compact This ig handled by working first in a ball of radius b

in !5. Second, the intervening function fo is discontinuoug, making N

discontinuoua. By approximating fo by a continuous function 26 which converges to

to as 8§ + 0, a continuous and differentiable map is obtained. In this setting, for

k = 0, a degree computation is made about a solution b, 8 of the altered problem. The
degree is shown to be -1 from which one concludes that a branch of solutions emanates
from (O.Vb's). In section 3 we return to the original problem by letting 6 + 0 and then
letting b + ®» sghowing in the process that the desired continuum of solutions results. In
section 4 we consider the nature in which this set of solutions is unbounded. The
numerical calculations of Norbury [21] suggest that the branch extends to k = » and that
solutions with large k approach a class of solutions examined by Fraenkel (9], [10]. We
conjecture that the branch is unbounded in the k-direction and provide some evidence to
show that if this is false, then the solutions converge to a 'singular’ solution which is a

function of r alone and has infinite norm.
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2. An Equivalent Problem

2.1. Preliminaries

The purpose of this section is to derive a transformed problem in R5 which is
equivalent to (1.10). The notation follows that from [3]. Let A > 0, W> 0 be fixed and
let (k,¥) € (0,%) x (H(N) N cz(n-aA)) satisfy (1.5). We first rescale variables by
setting k = 2k/Wa2, with a as in (1.8), and G(r,z) = 2W(at,az)/azw so that (;,;)

satisfies
Ly = -5 (4 - 22 - k) . (2.1)

In the sequel we restrict attention to (2.1) and its corresponding weak form.
4
Consider R° and let (r,z) with r’ = | x? and z = xg be cylindrical
i=1
coordinates. Under the chanae of variables $(r,z) = rzv(t,z), there results

1
TLO = Av (2.2)
r

where A, throughout the paper, denotes the Laplacian in Rs. Hence (2.1) corresponds to

AV = <15€(v = 1 - k—z) in R . {2.3)
r

The occurrence of the Laplacian was used in a crucial way in {3] and [19], and will be the

key to a tractable analys;s here. We anticipate bounded solutions of (2.3) and thus

¥y = rzv will vanish at r = 0. The condition

v+ 0 as |x] += in R (2.4)

is allied to (1.6). 1Indeed, the function space setting for v will ultimately give decay

-3 so that ¢ = r2v approaches zero at infinity.

of the order |x|
Note that from the form (2.3) with k = 0 it is a simple matter to write down Hill's

solution. In this setting it is the radial function

5 3 2
3°2° 0<p< 1 ,
vH(r,z) = (2.5)
1/0° b1,
5
where 02 =r2 422 z xf- When k = 0 the analysis in [3] shows that the methods of
i=1

sel "-‘:ﬁlh. -".
- o
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Gidas, Ni and Nirenberg [13] are applicable and so any solution is a radial function. Thus
Hill's solution in (2.5) is unique.

Let ¢ and ¢ be in functions in cg(n) and let v and u be cylindrically
symmetric functions on RS (that {s, depending only on r and z) defined by y(r,z) =

rzv(r,z) and ¢(r,z) = tzu(r,z), as earlier in this section. Let

<u.v>B - —l; f 5 Vu(x)*Vv(x)dx . (2.6)
2% R

Then from (2.2) or from a direct computation one has

PoPdy = <u, v .

It is natural to define a space Bc as the completion with respect to the norm 1 1
induced by <¢,*>p of the cylindrically symmetric functions in C;(IS) which are even

in z. The following lemma follows from section 2.2 »f [3].

Lemma 2.1. (a) The gpaces H(II) and Ec are isometrically isomorphic under the

correspondence ¢ ¢ t2V.

(b) A pair (k,y) « [0,®) x H(w) sBatisfies the weak equation

Doy = 15 [ £ty - r? - k)¢rdraz (2.7

for all ¢ € H(I) if and only if (k,v -1’-2-) € (0,) x E_ satisties
1 4

15 k

@wrp === [ fv - 1= udx (2.8)
2n R r

for all u € E.

Lemma 2.1(b) shows that it will suffice for Theorem 1.1 to show there exists an

unbounded, closed, connected set D of solutions of (2.8) with D N ({0} x E)) = {(O,VH)}.

2.2. The transformed problem on bounded domains

Let B(b) = {x € R° : |x] < b} and in analogy with the definition of E., let E(b)
(EL(b)) Dbe the completion in the E norm of the (cylindrically symmetric) functions in
C:(B(b)) which are even in z. Corresponding to (2.8) is the problem: Find

v € Ec(b) such that

-7=
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<u,v>! -

15 k
:F fop) TtV - 1" rz)u, ¥V u ¢ E(b) . (2.9)

Its solution can be regarded as a fixed point problem. For given k » 0 and v ¢ E, (b}

let w ¢ E(b) be the solution of

s fv-1-59u, vuerm . (2.10)

