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Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain

largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit en-

vironmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations

(modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used

10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species

to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules

contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules

recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In

contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the

null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways

and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich,

largely untapped resource for discovering the genetic basis and architecture of plant natural products.

INTRODUCTION

Plants, being sessile and therefore at the mercy of their sur-

roundings, harbormanyadaptations that facilitate their interaction

with andmanagement of their environment. One such adaptation

is the ability to produce a vast array of specialized metabolites

(SMs), bioactive compounds that are not essential for growth and

reproduction but rather have important ecological roles to combat

pathogens, herbivores, and competitors; attract pollinators and

seed dispersers; and resist abiotic stress including fluctuations in

temperature, salinity, and water availability (Hartmann, 2007).

Humans exploit the SMdiversity of plants formedicines and other

natural products; to this end, thousands of plant-derived SMs

have been isolated and biochemically characterized (Raskin et al.,

2002). Yet thegenes responsible for theproduction and regulation

of most SMs across land plants are unknown, which ultimately

limits their potential utility in agricultural, pharmaceutical, and

biotechnological applications (McChesney et al., 2007; Wurtzel

and Kutchan, 2016).

Given their biomedical and agricultural relevance, it is perhaps

surprising that the constituent genes and pathways involved in

biosynthesisofmostplantSMsareunknown (DeLucaetal., 2012).

There are two explanations for why this is so; first, SM pathways

are highly variable in the number and functions of genes they

contain (Hartmann, 2007; D’Auria and Gershenzon, 2005). Sec-

ond, consistent with their involvement in the production of eco-

logically specialized bioactive molecules, SM genes typically

exhibit narrower taxonomic distributions compared with genes

involved in core metabolism, and SM genes are fast evolving

both in terms of sequence divergence and rate of gene family

diversification and display extensive functional divergence

(Pichersky and Lewinsohn, 2011; Chae et al., 2014; Mukherjee

et al., 2015). The consequence of this lack of evolutionary and

functional conservation is that traditional sequence homology

metrics for inferring gene function (e.g., Eisen, 1998) are weak

predictors of SM pathway composition and function.

Network biology offers a promising alternative for identifying

SMpathways and their constituent genes. BecauseSMpathways

exist at the interface of organisms and their environments, the

genes within an SMpathway share a common regulatory network

that tightly controls the “where” (e.g., in what tissues) and “when”

(e.g., in response to which ecological conditions) of SM pro-

duction (Tohge and Fernie, 2012; Hartmann, 2007; Grotewold,

2005). Therefore, gene coexpression data, as a proxy for
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coregulation, have been particularly effective in identifying the

constituent genes that make up many SM pathways (Lau and

Sattely, 2015; Rajniak et al., 2015; Yonekura-Sakakibara et al.,

2008; Sawada et al., 2009; Hirai et al., 2007; Maeda et al., 2011;

Naoumkina et al., 2010; Fridman and Pichersky, 2005; Itkin et al.,

2016; Boachon et al., 2015; Sohrabi et al., 2015). Furthermore,

given the availability of data from hundreds to thousands of in-

dividual gene expression experiments, integrative global coex-

pression networks have the power to predict SM pathways and

genes in a high-throughput fashion (Horan et al., 2008; Mentzen

andWurtele, 2008;Maoet al., 2009).However, asmeasuringgene

coexpression on a large scale was, until recently, a costly and

labor-intensive undertaking, thehundreds (ormore) of global gene

expression studies in diverse conditions required for global co-

expression network analyses currently exist for only a small mi-

nority of plant species (Aoki et al., 2016b; Hiss et al., 2014;

Zimmermann et al., 2008; Ehlting et al., 2008; Usadel et al., 2009).

Another attribute that is characteristic of SM pathways found in

bacteria and fungi is that they can physically colocate in the

genome, forming biosynthetic gene clusters (BGCs) (Osbourn,

2010). As expected of SMpathways, geneswithin thesemicrobial

BGCs are coregulated and display strong signatures of coex-

pression, apattern that holds true for functionally characterized as

well as for putativeBGCs in thesegenomes (Yuet al., 2011; Lawler

et al., 2013; Gibbons et al., 2012a, 2012b; Lind et al., 2016;

Andersenet al., 2013). As theproximity of genesonchromosomes

is far easier to measure than their coexpression across multiple

experimental conditions, bioinformatic algorithms strongly rely

this “clustering” of genes to predict SM pathways in microbial

genomes (Weber et al., 2015; Khaldi et al., 2010; Cimermancic

et al., 2014). Thus, thousands of microbial BGCs have been

predicted and hundreds validated (i.e., connected to known

products), suggesting that gene proximity is informative for SM

pathway identification, at least in these organisms (Hadjithomas

et al., 2015). Nevertheless, the number of SMpathways in bacteria

and fungi that do not (or only partially) form BGCs is unknown

(Bradshaw et al., 2013; Sanchez et al., 2011; Lo et al., 2012).

In plants, most characterized SM pathways (e.g., glucosinolate

biosynthesis) are not clustered, and their genes are distributed

across the genome (Kliebenstein and Osbourn, 2012). More re-

cently, however, nearly two dozen BGCs responsible for the

production of SMdefensive compounds have been identified and

functionally characterized from 15 plant species (Nützmann et al.,

2016), raising the possibility that gene proximity could also be

used for predicting plant SM pathways (Medema and Osbourn,

2016). To this end, computational searches based on gene

clustering similar to those developed for fungal and bacterial

genomes postulate the existence of dozens to hundreds more

BGCs across a wide variety of plant genomes (Boutanaev et al.,

2015;Chaeet al., 2014;Castillo et al., 2013;Schlapfer et al., 2017).

However, the vast majority of these putative plant BGCs has not

been functionally validated, and the fraction of plant SMpathways

that form BGCs is unclear.

We hypothesized that plant SM pathways are coexpressed,

independently of being organized into BGCs, in line with their

ecological roles that typically require strong temporal and spa-

tial coregulation (Tohge and Fernie, 2012; Hartmann, 2007;

Grotewold, 2005). To test our hypothesis, we developed a gene

coexpression network-based approach for plant SM pathway

discovery (Figure 1). Using data from 10 meta-analyses of global

coexpression that collectively contain 21,876microarray or RNA-

seq experiments across eight plant species, we identified dozens

to hundreds of modules of coexpressed genes containing SM

biosynthetic genes (e.g., cytochrome P450s, terpene synthases,

and chalcone synthases) in each species, including many ex-

perimentally validated SM pathways and all validated BGCs in

these species. In contrast, genes predicted to be in BGCs based

on their physical proximity did not exhibit significantly different

coexpression patterns than their nonclustered neighbors. Our

results cast doubt on the general utility of approaches for SM

pathway identification based on gene proximity in the absence of

functional data and suggest that global gene coexpression data,

when in abundance, are very powerful in the high-throughput

identification of plant SM pathways.