<u,wr,, =
E
2'2 B(b) "0 r2

The existence and uniqueness of w follows from standard elliptic theory [14]. That

w e Ec(b) follows from the arguments for Lemma 2.3(b) in [3]. If w is denoted by
N{(k,v;b) then a fixed point of N 1s a solution of (2.9). The function w is a weak
solution of -Aw = 1Sfo(v -1 - k/rz) in B(b) and since lAvI ¢ 15 standard regularity

theory [1] gives w ¢ Wz'p(B(b)) N a"Z(B(b)) for all p ¢ [1,»). Sobolev embeddings then

i‘,\
:JQ yield w ¢ c1‘“(8(b)) for all a ¢ (0,1). If A = {x ¢ R :v> 1+ k/rz}, then with u
? _'_ql

» ]

}c: = w in (2.10) one obtains

XN

2 _ 15
twi™ < - IA"!
2%

15 10/3y3/10 7710
< =5 ([lwl ™) - !al (2.11)

g

7/2
< const. Iwl « b /

where | !5 denotes Lebesque measure in R: and the constant is independent of b, w,
and k (see Lemma 2.1 of (3]). Since Iwl < const b7/2, the elliptic regularity
arquments now insure that the bounds on w in w?/P(B(b)) and in C'*“(B(b)). which

depend on b, p, and a, will, however, be independent of k and v.

The solutions of v = N(0O,vib) = 0 are known explicitly from [3]. One is

2
L s. .o 3e
( 2 c 2 2), 0<p<a ,
v, (£.2) =< (2.12)

1 a3
L — (35~ ¢), a<p<b ,

[

where a = 1 + l; + O(b_s) {s the smaller root of
b

YT TEY B T =+ —— s e -
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2 a3
a(1-b—3)-1 (2.13)

and c = a’/p). We assume b > (%)1/2 (531/3 so that (2.13) has two distinct roots

a,(b) < az(b) in (0,b). Corresponding to the root a, is a solution ;b with a = a,

in (2.12). Note that while a,(b) » 1 as b+ ®, a)(b)/b+ 1 as b+ @ so that T;b > 1

on essentially the whole ball B(b). If v is extended to be zero outside B(b) one

b

calculates from (2.12) and (2.13) that lvH - vbl + 0 as b + » and s> we shall be

interested in solutions cmanating from (O,Vb)- The explicit estimates

Ivbl2 x i%

as b + =» (2.14)
~ 2 7
Ivbl x l% b

can be found in Appendix B of (3].

The reqularity estimates given above ensure that the map (k,v) + X(k,vyb) is compact
from ([0,%®) x Ec(b) into Ec(b). Unfortunately N is not continuous since convergence
in Ec(b) does not satisfactorily control the level sets on which v(r,z} = 1 + k/rz.
Hence, a degree argument for the equation v = N(k,v:b) = 0 is not immediately

applicable. This diffjculty can be surmounted by smoothing out the discontinuity in fo.

2.3. The regularized problem for fiaite b.
For each § > 0 let f,(t) be the plecewige linear function
0 . t <o ,
£.(t) =4 t/§ , 0<t<s ,
1 , t>8 .
For each (k,v) ¢ [0,7) x E (b) and for b >N, 8§ >0, let w=N(k;vib,8) ¢ Ec(b)

denote the unique solution of

w,wg = Fv =1 =50, vucEm (2.15)
r

15 J'
2“2 B(b) "§

and define N(k,v,b,0) to be N(k,v,b) from (2.10). The added regularity of f5 makes
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"\ the map N(e,+;b,§) : 10,#) x E(b) » E_.(b) continuous as well as compact, and a degree-
_‘l‘
4 theoretic argument is suitable for the equation
LX
v - N(k,v;b,8) =0 . (2.16)
.
. when k = 0, equation (2.16) is equivalent to °
N

-Av = 15 EG(V-1) in B(b)
(2.17)

£

; v=20 on 3B(b) .

Since f(s is Lipschitz continuous any solution lies in C2+u(§?—b—)-) for each a ¢ (0,1).
Since f, 2> 0, a solution v |is non-negative and, in fact, must be positive in B(b)
with a maxirum larger than unity or besider;tically zero, by the strong maximum principle.
From [13], v 1is a function of p = (E x:)/2 and v'(p) < 0 for p € (0,b). It follows

that v satisfies the ordinary differential equation
1 a4 4 av
i (p dp) = 15 f.(v(p) = V), p € (0,b],
3 (2.18)
]
) vib) =0 .

." We now prove that if b is sufficiently large and § is sufficiently small, then (2.18)

,"\ has a unique solution Yp, § in a neighborhood of the function vy, given in (2.12).
’
1)

Lemma 2.2. There exist positive numbers 84 by and €5 such that for each b > b, anc

i& § ¢ (0,50] the problem

¥
W - Av = =15 f

(v-1) in B(b) ,
o 5 -
LY A

v =20 on 3B(b) , {2.19)

] fv=v_1I A 5
0
...| b EC(D)

145 has a unique solution v

b,5°

Ny Moreover,

%

ot m vy o= vile () 7 0
W 5+0 <

by
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Proof. The solution with § > 0 can be expected to be close to v,, given in (2.12),

which satisfies

-3:3
1=¢c

b‘vg(b) = = =3
for b large. For a fixed, large value of b 1let v = v(pj0,8) be that solution of

(2.18) which vanishes at p = b and satisfies

bdvr(b) =0 .
The idea is to find a value of o near =3 for which v'(0) = 0, eventually using the

implicit function theorem. As longas v < 1, v'(p) = a/p4 and thus

11
vip) = -% (- ;3) on [a,b)

where a = a(o) = (-30'1 + b'3)’1/3. For ¢ near =3, v'(a) < 0 and so v, assumed to

lie in c', will be larger than unity on an interval to the left of a. There v
satisfies
-15
v*{p) +£v'(o) = —= (v(p)=-1) ,
[ 8
¢ (2.20)
via) = 1V , v'(a)-—‘ .
a
For ¢ near =3 and b, large, a 1is approximately 1 and we expect (2.20) to be
satisfied on an interval (B8,a] where a=-8 = §/3 and v(B) = +§. To see that this is
the case and to find the dependence of 8 on ¢ and §, lat

vip) = 1 + § w(s)

where p = a=§s. Then w = w(s;9,§) satisfies

2
d w 48 aw
L¥. =+ 158w=0 ,
dnz a=§s ds
(2.21)
aw [+]
w(C) =0 , as (0) = - 3‘ .

The solution w is analytic in all its variables for s < a/§, and for § = 0 is the

linear function wi(g) = - g: s. The value 8 = -u‘/a gives w = 1 and since 3w/3s # 0

a
-11=
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for this value of s, the implicit function theorem yields a unique analytic function

8(0,8) defined for (0,8) in a neighborhood Q of (-3,0) such that

w(s(o0,8)10,8) = 1 .

In this case Q will be independent of b for all b larger than some by.

(2.22)

Taking Q

smaller, if necessary, we can assume dw/38 > 0 for (0,8) ¢ Q@ and 0 < s € s(c,8). This

yields a function v which is monotone decreasing in p for p ¢ [8,a] where 8 = a(g) -

8§3(0,8). By construction, v(8) = 14§.

Since v 1is required to be C1 and v'(8) < 0, it follows that v > 1+ on an

interval to the left of B and there satisfies

yielding %% = =3¢ + const./p. We want a slope of zero at p = 0 and thus

as—sn on [0,B] .

The condition that derjvatives match at p = B, expressed in terms of w, is

F(a,8) : &

38 (8(0,8)r0,8) - 3(alo) - 83(0,8)) =0 .

F(0,0) =

- 3a(o)
a (g}

which vanishes for the cnoice a = a, o = -3a5 corresponding to the solution

(2.12). For later use we note that for this choice of parameters

-a 1
s(0,0) - "3
. - 4, 2 .
Since u'(a) = -a /a in general,
3F 1,40 , '
30 (0,0) 27 5@ Ja
a a
I S ™y
N 4 a0 2 ‘
a g
-12-~

(2.23)

b in

(2.24)
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For 0 = =3 and b large, a 1is approximately 1 so 03F/30(-3,0) is approximately

%‘ The implicit function theorem applied to (2.23) yields an analytic function o(§),

defined for § in a neighborhood of zero which is independent of b, such that

P(a(8),8) = 0. The function

vb's(o) = v(pi0(d),5)

satisfies the equation and boundary condition in (2.19). As regards the diratance from

1

vb,8 to v, it is clear from the construction that the distance in C' approaches zero

2

as 6 + 0. Since 1/p3 and its gradient are in L“ at infinity in Rs, the convergence

in E_(b) ftollows as well, uniformly for all large b. q.e.d.

2.3. The index of the solution Yy, 8

Throughout this section it will be assumed that b > b, and § € (0,601 as in Lemma
2.2. Then vp, 8 is the only solution of v - N(O,v,b,§) = 0 in Efb), where J(b) is
the open hall of radius ¢, centered at v,. As all computations in this section are done
for k = 0 we suppress it writing N(vib,§) or merely N(v) when the emphasis is on the

behavior with respect to v. For & > 0 the Frechet derivative of N at Yb,8 is

N'(v. L)y = A" etSgi(v. . = Dy (2.26)
b,8

6 b's

where ‘é(' - 1) = 6-' when vb'c(p) € (1,148) and is zero elsewhere. Note that

r,$
fo(t) itself fails to have a derivative at <t = 0 and t = §. However, since Vb, has
a nonzero gradient where Yp,8 " 1 and 1 + 8§, one can, by viewing N as a map 15f6(v-1)
from E (b) to LZ(B(b)) followed by ="' from LZ(B(b)) to E.(b), verify that
(2.26) is the derivativs.

Standard theory {16] ensures that the Leray-Schauder degree of I =~ N(+) relative to
zero and J(b) is aqual to the degrece d2¢ I = “'(Vb,s) relative to zero and Ec(b). We

will show that 1 is not an eigenvalue of N' so this latter degree is well defined. 1In

fact the constancy of degree follows from the homotopy
1
tey =g [Ny, o+ t) =Ny O]t e 10,1

where, for t = 0, the last expression is understood to be Yy = N'(vb G)Y' Using § as a
'
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i b el e

homotopy parameter one sees that the degree of I - N(¢) relative to zero and J(b) is

the same for all § ¢ (0,501 and so the degree of 1 - “""b,s’ is constant for all ¥
sufficiently small § and large b. By standard theory the degree d(b,§) in question is

then (~1)® where m = m(b,§) is the total algebraic multiplicity of eigenvalues of ¢

N'(vb,b,é) on the interval (1,»). Since N' is selfadjoint m is the total geometric

multiplicity associated with the interval.