RESULTS

Network Analysis Identifies Small, Overlapping Modules of

Coexpressed Genes in Global Coexpression Networks

Given thatSMpathwaygenesareoftencoregulated in response to

specific environmental conditions, we hypothesized that genes

fromagivenSMpathwaywould form tight associations (modules)

with each other in gene coexpression networks. To identify

modules of coexpressed SM genes, we accessed three micro-

array- and seven RNA-seq-based coexpression data sets from

ATTED-II (Aoki et al., 2016b) and ALCOdb (Aoki et al., 2016a) for

eight Viridiplantae species: Arabidopsis thaliana, field mustard

(Brassica rapa), Chlamydomonas reinhardtii, soybean (Glycine

max), rice (Oryza sativa Japonica group), poplar (Populus tricho-

carpa), tomato (Solanum lycopersicum), and maize (Zea mays)

(Supplemental Data Set 1). Each data set consisted of a meta-

analysis of hundreds to thousands of experiments measuring

global patterns of gene expression in a wide variety of tissues,

environmental conditions, and developmental stages. The num-

ber of experiments varied in each data set, from 172 in the C.

reinhardtii RNA-seq data set (Aoki et al., 2016a) to 15,275 in the

Arabidopsis microarray-based set (Aoki et al., 2016b). Pairwise

measurements of gene coexpression were specified as mutual

ranks (MRs; Obayashi and Kinoshita, 2009) (calculated as the

geometricmeanof the rankof thePearson’scorrelationcoefficient

[PCC] of geneA togeneBandof thePCC rankof geneB togeneA;

Figure 1B). For each data set, we constructed five MR-based

networks, each using a different coexpression threshold for as-

signing edge weights (connections) between nodes (genes) in the

network (Figure 1C). Networks were ordered based on size (i.e.,

number of nodes and edges), such that N1 and N5 indicated the

smallest and largest networks, respectively.

To discover coexpressed gene modules in the eight model

plants, we employed the graph-clustering method ClusterONE

(Nepusz et al., 2012), which allowed genes to belong to multiple

modules (Figure 1D). This attribute is biologically realistic; many

plant metabolic pathways are nonlinear, containing multiple

branch points and alternative end products (e.g., terpenoid bio-

synthesis pathways; Guo et al., 2016; Lodeiro et al., 2007).
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Averaging across all 10 coexpression data sets, the number of

genes assigned to modules ranged from 3251 (13.4% of protein-

coding genes) in the N1 networks to 4320 (18.2%) in N5 networks

(Supplemental Data Set 2). The average number of modules per

network decreased with increasing network size, from 573 mod-

ules in the N1 networks to 39 in the N5 networks (Supplemental

Data Set 2). Conversely, the average module size (i.e., number of

genes within a module) increased with increasing network size

(e.g., 7 genes per module in N1 networks, 41 genes per module in

N3 networks, and 167 genes per module in N5 networks). Given

our goal to recover distinct SMpathways asmodules, we focused

the remaining analyses on the smaller networks (N1-N3) with

average module sizes (<50 genes) consistent with the number of

genes typically present in SM pathways.

Coexpressed Gene Modules Recover Known SM Pathways

and Predict Hundreds of New SM Gene Associations

To evaluate the correspondence between module genes and

genes present in known metabolic pathways, we focused on

the 798 genes in 362 Arabidopsis MetaCyc (Caspi et al., 2016)

pathways with an experimentally validated metabolic function

(Supplemental Data Set 3). Module genes were significantly

enriched in many SM-related metabolic functions. Of the

12 higher-order metabolic classes investigated, only the “sec-

ondary metabolites” and “cell structures” biosynthesis clas-

ses were significantly enriched in module genes (P < 0.0005,

hypergeometric tests) (Figure 2A). This pattern held true across all

networks and data sets investigated (Supplemental Figure 1 and

Supplemental Data Set 4). Enrichment of the cell structures

biosynthesis class was driven by genes involved in the secondary

cell wall (specifically lignin) biosynthesis subclasses (P < 0.0005,

hypergeometric tests). Enriched subclasses within the secondary

metabolites class included those for nitrogen-containing sec-

ondary compounds and flavonoid biosynthesis (P < 0.005, hy-

pergeometric tests), which contain pathways for glucosinolate

and anthocyanin production, respectively. MetaCyc SM path-

ways that were well recovered as coexpressed modules included

those for aliphatic and indolic glucosinolate, camalexin, flavonol,

flavonoid, phenylpropanoid, spermidine, and thalianol biosynthesis

(Supplemental Data Set 5).

The “amino acids,” “carbohydrates,” and “cofactors/prosthetic

groups/electron carriers biosynthesis” classes were significantly

depleted in module genes in some, but not all, networks and data

sets (P < 0.05, hypergeometric test) (Figure 2A; Supplemental

Figure 1). None of the other metabolic classes displayed any

significant variation between module and nonmodule genes

(Supplemental Figure 1; Supplemental Data Set 4).

To estimate the number ofmodules thatmay correspond to SM

pathways, we focused on those that contained two or more

nonhomologous geneswith a significantmatch to a curated list of

Pfam domains that are found commonly in genes from SM

pathways (Supplemental Data Set 6); as some of these “SM-like”

modules share genes, we collapsed them into nonintersecting

Figure 1. CoexpressionNetworkPipeline: AMethod for IdentifyingSmall, OverlappingModules ofCoexpressedGenes inGlobal CoexpressionNetworks.

(A) Calculate the PCC for every gene pair in the genome (e.g., the correlation between genes A and B is 0.83).

(B) Rank correlations and calculate the MR for every gene pair (e.g., the MR of genes A and B is 4.8).

(C) Convert MR to network edge weight using one or more exponential decay functions. Five different rates of decay were evaluated here, resulting in five

different networks (N1–N5). Edge weights <0.01 were excluded.

(D) Call overlapping modules of tightly coexpressed genes using ClusterONE. In this example, genes A and B form a module with each other and four

additional genes (purple circles). Genes can be assigned to a single module, multiple modules (e.g., Gene@), or no module (white circles).