KM

1

?&f Theorem 2.3. There exist b, » b; and a positive 64 ¢ 60 such that d(b,§) = =1 af

¥ - - =

s 5 €(0,6,] and b > b,.

uh.

?’l.‘

Proof. It will be shown that for all small § and large b the largest eigenvalue of

)‘ N*' is near 5/3 while the second largest eigenvalue, counting multiplicity, is bounded

W

k‘; apove by approximately 5/7. This will show m(b,§) = 1 for these parameter ranges. Let

i

.a: A(b,5) denote the largest eigenvalue, as before, and let u(b,8) < A(b,§) denote the

)

. second largest. Let u(b,§) and v(b,§) denote corresponding eigenfunctions. It can be

3
f'\ assumed that <u,v>E = 0.

. L%

-?ﬂ We begin with a discussion cf 1A and u though much of it applies to y and v as )
"l .
5*, well. Recall that f& = § 1 precisely on the finterval I = (8(h,8), a(b,§)) and is zero
" elsewhere. L2t x denote tue characteristic function of I. Then u satisfies T
[\ i

-Au = ——'x(D)u in B(b) ,
N A8 (2.27)
:# u=0 on 3B(b) .
{ )

Alternatively, for any test function ¢

. 15 4
‘ 9> = —3 ]: p dp !S(o)
2w A§

u(p,N)é(p,N)a (2.28)

by 5

: b where S(p) C R° denotes the sphere of radius p and df 1is the area element on the unit
sphere.

& The eigenfunction u will be of vune sign, will be radial by symmetrization, and will

v be harmonic where x(p) = 0. The eigenvalue itself can be chavacterized by

: -14-
fﬁm
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is a reasonable trial function for (2.29).

(2.29) is well behaved as § * 0 and b »

1
1503.

N' (v IW,w %E-f; ol fs(g)wz(p,n)dn
A(b,8) = max . = max . (2.29)
weE (b) <w,w> I Iv'iz
c B(b)
Recall that as 6 * 0, a and B8 approach a = a(b) = t and, from (2.24)
-1 4 4 a3
lim § f';pdp-as(o.O)'s—-
§+0
From this discussion one would expect that
1 1
‘?"—3' ¢ p c [0,a) ,
- a b
u(p) = (2.30)
1 1
3~ "3 ¢ P {a,b]
P b

With this function as w the quotient in

In the limit its value is

1 g

where |Q] is the measure of S{1). This

approximately 5/3 for § small and Db

eigenvalue problem in the limit as § + 0
corresponding to the largest eigenvalue.
u(b,8) we carry out such a limit.

From embedding theory ((17}, p. 316)

ufp,R)e(p,0)a0 < Ml

”S(p) I‘8/3

< const lul

Hence from (2.28)

|<u,0>| < const

where the constant is independent of §.

= 4,d
[ie IE;

(S(p))

-2
3

(55)1%a 0|
P

suffices to show that )\ is bounded below by

large. In fact cne can make sense of the
and u in (2.30) is the eigenfunction

To show this and to pave the way for estimating

NETY
¥ 5son

o 1l
w"w/?(a(b))

tul « 141
w7 e
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Al Y i
Wy tul < const ful (2.31)
e W' 193 5))
oy i
':,"!
e for a constant independent of §. Now pick a sequence 6n +90,n=1,2... so that
l:;:l‘ A(b,§.) + A(b) = lim sup A(b, ). Let u, denote the corresponding normalized
P‘ §+0
::l\' eigenfunction. Pick an € > 0 and let
:&}
Wwh
o KC'B(b)ﬁ{pt(a-?a'ﬂ')) .
;"i'c Thre functions u are harmonic in l(e for large n and so a subsequence, still denoted
p ‘
K u, will converge in C1 on each connected component of Ke to a harmonic function. Om ‘
g !
5 the other hand ‘
s |
2
/ |Vu 12 < const e %11 1.10/3 ]
o . n n ' 193 5(m)) ‘
‘..‘ a=r<pcate ) |
»
-::: which, from (2.31), is of order €23, independently of n. It follows that u, :
el [
* converges in Ec(b) to a nonnegative radial function u which is harmonic in the
. ccmplement of S{a); i.e., to a multiple of u(p) in (2.30). As noted, the traces on {
1 ¥
e
" ; spheres are well-behaved and the limiting function satisfies i‘
o 1
: o |
e Acu,> =22 u(a,f)¢(a,daq (2.32)
2 ‘s(a)
.‘c,l 2%
.‘s ‘or all $ € Ec(b) where X = A(b). 1In fact, the limits as 8§ + 0 of u(b,§) and Ai(b,8)
184 u
|: ot exist, for any subsequence of eigenfunctions will converge to a multiple of wu in (2.30).
'.-ﬁ
;:'! The discussion of limits holds equally well for u(b,§) and v(b,§) as § + 0
X
Ay,
i yielding a pair (u,v) satisfying
3N 5a3
1oy ucv,¢> = 22 f v(a,Q)¢(a, ) (2.33)
N o0 2’2 S(a)
n
"v\ for all ¢ € Ec(b}- Naturally, <u,v>p = 0 for the limiting functions. Since all
eigenfunctions are harmonic in the complement of S(a) and hence determined by their
e
P .-\::.y values on the sphere it is natural to examine more closely their behavior on spheres in
D ) _)]
::g:j R°. Recall that the functions under consideration are functions of r and z. Consider
'
e Je? 4 22
?‘Qu‘( instead coorlinates  and 8 where p = /r° + z°, as before, and s = sin 8 where
TN
vl
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r=pcos § and z = p sin 6. let U be defined by