946 The Plant Cell

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lc

e
ll/a

rtic
le

/2
9
/5

/9
4
4
/6

0
9
9
3
1
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1


“meta-modules.” Dozens of SM-like meta-modules were identi-

fied in each species, with the green alga,C. reinhardtii, containing

the fewest SM-like meta-modules (27 in N1 networks; 17 in N3

networks), and the field mustard, B. rapa, containing the most

(120 in N1 networks, 71 in N3 networks) (Figure 2B; Supplemental

Figure 2 and Supplemental Data Set 2).

Recovery of the Aliphatic Glucosinolate Biosynthesis

Pathways in Arabidopsis and Brassica from Global

Coexpression Data

To illustrate the utility and power of our approach for identifying

entire SM pathways, we next focused on examining the corre-

spondence between genes involved in the methionine-derived

aliphaticglucosinolate (metGSL)biosynthesispathwayandgenes

that comprise coexpression modules identified by our analyses

(Supplemental Data Set 7). In Arabidopsis, the species with the

majority of functional data (Sønderby et al., 2010), coexpression

modules recovergenes foreverybiochemical step in thispathway,

frommethioninechainelongation toside-chainmodificationof the

glucosinolate chemical backbone, as well as a pathway-specific

transporter and three transcription factors (Figure 3A). For ex-

ample, in the smallest network N1, 14/34 enzymatic genes in the

metGSL pathway are recovered in a single 17-gene module; only

3/17 genes in this module have not been functionally character-

ized as involved in metGSL biosynthesis (Figure 3B). Maximum

recovery of the metGSL pathway increased to 56.3 and 71.9% in

the 22-gene and 43-gene modules recovered from networks N2

and N3, respectively (Supplemental Figure 3 and Supplemental

Data Set 8). Although the numbers of genes not known to be

involved inmetGSLbiosynthesis also increased in thesemodules,

several of the genes that are coexpressed with members of the

metGSL pathway perform associated biochemical processes

(Figure 3A). For example, the two adenosine-59-phosphosulfate

kinase genes, APK1 and APK2, are responsible for activating

inorganic sulfate for use in the metGSL pathway, and poly-

morphisms in these genes alter glucosinolate accumulation

(Mugford et al., 2009). Similarly, the cytochrome P450 genes,

CYP79B2 andCYP79B3, and the glutathioneS-transferase gene,

GSTF9, are involved in the parallel pathway for biosynthesis of

glucosinolates from tryptophan instead of methionine (MetaCyc

PWY-601) (Sønderby et al., 2010).

Notably, some genes implicated in metGSL biosynthesis were

never recovered in coexpressedmodules, includingGGP1, which

encodes a class I glutamine amidotransferase-like protein.

Microarray-based coexpression data weakly associate GGP1

with metGSL biosynthesis in Arabidopsis, and GGP1 has been

shown to increase glucosinolate productionwhen heterologously

expressed in Nicotiana benthamiana (Geu-Flores et al., 2009).

However, our metGSL-containing modules across all RNA-

seq-based networks showed that a different class I glutamine

amidotransferase-like gene,DJ1F, is more highly coexpressed

with metGSL biosynthetic genes (Figure 3). Importantly, DJ1F

is not represented on the Arabidopsis Affymetrix GeneChip,

explaining why GGP1 and not this gene was identified as the

most correlated one in earlier analyses. However, the postulated

role of both DJ1F andGGP1 in metGSL biosynthesis remains to

be confirmed in planta.

The remaining genes in the metGSL pathway that were never

recovered in coexpressed modules all encode secondary en-

zymes responsible for terminal modifications to the backbone

glucosinolate product (Kliebenstein and Osbourn, 2012). One of

these, AOP2, encoding a 2-oxoglutarate-dependent dioxyge-

nase, has been pseudogenized in the Arabidopsis (ecotype Co-

lumbia) referencegenome (Kliebensteinetal., 2001).Thehigh level

of natural variationpresent in these terminalmetabolic branches is

Figure 2. Global Coexpression Network Analysis of Eight Plant Genomes Identifies Coexpressed Modules of Specialized Metabolic Genes.

(A)MetaCycpathwayenrichmentanalysisofexperimentally characterizedArabidopsisgenesassigned tomodules (orangebars) relative to those thatdonot

form modules (gray bars) in Arabidopsis microarray-based network N1. Gray arrow indicates that the bottom eight pathway categories are children of

“biosynthesis” in theMetaCychierarchy. Asterisks denote significant enrichment or depletion ofMetaCyccategories inmodule genes: *P#0.05 and ***P#

0.0005 (Benjamini and Hochberg adjusted P values, hypergeometric test). See Supplemental Figure 1 for enrichment tests in other Arabidopsis networks.

(B)Count of SM-likemeta-modules identified in 10microarray (M) and RNA-seq (R) coexpression data sets from eight Viridiplantae. SM-likemodules were

collapsed into meta-modules of nonoverlapping gene sets. Networks were constructed using three different rates of exponential decay for convertingMR

scores to edge weights, where N1 corresponds to smallest network with the steepest rate of decay and, therefore, the fewest edges; conversely, N3 is the

largest network with the shallowest rate of decay and the most edges. See Supplemental Figure 2 for meta-module counts for all other networks.

Coexpression of Plant Specialized Pathways 947
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responsible for the diverse glucosinolates present in different

ecotypes (Kerwin et al., 2015; Brachi et al., 2015) but likely also

makes it more challenging to connect them to the rest of the

metGSL pathway using global coexpression data (Supplemental

Figure 4).

Brassica species also produce aliphatic glucosinolates, but

awhole-genome triplication event subsequent to their divergence

from Arabidopsis (Town et al., 2006) has complicated identifi-

cation of functional metGSL genes in these species. To gain in-

sight into themetGSLpathway inB. rapa,wecross-referencedour

coexpression modules with 59 candidate metGSL genes identi-

fied based on orthology to Arabidopsis metGSL genes (Wang

et al., 2011). As in Arabidopsis, modules recovered every bio-

chemical step of theB. rapametGSLpathway aswell as pathway-

specific transporters and transcription factors (Figure 4;

Supplemental Data Sets 7 and 8). Also as in Arabidopsis, DJ1F

rather than GGP1 is coexpressed with other metGSL genes,

providing further evidence that theDJ1F enzymemaybe themore

likely candidate for the g-glutamyl peptidase activity in glucosi-

nolate biosynthesis (Sønderby et al., 2010). Furthermore, as

Figure 3. Coexpression Modules Efficiently Recover the Majority of Genes for metGSL Biosynthesis in Arabidopsis.

(A) Network map of an example coexpression module involved in metGSL biosynthesis. Nodes in the map represent genes, and edges connecting two

genes represent the weight (transformed MR score) for the association. Network maps were drawn using a Fruchterman-Reingold force-directed layout

using the igraphRpackage (http://igraph.org). Thediagramof themetGSLbiosynthesispathway isdepictedat right.Other coexpressedgenesnot known to

be involved inmetGSLbiosynthesisareshown in thedashedbox.Nodesandgenenamesarecoloredaccording to their knownorputative function.MetGSL

genes not recovered in modules are colored black. Genes not present in the coexpression data set are crossed out.

(B) Heat map depicting the correlation of co-expression of a second example coexpression module involved in metGSL biosynthesis. Diagonal numbers

within theheatmap indicateMRscore.Genenamesarecoloredas inpart (A).Modulegenesaredepictedas red triangles in theaccompanyingchromosome

segments (parallel lines indicate the genes are not physically colocated; scale bar is in kilobase pairs). Note: Data from the RNA-seq-based networks are

shown because two metGSL genes (SOT17 and SOT18) are not present in the microarray data set. Microarray-based networks performed similarly

(Supplemental Data Set 8).

948 The Plant Cell

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lc

e
ll/a

rtic
le

/2
9
/5

/9
4
4
/6

0
9
9
3
1
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1
http://igraph.org
http://www.plantcell.org/cgi/content/full/tpc.17.00009/DC1


several enzymes are encoded by multiple gene copies in B. rapa,

weharnessed thepowerofourmoduleanalysis to identifywhichof

these copies was coexpressed with other metGSL genes and,

therefore, most likely to be functionally involved in the pathway.

For example, out of the sixmethylthioalkylmalate synthase (MAM)

gene copies in B. rapa, only Bra029355 and Bra013007 were

recovered in metGSL modules (Figure 4; Supplemental Figure 5).

Module data also suggest that the glutathioneS-transferase class

tau (GSTU) activity is one step of the core pathway that may differ

between the two species. Specifically, in Arabidopsis,GSTU20 is

thought to encode the enzyme catalyzing this reaction, and this

gene was recovered in metGSL modules in our analysis (Figure

3A). However, this association was not recovered in B. rapa. In-

stead, three paralogous GSTUs (Bra003647, Bra026679, and

Bra026680), corresponding to the Arabidopsis GSTU23 and

GSTU25 genes, respectively, formed modules with metGSL

genes, making these genes good candidates for investigation of

GSTU activity in B. rapa (Figure 4; Supplemental Figure 6).

Modules Recover Functionally Characterized BGCs and

Identify Associated, Unclustered Genes

Wenext investigatedwhether our approach also recovered BGCs

by examining whether our coexpression modules recovered the

six functionally characterized BGCs in these eight plant genomes

(Supplemental Data Set 9). All six BGCs were recovered in our

module analysis (Supplemental Data Set 8). Specifically, coex-

pression modules recovered all genes comprising the BGCs in-

volved in the production of the triterpenoids marneral (Field et al.,

2011) (3/3genes; Figure5A) and thaliaol (Field andOsbourn, 2008)

(4/4 genes; Figure 5B) in Arabidopsis and the diterpenoid mo-

milactone (Shimura et al., 2007) (5/5 genes; Figure 5C) in rice.

Modules recovered 7/9 genes in the phytocassane (Swaminathan

et al., 2009) diterpene cluster in rice; the OsKSL5 and CYP71Z6

genes forminga terpenesynthase-cytochromep450pair of genes

were strongly coexpressedwith each other but not with the rest of

thepathway (Figure5D). The two triterpenoidBGCs inArabidopsis

were typically combined into the same coexpression module

(Figure 6A; Supplemental Figure 7); the same pattern was ob-

served for the two diterpenoid BGCs in rice (Figure 6B;

Supplemental Figure 8). Genes within these BGCs were also

strongly coexpressed with additional genes located outside the

BGC boundaries, including one putative transcription factor and

several putative transporters (Figure 6; Supplemental Figures 7

and 8).

Seven of eight genes in the partially clustered pathway for

production of the steroidal alkaloid a-tomatine in tomato (Itkin

et al., 2013) were recovered by our coexpression analysis (Figure

5E). Only the glucosyltransferase gene,GAME2, encoding the last

enzymatic reaction in the proposed a-tomatine pathway, showed

a conspicuously different expression profile, consistent with

previous reports (Itkin et al., 2013; Cárdenas et al., 2016). Several

glucosyltransferase genes paralogous to GAME2 were strongly

coexpressedwith the rest of the genes in this pathway (Figure 6C;

Supplemental Figure 9), but whether or not these genes partici-

pate ina-tomatinebiosynthesis is yet tobedetermined.Additional

genes strongly coexpressed with the rest of the a-tomatine

pathway include, among others, one putative transcription factor

Figure 4. Coexpression Modules Predict Functional metGSL Bio-

synthesis Genes in B. rapa.

Network map of an example coexpression module involved in metGSL

biosynthesis. The network map was constructed as described in Figure 3.

The diagram of themetGSL biosynthesis pathway is depicted, below, with

all predicted orthologs to knownmetGSL genes in Arabidopsis as listed on

brassicadb.org. Other coexpressed genes not known to be involved in

metGSL biosynthesis are shown in the dashed box. Nodes and gene

names are colored according to their known or putative function. MetGSL

orthologs not recovered in modules are colored black. Arabidopsis

metGSL genes with no known ortholog in B. rapa are crossed out. See

Supplemental Data Set 7 for associated NCBI and Ensembl gene IDs.
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and several possible metabolite transporters (Figure 6C;

Supplemental Figure 9) as well as a cellulose synthase-like gene

located adjacent to the BGC (Figure 5E).

Lastly, five of the six genes in the benzoxazinoid 2,4-dihydroxy-

7-methoxy-1,4-benzoxazin-3-one (DIMBOA) (Frey et al., 1997)

cluster in maize formed coexpression modules in our analysis

(Figure 5F). Specifically, the first fivegenes in theDIMBOApathway

(Bx1-Bx5), responsible for the biosynthesis of the precursor 2,4-

dihydroxy-1, 4-benzoxazin-3-one (DIBOA), formed modules with

each other but not with the final gene in the BGC, Bx8 (Figure 7).

Similar to the modifying genes of the metGSL pathway in

Arabidopsis, terminal Bx genes appear to have unique gene ex-

pression signatures distinct from the core pathway. For example,

DIBOA is modified to DIMBOA by the action of two additional

unclustered genes (Bx6 and Bx7) (Jonczyk et al., 2008), neither of

which was assigned to modules with core genes or each other.