ulr,z) = u(p/1 = 32, ps) = U(p,s)

and let V, ¢ correspond to v, ¢, respectively. We have
U,y = <U, 8, (2.34)
where
1 2 b, 4 2 2
W = [ (=sras [ lo7U 8+ 0" (1-8T)U 8 Yo 12.39)
and hence the eigenvalue equation (2.32) is expressed as
AU, >, = 5a? (1 (1-8%)u(a,8)8(a,8)d 2.36
19 Joq +8)%(a,s)ds {2.36)
for all @& ¢for which <0,0>G ¢ @, with an analogous equation for u and V. Of course,

<U,V>G =0 . (2.37)

The function U correspoading to u is a function of p alone and so is constant on

S{a) yielding

J11-s2)via,8)ds = 0 (2.38)
from (2.36), (2.37). 1In fact V(p,s) is orthogonal to 1 (with the weight 1-92) on
each spliers. To see this let

> 1 2
Vip) = [li(1-8%)V(p,8)as . (2.39)

If in the eigenvalue equation for u, V one admits only radial test functions #&(p), the
result is
b 4 < 33
u IO o vp’o = 53~ V(a)é(a)
= 0

for all such ¢. 1t follows that V(p) is a radial, harmonic function on B{b),

vanishing for p = a and thus identically zero. That is,

[101-8%)V(p,s)ds = 0 for p € (0,5) . (2.40;

A collection of polynomials which is orthogonal with respect to the weight 1 = 82 and

complete in the weighted L2 space on [-1,1] is

17 =




d
¥ Sp(8) =5-Pp(s) , n=12...
. where Pn is the nth Legendre polynomial. PFrom the Rodrigues' formula one easily sees
that
zg:; f1i0-82s, s, = [1(1-sP)8s2 = 0 if m#An '
A while standard formulae ( (23], Chap. XV) show that
+1
[l (=] = 23;:1 )
3‘.!! and

2
1 (1eg? 2 . 2n(n+1)(n +n-2)
[2 -85 s Zn+1

Set
L J

Vip,s) = [ c (p)S (s) (2.41)
y #: n=1
‘ﬁ.‘ where

) . c (p) = 2n+1

oy n Zninth) 1_1(1 s )V(p,s)s (s)ds .

"‘_ Now S,, 53, SS""’ are even functions of s while 52' S4, 56"" are odd. Since

) v(r,z) ‘s even in z, V(p,8) is even in s and thus cz(p) = c4'.p) =, ,= 0., Since
s1(s) £ 1, (2.40) gives c,(p) 2 0 and so the sum in (2.41) starts at n = 3. The
) absence of the first two terms in (2.41) makes an effective estimate of u possible. The

cigenvalue equation for p and V becomes

2n(n+1) ,b

as3 2n+1 n-3

4o~ 8

- 2 ©
2n(n+) (n"+n-2) (b 2.2y _ .3 2n(n+1) 2 a2
o (el D) v [ope ] =sa” [ S5 eci(a - (2:42)

Since n2 +ne-2210 for n>3

o
k (n+1) 2 2 3 2
',.: nza nzn” {u f [p te) 2+ 10p cn] - 5a cn(a)} <o . 12.43)

tgd A simple variational argument shows
2 b 4 ,.2 22
N e (a) < AbI{f 1o (e))” + 1007c )}

f for all n where A(b) + 1/7 as b » =, It follows that

u < 5a3A(b)
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and as b + = the upper bound for y converges to 5/7. Hence for 0 < 8§ < §, and
b > by, where 6, and b, are suitable constants, N'(vb,c'b'“ has only the eigenvalue

A(b,8) * 5/3 on the interval [1,=). q.e.d.
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3. The Existence of Global Branches
3.1. The case § ¢ (0,6;] and b > b,

We return to the equation @&(k,v;b,8) = v - N(k,v;b,5) =0 for k » 0. Consider the

collection of nontrivial solutions
Pb P {(k,v) € [0,») x Ec(b) : ¥(k,v;b,8) =0 and v z 0} .
r
The next result summarizes properties of these solutions.

Theorem 3.1. The set Pb 5 is_closed and bounded. Moreover (k,v) ¢ Pb s gatisfies:
——— ’ ’, T m—

(a) v is cylindrically symmetric in RS:

v = vir,z) where t2 = x% teoet xi and z = Xg.