Toxic DIBOA/DIMBOA is transformed into the stable glucoside,

DIBOA-Glc/DIMBOA-Glc, by glucosyltransferases (Bx8 andBx9),

which were likewise not assigned to modules in our analysis.

However, a gene adjacent to the DIMBOA BGC, encoding an

uncharacterized glucosyltransferase (GT; GRMZM2G085854)

with 27% amino acid identity to Bx8, does belong to the same

module as the coreBx genes in network N3 (Figure 7), but theMR

scores of this gene to core Bx genes are noticeably weaker than

those between the coreBx genes (Figure 5F). AdditionalBx genes

(Bx10-Bx14),whicharenotpart of theBGCandare responsible for

the biosynthesis of modified benzoxazinoid compounds (e.g.,

HDMBOA-Glc and DIM2BOA-Glc) (Meihls et al., 2013; Handrick

et al., 2016), were also not assigned to modules in our analysis

(Figure 7). This pattern is similar to that observed with the terminal

reactions of the metGSL biosynthesis pathway.

Bx1 is thought to represent the first committed step in benzox-

azinoid biosynthesis, encoding an indole-3-glycerolphosphate ly-

ase that converts indole-3-glycerolphosphate to indole. However,

in our module analysis, an additional gene coexpressed with the

core Bx genes is an indole-3-glycerolphosphate synthase

Figure 5. Coexpression Patterns of Six Functionally Characterized BGCs in Plants.

Heatmapsdepict the correlation of coexpressionof sixBGCs for theproduction ofmarneral (A), thalianol (B),momilactone (C), phytocassane (D), tomatine

(E), and DIMBOA (F). Diagonal numbers indicate MR scores; squares are blank if MR$ 100. BGC genes are bolded in the heat map and colored red in the

accompanying chromosome segments. Scale bars are in kilobase pairs. Genes are represented by their gene symbols, when available, or their NCBI gene

IDs. Note: Gene 100281070 in the DIMBOA cluster corresponds to an uncharacterized glucosyltransferase, GRMZM2G085854.
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gene (IGPS; GRMZM2G106950), which catalyzes the reaction di-

rectly upstream of Bx1 (Figure 7). Two additional genes encoding

indole-3-glycerolphosphate synthases are present in maize

(GRMZM2G169516 and GRMZM2G145870), but neither was

strongly coexpressed with those in the benzoxazinoid pathway.

Similarly, the two additional paralogs to Bx1 in maize (Tsa1;

GRMZM5G841619 and Igl1;GRMZM2G046191, responsible for

the production of tryptophan and volatile indole, respectively)

formed independent coexpression modules, consistent with their

distinct metabolic and ecological roles (Figure 7) (Frey et al., 2000,

2009). The inclusion of an unlinked IGPSgene in the benzoxazinoid

coexpressionmodules suggests that the first committed step in the

biosynthesis pathwaymaystart one reaction earlier thanpreviously

predicted based on the DIMBOA BGC gene content.

To test whether GT and IGPS are likely to be involved in ben-

zoxazinoid biosynthesis, we looked up their gene expression

levels in response to two different types of insect herbivory (aphid

and caterpillar), ecological conditions under which benzoxazinoid

biosynthesis genes are typically induced (Tzin et al., 2017, 2015).

GT showed gene expression responses similar to Bx8 and Bx9,

being induced within the first few hours after the introduction of

insect herbivores (Figure 8A). Although themedian fold change of

expression relative to controls is small (<5) for all three gluco-

syltransferases, this result is consistentwithaputative roleofGT in

creating stablebenzoxazinoidglucosidesalongwithBx8andBx9.

IGPS was also significantly induced in response to insect her-

bivory, mostly notably in the caterpillar feeding experiment in

which IGPS expression increasedover 50-foldduring a 24-hperiod

(Figure 8B). In contrast, the two other indole-3-glycerolphosphate

synthase genes showed little to no response to herbivory, con-

sistent with this IGPS encoding a specialized enzyme involved in

benzoxazinoidbiosynthesis or volatile indole,which is also induced

by caterpillar herbivory (Erb et al., 2015).

Bioinformatically Predicted BGCs in Plants Do Not Form

Coexpression Modules and Are Typically Not Coexpressed

To examine whether putative BGCs (i.e., predicted based on

physical clustering andwith no known associatedproducts) show

evidence of coregulation in response to specific environmental

conditions, we investigated whether they were also recovered in

our coexpression network analysis. We found that two different

sets of putative BGCs showed little to no coexpression (Figure 9;

Supplemental Figure 10). Specifically, both the 137 Enzyme

Commission (EC)-basedBGCspredictedbyChaeetal. (2014) and

the 51 BGCs predicted by the antibiotics and secondary me-

tabolism analysis shell (antiSMASH) (Weber et al., 2015) had

medianMRscoresof 9670and10,890, respectively. Furthermore,

the EC-based BGCs’ distribution of coexpression was similar to

that of the control distribution of neighboring genes (P = 0.187,

Wilcoxon ranksumtest),whereas thecoexpressionofantiSMASH

BGCs was significantly lower than that of the control (P = 0.027)

(Figure 9A; Supplemental Data Set 10). In contrast, the six validated

BGCs had a median MR score of 17.4 and were significantly more

coexpressed than the control (P = 3.20 3 1024) (Figure 9A;

Supplemental Data Set 10). Similarly, the 13 terpene synthase-

cytochrome P450 (TS-CYP) pairs identified by Boutanaev et al. (2015)

were variably coexpressed with a median MR score of 45. Although

two of the 13 TS-CYP pairs were negatively correlated in their ex-

pression, theTS-CYPdistributionwasstill significantlybetter thanthe

control (P = 2.73 3 1024) (Figure 9A; Supplemental Data Set 10).

Not surprisingly, given the lack of coexpression, putative

BGCs, by and large, did not formcoexpressionmodules,with only

7/188 putative BGCs overlapping by three genes or more with

Figure 6. Network Maps of Coexpression Modules That Overlap with

Known Plant BGCs.

Network maps were constructed as described in Figure 3 and depict

modules involved in thalianol and marneral triterpenoid biosynthesis in

Arabidopsis (A), phytocassane and momilactone biosynthesis in rice (B),

and tomatine biosynthesis in tomato (C). Gene nodes are colored ac-

cording to their known or putative function. Note: The cellulose synthase

gene (NCBI gene ID: 101255510) in (C) is located adjacent to the tomatine

BGC (see Figure 5E).
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coexpression modules (Figure 9B). For example, three genes in

a 14-gene EC-basedBGC (containing a TS-CYP pair identified by

Boutanaev et al. involved in the production of arabidiol; Sohrabi

et al., 2015) were coexpressed in a module (Supplemental Figure

10). Moreover, 78/188 putative BGCs overlapped with coex-

pression modules by only one gene, indicating that the genes

within these BGCs were more strongly coexpressed with genes

outside their cluster than with those inside (Figure 9B;

Supplemental Data Set 8).

An example of the poor association between coexpression

modules and putative BGCs comes from the antiSMASH-

predicted BGC30. Only 2/6 genes in BGC30 showed strong

pairwise coexpression: a TS-CYPpair also identified by Boutanaev

et al. and labeled PAIR6 (Figure 9C). The terpene synthase

(AT5G44630) ofPAIR6 is known tobe involved in theproductionof

sesquiterpenoid flower volatiles (Tholl et al., 2005). This functional

annotation is supported by our module analysis, which assigned

PAIR6 to a coexpression module consisting of 46 physically

unlinked genes that are significantly enriched for gene ontol-

ogy terms associated with flower development (Figure 9D;

Supplemental Data Set 11). A second example comes from the

EC-mapped BGC130. None of the genes in this BGC were

strongly coexpressed with each other (Supplemental Figure 9).

Instead, one gene in the BGC, GSTU20, is a known participant in

metGSL biosynthesis, an association that is recovered by co-

expression modules in our analysis (Figure 3; Supplemental Data

Set 8).

DISCUSSION

An enormous number of novel plant SMs await discovery and

characterization (Wurtzel and Kutchan, 2016). Yet, due to their

Figure 7. Pathway Diagram and Network Map of Benzoxazinoid Biosynthesis in Maize.

Diagramofbenzoxazinoidbiosynthesisandassociatedpathwaysinmaize (A).Of thethree indole-3-glycerolphosphatesynthases (*),onlyGRMZM2G106950 is

significantly coexpressed with benzoxazinoid biosynthesis genes (B). Similarly, each of the indole-3-glycerol phosphate lyases (†) are assigned to non-

overlappingmodules for theproductionofbenzoxazinoids (B), tryptophan (C), andvolatile indole (D).Networkmapswereconstructedasdescribed inFigure3.

Nodes and gene names are colored according to their known or putative function. Benzoxazinoid genes not recovered in modules are colored black.
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rapid evolution and narrow taxonomic distribution (Pichersky and

Lewinsohn, 2011; Chae et al., 2014; Mukherjee et al., 2015), SM

pathways and genes are often unknown, slowing the pace of

discovery. Gene coexpression and chromosomal proximity are

two omics-level traits that can be harnessed for high-throughput

prediction of SM pathways and genes (Wurtzel and Kutchan,

2016), but their general utility remained unknown. By examining

10global coexpressiondata sets—each ameta-analysis of 172 to

15,275 transcriptome experiments—across eight plant model

organisms, we found that gene coexpression was powerful in

identifying known SM pathways, irrespective of the location of

their genes in the genome, as well as in predicting novel SM gene

associations. Below, we discuss why gene proximity may not be

a reliable method of SM pathway identification in plant genomes

as well as enumerate the advantages and caveats of our coex-

pression network-based approach.

It iswell established thatgenes inSMpathwaysarespatially and

temporally regulated in response todiverse ecological conditions;

arguably, this shared regulatory program is one of the defining

characteristics uniting genes belonging to SM pathways (Tohge

Figure 8. Gene Expression Response to Insect Feeding in Maize.

(A) Glucosyltransferase response to insect feeding.

(B) IGP synthase response to insect feeding. Box plots depict fold change relative to uninfested (0 h) controls (n= 5). Redbox plots are significantly different

from control (P < 0.05, Student’s t test; median fold change > 2).
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and Fernie, 2012; Hartmann, 2007; Grotewold, 2005). Further-

more, numerous gene expression studies of the genes partici-

pating in diverse SM pathways, including BGCs, from diverse

organisms show that SM pathway genes typically share similar

gene expression patterns (i.e., they are coexpressed). Simply put,

genecoexpression canbepredictive ofmembership in agivenSM

pathway. The question then is whether one can employ genome-

wide or global gene expression data to predict SM pathways in

a high-throughput fashion. The results of our analyses suggest

that this is the case; modules in global coexpression networks

constructed from genome-wide expression studies across

myriads of different conditions in Arabidopsis were significantly

enriched in genes associated with diverse SM-related meta-

bolic functions (Figure 2A). Moreover, modules recovered many

experimentally validated SM pathways in these plants

(Supplemental Data Sets 5 and 8), including the six known to form

BGCs (Figure 5).

It is also well established that gene arrangement in plant

genomes is not random (Hurst et al., 2004). For example, asmuch

as 60% of metabolic pathways in Arabidopsis (as measured by

Figure 9. The Genes Comprising the Majority of Bioinformatically Predicted BGCs Are Not Coexpressed.

(A)Comparison of average coexpression of modules versus characterized and putative BGCs. The bottom and top of each box plot correspond to the first

and third quartiles (the 25th and 75th percentiles), respectively. The lower whisker extends from the box bottom to the lowest value within 1.5 * IQR

(interquartile range,definedas thedistancebetween thefirstand thirdquartiles) of thefirstquartile. Theupperwhiskerextends fromthebox top to thehighest

value that is within 1.5 * IQR of the third quartile. Red squares and triangles indicate BGCs or gene pairs that correspond to the all or part of the thalianol and

marneral BGCs, respectively. Asterisks denote significant deviation from the control distribution of neighboring genes; *P# 0.05 (Wilcoxon rank sum tests).

(B)From top tobottom, histogramofmaximumoverlapbetweencoexpressionmodules andknown (characterized)BGCs, TS-CYPgenepairs, EC-mapped

BGCs, and antiSMASH BGCs.

(C)Heatmap depicting the correlation of coexpression for a eight-gene region of chromosome five in Arabidopsis containing an example antiSMASHBGC

(BGC30) and TS-CYP gene pair (PAIR6). Diagonal number indicates MR score; squares are blank if MR$ 100. Heat map scale is the same as in (A). BGC

genesarebolded in theheatmapandcolored red in theaccompanyingchromosomesegments (TS-CYPpair is coloreddarkblue). Scalebars are in kilobase

pairs.