(®) v ec**B®)) and

772

| vl < const Ivl < const b '
"B
7
el 2 € const b /2/6 '
c T (B(D))
1172
|k| < const b 2,

where *he constants depend on a ¢ {0,1) but are independent of k, v, b, and §.

{c) v is an even function of z and

v —
5;-< 0 on B(b) N (z > 0} .

Proof. (a) This is just a restatement of v ¢ Bc(b).

{b) Since |Av| ¢ 15, it follows from [1] and embedding theorems that

[v]

< const(lvl + |v| ) < const Avi

1+a L10/3

and by an inequality completely analogous to (2.11), 1#tvl < const b7/2- The estimate for
the c2'S norm is similar but now depends on the Lipschitz constant 1/§ for fg. If

~ ~ ~ 2
(k,v) € pb,G then for gome x € B(b), vi(x) » 1 + k/{xl » k/bz. Yence

X ¢ bv(%) € const b'V/2,

«20-
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'5 Note that the boundedness of ’b.s has now been established. As to its being closed
e
_':.- one need merely show that no trivial solution is in the closure. From the arguments above,
-," a limiting solution would have to satisfy w(x) » 1 at some point and so is nontrivial.
i)
Wl
o (c) This follows from [13]. q.e.d.
.')".J, Let Db,s denote the maximal connected subset of Pb,s containing (O,Vb'6).
-
. Theorem 3.2. Suppose § ¢ (0,6‘] and b > by Then Db,c contains a solution (o,vb's)
~ ~
i i .
-‘j 1_51 vb,6 ’ vb,G
i ™
)‘
‘O Proof. This is a variant of a result of Leray and Schauder [18] and can be shown using the

techniques in the paper of Rabinowitz (cf. (22], Lemma 1.2). If the bounded set Db,e

3._ contains only (o'vb,6) in the "slice” at k = 0, then by the use of a suitable open
B _)‘
s neighborhood of Dy,s one can derive a contradiction. For the degree of $(0,+;b,8) at
l
"é' Yy, 8 (and hence on any large ball in !c(b)) would be =1 Dby Theorem 2.3 while for k
p . sufficiently large ®&(k,+;b,8) = 0 has no solutions and thus has degree zero on every open
<
ot set.
N W
¥
‘< 3.2, Thecagse § =0 and b > b,
" We fix b > by and consider the limit of the branches Db,d as § + 0. Some
N
()
?"" definitions are needed. If X is a metric space and (A }n-‘l a sequence of subsets of
A
Yt
)
BT X, then 1lim inf An is defined to consist of points p ¢ X such that every naighborhood
‘
AN,
Mt of p has nonempty intersection with all but a finite number of the An. In constrast,
b/ lim sup A, consists of points p such that every neighborhood of p has nonempty
G
"o
:‘:n‘ intergsection with infinitely many of the An. The following result from Whyburn {24] is
b
Y
':;: useful for taking limits of connected sets.
R Lemma 3.3. Let (An}:\-‘l be a sequence of connected gets in a metric space such that
-
,
v (a) V) An is precompact
5 ne1
,~_' and
e (b) 1lim inf A  # §.
v
‘ '_’:,
kI~ -21-
o
oy
5
>
3 ‘o
l'
{J
!

~.‘:: .'

e . g
< (‘:"57}\ s ~.
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l‘.) Then 1lim sup An is a compact, connected set.

Theorem 3.4. There exists a compact, connected set D, C [0,») x E_(b)

of solutions of

v - N(k,v,b,0) = 0. Moreover

(a) Dy N ({0} x Ec(b)) = {(O,Vb)} U {(0,’5b)} where v, ;b are, respectively, the

"small™ and “"large” solutions from section 2.2 (cf. eq. 2.12).

(b) If (k,v) cDb then v is cylindrically symmetric in rR° and

4% A NEARs

'_;' | vl toq —— $ CONSE IVI < const b’/2
' c (B(b))
¥
'f k € const b”/2 '
¥ o on B A (250}
3z
where the constants are independent of Db, k, and v.
Proof. Fror fixed b > b1 let Gn ¢ (0,6 n=1,2,... be a sequence converging to zero.
: According to Theorem 3.1 tnere is a closed bounded set X C R x Ec(b) which contains
% Db'5n for all n. To use Lemma 3.3 let An = Db,Gn' The bounds on v in c'*™® and on
k from Theorem 3.1(b) are independent of § and so the use of Arzela's Theorem shows
N j An is precompact in X. According to Lemma 2.2, Vb5 * v, as § + 0 and so
‘: ?;jvb) € lim inf A . According to the previous lemma D, = lim sup A, is a compact,
‘; connected set and contains (0,vy). With the exception of the strict negativity of
3v/3z the remainder of (b) follows immediately from Theorem 3.1 since the relevant
2 estimates are independent of §.
3 To complete the proof of (b) consider an element (k,v) € Dy. It can be assumed
0 that (k,v) is the limit in R x C'(B(b)) of a sequence (k. ,v,) € A . Siwe v  is
bounded in wz'z(B(b)) uniformly in 3§, by elliptic theory, v is also the weak limit
g in w22 of vp- To show 9dv/3z has one sign on B* = B(b) N {2>0} we use a weak form
j of the maximum principle. Let ¢ be an element of CE(B*) with ¢ » 0. Then
]
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since v /3z < 0 in B*. Taking a limit yields

av
J'B+ v 3z V¢ < 0 . (3.1)

Since, in the limit 3v/3z € 0 in B, Theorem 8.19 of [14] applied to (3.1) ensures that
aither 23v/9z < 0 in 8 or 3v/3z = 0 there. The latter would imply v = 0 in

B(b), an impossibility, since each MY and hence v, must exceed unity somewhere on
B(b). To show that 3v/3z < 0 at a point q € 3B(b) N {z>0} note that vala) =0 so

Ivn| < in a neighborhocd Q of q, uniformly in n. Since fG(vn -1= k/rz) = 0

J
2
on Q, Vo is harmonic there, as is the limiting function v. Hence 3v/3z < 0 at q by

the maximum principle.

Next we show that (k,v] € Dy is a solution of the limiting equation, that is, that

2
jn(b) Vv e T =15 [o o) folv = 1 - k/r¥)e (3.2)

for all ¢ € E_(b). We consider the sequence (kn,vn) from the previous paragraph and
need merely show convergence of the right-hand member of (3.2) evaluated at (k, ,v ). Pick

an € > 0 and let

T, ~ ({r,2) € B(b) : r > ¢ and [z[ >e} .

On Te the function ;n = vn -1 = kn/r2 converges in C1 to ; =y -1« k/r2 as
n + =. Since 3v/3z is bounded away from zero on T , 80 is avn/az for all large n.
Say both are less than =8 < 0 where z > 0. Let ¢ be a smooth functiom in Ec(b).

Pick ¢ > 0 and assume n is large enough so that 0 < § < o and |;n - ;l <g on T..

. Then
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¢ =0y +f  redrody .
Tcﬁ{v>0}

et, Since ¢ is arbitrary,

lim fr £ (vn)+ = /s fo(v)¢ .
€ n €

e nboe
A K

»:t‘s But since ¢ is arbitrary and meas{B(b)\T.) = O(¢)
B 2L

Y ~ - ~
§¢g lim ja(b) fsn(vn)$ jB(b) £, -

As smooth functions are dense in Ec(b) the equation (3.2) holds.
!' For part (a) recall that, by Theorem 3.2 and Lemma 2.2 Db,6 contains a solution

GO ~ ~

K 4 (O,Vb's) such that lvb'5 = i > £ > 0 with ¢, independent of &. A subsequence of
—— (0.‘\713"5 ) must converge in Bc(b) to a solution (0,v) with Iv-vbl ? €g° However, ;b
from section 2.2 is the only solution for k = 0, other than Ve Hence (0,'; ) mast

belong to Db' In fact every subsequence; and hence the whole sequence converges to

(O.Gb)- q.e.d.

" 3.3. The case § =0 and b + =

.|' Once again we shall use Lemma 3.3 to take limits of solution branches as b + =, The

main result is

Theorem 3.5. There exists an unbounded, closed, connected set D 7 [0,®) x Ec of

4
)
".f nontrivial solutions of v = N(k,v®,0) = 0:

. k
9 [ gua- v = 15 | g filv-1- —3)¢ = 15 !A(k,v)v' Veek 3.3
/ R R r

where A(k,v) = {x € R . vix) > 1 + k/rz}. Moreover

\ (a) b N ({0} x E;) = {(0,vy)} where vy is given in (2.5).

O The following properties hold for any (k,v) € D.
Ly
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(b) v is cylindrically symmetric, v € C3(R° - 3A(k,v)) N ¢'*®(R3) for each

a € (0,1, and

|v|c1*u < const Ivi

with a constant depending on a.

(c) The set A(k,v) is bounded while for |x| + =, |vix)| = o({x{3) and |Vv(x)| =

o |x|~4.

(@) v 4is an even function of z and 3v/3z < 0 for =z > 0.

Proof. Each element of Sc(b) is extended to he zero outside B(b) and considered

as an element of E.. Let
Xy = (k) e (0, x B = k2 + 1v1? < 32)

where J is a fixed integer larger than Ivnl- Choose a sequence bn + %, n=1,2... and
=
let A =D N X,. To show that U Ah is precompact in R x E it suffices, as
n b, 3 1 ¢
nﬂ
hefore, to show that a sequence (k,v) ¢ An’ n=1,2,... 1is precompact. One can suppose
kn + k » 0 and that vV, converges weakly to a element v ¢ Ec' To show strong

convergence first note that from Theorem 3.4(b), va has a c‘*“ bound independent of n

! on any compact subset of Rs. It is shown

since Ivnl € 3. Hence ({v,} converges in C
in Theorem SE of [11] that there ig a ball B(g) C Rs. independent of n, such that

v (r,z) < 1+ Xk /r?® for (r,z) outside the ball B(8). That is, v, 1is harmonic outside
B(8). Since the norms Ivnl are uniformly bounded, it is elementary to show that for any