(D) Network map of a module that maximally overlaps with BGC30. Overlapping genes (TS-CYP PAIR6) are colored dark blue.
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KEGG [Kyoto Encyclopedia of Genes and Genomes] analysis)

show statistically significant higher levels of physical proximity in

the genome than expected by chance (Lee and Sonnhammer,

2003). The most extreme version of this “closer than expected”

gene arrangement is the growing list BGCs involved in plant SM

biosynthesis (Nützmann et al., 2016). While the statistical signif-

icance of this pattern is nondebatable, the degree to which gene

arrangement is predictive of genes’ participation in the same

pathway is not immediately obvious. For example, the genes of

many known plant SM pathways (Sønderby et al., 2010; Winkel-

Shirley, 2001) do not form BGCs, while other pathways consist of

a combination of clustered and unclustered genes (Itkin et al.,

2013; Handrick et al., 2016; Zhou et al., 2016). Complicating

matters further, SM pathways may form a BGC in some species

but not others (Sue et al., 2011). Given that the majority of known

plant SMpathways do not form BGCs, it is perhaps not surprising

that nearly all putative plant SM BGCs, which were predicted

based solely on gene proximity, were not coexpressed (Figure 9).

We interpret this absence of coexpression as evidence that

most of these putative BGCs likely do not correspond with actual

SM pathways and that gene proximity is insufficient to be used as

the primary input for predicting SM pathways in plant genomes.

Admittedly, the strength of this argument rests on whether the

global coexpression networks that we have constructed accu-

rately capture the spatial and temporal regulation of BGCs in

response to the diverse ecological conditions plants experience,

which is at least partially dependent on the number and types of

the conditions sampled (Ballouz et al., 2015). For example, genes

in a BGC or pathway that are never expressed or are not variably

expressed across conditions would not be correlated with each

other inour analysis. Although this is avalid concern, thehundreds

to thousands of conditions (Aoki et al., 2016b) used to construct

each coexpression data set (Supplemental Data Set 1), as well as

the recovery of many known SM pathways from these organisms

(Supplemental DataSets 5 and8), suggest that its effect is unlikely

to influence our major findings. Going forward, increased reso-

lution of BGCs and SM pathways in coexpression networks will

require the inclusion of data from more tissues, time points, and

environmental conditions during which SM genes and pathways

are likely to vary in their regulation, for example, different types

of insect herbivory (Handrick et al., 2016; Tzin et al., 2015,

2017; Ralph et al., 2006) and complex field conditions (Richards

et al., 2012).

Another caveat associated with predicting SM pathways from

global coexpression networks is that SM pathways whose ex-

pressionprofiles are highly similarwouldbepredicted tocomprise

a single pathway. This will likely be a more common occurrence,

and examples of this behavior are present in our results. Spe-

cifically, the two triterpenoid BGCs in Arabidopsis were almost

always combined in the same coexpression module, regardless

of the network investigated, and the same was true for the two

diterpenoid BGCs in rice (Figure 6). Although predicting in-

dividual SM pathways is obviously ideal, the lumping of multiple

pathways into one may in some cases reveal novel biology. For

example, such a pattern could also be indicative of crosstalk

between SM pathways or BGCs or that multiple SM pathways

are employed in response to the same set of environmental

conditions.

The final caveat is that our approach will not be as powerful in

cases where some of the genes in the pathway are not under the

same regulatory program as the others (Uygun et al., 2016). For

example, we noted that the genes encoding terminal modification

enzymes, such as the genes for side-chain modification of glu-

cosinolates (Supplemental Figure 4) or the UDP-glucosyl-

transferases in tomato (GAME2) and maize (Bx8-Bx14), had

expression profiles that were quite different from those of core

pathway genes; thus, they were often not recovered in the same

modules as their corresponding core SM pathway genes. It is

possible that additional sampling of appropriate expression

conditions could allow for recovery of these terminal metabolic

branches in coexpression modules that include the rest of the

pathway. However, the terminal SM genes and products can be

under balancing or diversifying selection (Kerwin et al., 2015);

moreover, the core and terminal steps in anSMpathwaymay take

place in different tissues (Hartmann and Ober, 2000). In cases like

these, the terminalmetabolic branchesandcoreSMpathwaymay

be identified as distinct coexpression modules in global coex-

pression networks no matter how many conditions are sampled.

In summary, our results indicate that generating and con-

structing global gene coexpression networks is a powerful and

promising approach to the challenge of high-throughput pre-

diction and study of plant SM pathways. Global gene coex-

pression networks can straightforwardly be constructed for any

species, model or non-model, as long as the organism’s tran-

scriptome can be sampled under a range of conditions. In prin-

ciple, this would not require a genome sequence, only a high

quality de novo transcriptome assembly. Future use of global

coexpression networks could include identification of new genes

associated with known SM pathways (e.g., glucosinolate and

benzoxazinoid pathways). Furthermore, uncharacterized coex-

pression modules could be cross-referenced with other high-

throughputdata types (e.g.,proteomics,metabolomics) to identify

new SM pathways. We believe that combining high-throughput

transcriptomics across ecological conditions with network bi-

ology will transform our understanding of the genetic basis and

architecture of plant natural products and usher in a new era of

exploration of their chemodiversity.

METHODS

Coexpression Network Analysis

Genome annotations and protein sequenceswere downloaded fromNCBI

RefSeq and JGI Genome Portal databases (Supplemental Data Set 1).

Condition-independent gene coexpression values, measured using PCC

and MR, across the eight plant species were downloaded from the AT-

TED-II (Aoki et al., 2016b), ALCOdb (Aoki et al., 2016a), and data sets with

<50% coverage of the target genome were excluded (Supplemental Data

Set 1). TheMRscore for twoexamplegenesAandB isgivenby the formula:

MRðABÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RankðA→BÞ 3RankðB→AÞ

q

where RankðA→BÞ is the rank of gene B in a PCC-ordered list of gene A

against all other genes in the microarray or RNA-seq meta-analysis;

similarly, RankðB→AÞ is the rank of gene A in a PCC-ordered list of gene B

against all other genes, with smaller MR scores indicating stronger co-

expressionbetweengenepairs (Obayashi andKinoshita, 2009).MRscores
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were converted to network edge weights using five different rates of ex-

ponential decay (Figure 1). Any edge with PCC <0.3 or edge weight <0.01

was excluded.

Comparison of MR- and PCC-based networks showed that the MR-

based networks were more comparable between species and data sets.