€ > 0 there exists a Yy > 8 such that

[ odve Pce
Y<o<bn

for all n. This last inequality combined with the convergence on compact sets of Rs
shows v, + v in L Recall from section 2.2 that v, * v, as b+ = and thus
(0,vy) € 1im inf A . Lemma 3.3 ylelds a compact, connected set D3 which can easily be
seen, as before, to satisfy the equation (3.3). The set 03 contains (0,vy) and mist

2

. also contain a solution (k,v) satisfying kz + Ivl2 = j%. For the branch Dy
n

.25
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s:tl connecting vy to A must, for all large n, intersect the set where kz + Ivlz - jza
Iyt n n

]

’.;' implying 1lim sup A, contains an element of the same closed set. Since each solution v
.8y

must exceed unity at some point, it is nontrivial. The unbounded solution set results from

258

defining

y
0! D=y DJ
&Y j
W
(e

cer where the union is over all large integers j.

iy
:*0’ (a) This follows since vy is the only cylindrically symmetric solution of (2.46)
;& for k = 0 according to (3].
1::‘ (b} This follows from the previous theorem and standard estimates.

)

(c) It follows from the earlier discussion that A(k,v) C B(8). The decay estimates
e
}

!:"é are those for harwonic functions.
o
"‘.:1: (1) One uses the maximum principle, as before. g.e.d.
)
ﬁo:’s:f 2

i The mapping v + y = r“v ¢ H({) yields an unbounded, closed, connected set C of
0
;*ﬁg solutions as required for the proof of Theorem 1.1(a).
l".‘-
A
TN
S o
o)
B J:J
<, <
J‘%
i ."4
R4

e 1 &R A

- ,
P ;

-26-

gy
-

g
-

-
P4t
=L

t

-

P R A
AT

-

-

-
~

:\:‘;ﬁ- N, ‘\r;

‘f"r:f"“t Ay
e




4. Properties of D and some Conjectures

In this section, we consider briefly the sense in which D 18 unbounded in
{0,=) x E.. Some numerical results of Norbury [21], when suitably rescaled, suggest there
exists a function h = [0,%) + E, such that D = {(x,h(k)) : k ¢ [0,@)}. When k = 0,
the function h(0) 4s Hill’s solution vye while h(k) for large k corresponds to a
family of vortex rings of small core shown to exist by Fraenkel [9]), [10). As Kk + &, the
cores are asymptotic to swaller and smaller circles centered on the r-axis, and whose
centers become unbounded. According to Norbury's calculations, these vortex rings are
simply-connected in .

Our techniques do not allow us to confirm the numerical predictions implicit in the
work of Norbury that D is unbounded in the k~direction. Nor have we shown that the

cores {(r,z) ¢ Il : ¥(r,z) > r2

+ k} are always simply=-connected. This is only known for
Hill's solution and for solutions in D near to it {4]. One might hope to use the
connectedness of D to show that a sequence of corea could not lose their simply=-
connectedness by pinching together.

In order to show that D is unbounded in the k-~dicection, we would need to establish

bounds of the form

sup Ivl < = (4.1)
0<k<k

for any solution (k,v) ¢ D and any ; > 0. If (4.1) fails to hold, then there would

exist elements (kn,vn) € D with
kn + k ¢ {0,) and lvnl +® ag n +® (4.2)

There are two ways in which Ivnl may become unbounded; the functions v, may develop a
singularity on some compact set or they may lose their decay rate at i{nfinity. As regards
the first point, we record that

eup~|v| X const (4.3)
ocksk ¢ (r%)

for any solution (k,v) and any I > 0. Here the constant depends only on a ¢ (0,1) and

X. The proof of (4.3) is very technical and will not be presented here. We claim that if
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(4.2) occurs, then the core A(k,,v,) = {(r.2) ¢ » va(x) > 1+ kn/rz) must becomse
unbounded. Indeed, if not, then the v_ would be harmonic nutsilde some fixed compact set,
and would have a uniform decay rate at infinity: lenl = 0((r2 + zz)'z).
For each k » 0, our equation =Av = 15 fo(v-1-k/r2) has a singular solution v,
with infinite norm. Here v, is a function of r alone, and is given by
( 2, 0¢r</k,
it
) 2 2 .
O . 15k _ 15r 15 x -
- 4+ —— - - — e -—
la':: vs(r) < 2 3 P 3 5 Yk < r < / 5 K (4.4)
)
_‘.':;':
A 8 + 30k /8
Vb | 3 , r> /g ek .
15r
_-‘ Note that Vg is the unique z-independent solution of our equation with v(r) + 0 as
]
o) r + . There are other solutions which are also functions of r alcne, lut they do not
U
o vanish as r » ». There are a number of partial results which suggest that i{f (4.2)
2.0
& nccurs, then the v, converge on compact sets to the singular solution (4.4). However, we
;‘!' c
3 40 not present them here since it is our firm conviction that (4.2) does not occur. In
D>
:; ' such a case, ecuation (4.1) would hold and the branch D would be unbounded in the k-
LS
4
[\% L direction.
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