For example, PCC-based networks were more sensitive (variable) to dif-

ferences in the number of experimental samples and genome coverage

between data sets in the two species that had microarray- and RNA-seq-

based data sets (Arabidopsis thaliana and rice [Oryza sativa]). In contrast,

the MR-based networks were more robust to data set differences

(Supplemental Figure 2), in agreement with the original description of the

MR metric by Obayashi and Kinoshita (2009). Moreover, MR-based net-

workswere remarkablyconsistentwith respect to thenumberofgenes they

contained; in contrast, PCC-based networks sometimes varied by orders

of magnitude in the number of genes included (Supplemental Figure 2).

Finally, MR-based networks consistently included nearly all genes in

a given data set, regardless of theMR threshold stringency employed; that

was not the case with PCC-based networks (Supplemental Figure 2 and

Supplemental Data Set 2). For these reasons, we chose to focus the in-

vestigation on the MR-based networks.

Modulesof tightly coexpressedgenesweredetectedusingClusterONE

using default parameters (Nepusz et al., 2012). Modules with ClusterONE

P value > 0.1 were excluded. Modules were considered “SM like” if they

contained two or more nonhomologous genes with a significant match to

a curated list of Pfam domains present in experimentally verified (evi-

dence = EV-EXP) genes assigned to MetaCyc (Caspi et al., 2016) sec-

ondary biosynthesis pathways (hmmsearch using default inclusion

thresholds; Eddy, 2011) (Supplemental Data Set 6). SM-like modules were

then binned into meta-modules of nonoverlapping gene sets. Coex-

pression modules identified in this analysis are included in Supplemental

File 1.

Bioinformatically predicted BGCs were obtained from the published

literature (Boutanaev et al., 2015; Chae et al., 2014) and by running the

Arabidopsis reference genome (TAIR10; each protein-coding gene was

represented by its longest transcript) through antiSMASH v3.0.4 (Weber

et al., 2015) with the –clusterblast–subclusterblast–smcogs options en-

abled. Average coexpression of each gene set (module or BGC) was

calculated as the average MR score across all gene pairs in the set.

All statistical analyses were performed in R, including dhyper (hyper-

geometric), wilcox.test (Wilcoxon rank sum), and p.adjust (Benjamini and

Hochberg adjusted P value) from the stats package. Network maps were

drawn using a Fruchterman-Reingold force-directed layout using the

igraph R package (http://igraph.org).

Phylogenetic Analysis

Transcripts of Brassicaceae MAM and GSTU genes were downloaded from

EnsemblPlants (Kerseyetal.,2016).Sequenceswerealignedandmaskedusing

the GUIDANCE2 server (Sela et al., 2015) using the codon setting and the

MAFFT multiple sequence alignment algorithm (Katoh and Standley, 2013);

residues with guidance scores <0.9 weremasked. The gene phylogenies were

inferred using maximum likelihood as implemented in RAxML version 8.0.25

(Stamatakis, 2014) using rapid bootstrapping (1000 replications) and

aGTRGAMMAIXsubstitutionmodel,whichwas thebestmodel as indicatedby

theBayesianInformationCriterioninIQ-TREEversion1.3.8(Nguyenetal.,2015).

The phylogenies were midpoint rooted, and branches with <50% bootstrap

support were collapsed using TREECOLLAPSECL version 4.0 (http://

emmahodcroft.com/TreeCollapseCL.html, last accessed October 24, 2016).

The alignments and Newick trees can be found in Supplemental Files 2 and 3.

Insect Herbivory Experiments

Normalized expression levels of GT and IGPS genes from a maize (Zea

mays) B73 inbred line were taken from two earlier investigations of maize

leaf aphid (Rhopalosiphum maidis) and caterpillar (Spodoptera exigua)

feeding on maize (Tzin et al., 2015, 2017).

Accession Numbers

GenBank GeneID/TAIR/MaizeGDB identifiers for genes referenced in this

article can be found in Supplemental Data Sets 7 and 9. PCCs and MRs

used in this work are available for download at ATTED-II http://atted.jp/

download.shtml. Coexpression modules identified in this analysis are

included in Supplemental File 1.

Supplemental Data

Supplemental Figure 1. MetaCyc pathway enrichment analysis of

experimentally characterized genes in Arabidopsis.

Supplemental Figure 2. Comparison of mutual rank-based and

Pearson’s correlation-based networks.

Supplemental Figure 3. Overlapping coexpressed modules recover

the pathway for metGSL biosynthesis in Arabidopsis.

Supplemental Figure 4. Comparison of degree of gene coexpression

in core versus terminal modification genes in metGSL biosynthesis.

Supplemental Figure 5. Maximum likelihood phylogeny of Brassica-

ceae MAM and IPMS sequences.

Supplemental Figure 6. Maximum likelihood phylogeny of Brassica-

ceae GSTU sequences.

Supplemental Figure 7. Network maps of coexpression modules

involved in thalianol and marneral triterpenoid biosynthesis in Arabi-

dopsis.

Supplemental Figure 8. Network map of coexpression module

involved in momilactone and phytocassane diterpenoid biosynthesis

in rice.

Supplemental Figure 9. Network maps of coexpression modules

involved in tomatine biosynthesis in tomato.

Supplemental Figure 10. Coexpression pattern of seven putative

BGCs in plants.

Supplemental Data Set 1. Downloaded data sets.

Supplemental Data Set 2. Descriptive statistics for coexpression

networks.

Supplemental Data Set 3. Arabidopsis genes assigned to MetaCyc

pathways and pathway ontologies.

Supplemental Data Set 4. Test for enrichment/depletion of MetaCyc

pathway categories and classes in module genes.

Supplemental Data Set 5. Recovery of MetaCyc pathways in

coexpression modules.

Supplemental Data Set 6. List of Pfam domains found in SM

pathways in MetaCyc.

Supplemental Data Set 7.metGSL biosynthesis genes in Arabidopsis

and B. rapa.

Supplemental Data Set 8. Recovery of metGSL pathways, charac-

terized BGCs, and putative BGCs in coexpression modules.

Supplemental Data Set 9. List of functionally characterized BGCs in

plants with coexpression data on ATTED-II.

Supplemental Data Set 10. Average coexpression of gene modules,

characterized BGCs, and putative BGCs.

Supplemental Data Set 11. GO enrichment test of a 46-gene

Arabidopsis module involved in flower development.
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Supplemental File 1. Coexpression modules.

Supplemental File 2. Brassicaceae MAM gene family alignment and

tree.

Supplemental File 3. Brassicaceae GSTU gene family alignment and

tree.
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