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ABSTRACT: This paper provides an updated analysis of observed changes in extreme precipitation using high-quality

station data up to 2018.We examine changes in extreme precipitation represented by annualmaxima of 1-day (Rx1day) and

5-day (Rx5day) precipitation accumulations at different spatial scales and attempt to address whether the signal in extreme

precipitation has strengthened with several years of additional observations. Extreme precipitation has increased at about

two-thirds of stations and the percentage of stations with significantly increasing trends is significantly larger than that can be

expected by chance for the globe, continents including Asia, Europe, and North America, and regions including central

North America, eastern North America, northern Central America, northern Europe, the Russian Far East, eastern central

Asia, and East Asia. The percentage of stations with significantly decreasing trends is not different from that expected by

chance. Fitting extreme precipitation to generalized extreme value distributions with global mean surface temperature

(GMST) as a covariate reaffirms the statistically significant connections between extreme precipitation and temperature.

The global median sensitivity, percentage change in extreme precipitation per 1 K increase inGMST is 6.6% (5.1% to 8.2%;

5%–95% confidence interval) for Rx1day and is slightly smaller at 5.7% (5.0% to 8.0%) for Rx5day. The comparison of

results based on observations ending in 2018 with those from data ending in 2000–09 shows a consistent median rate of

increase, but a larger percentage of stations with statistically significant increasing trends, indicating an increase in the

detectability of extreme precipitation intensification, likely due to the use of longer records.
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1. Introduction

Long-term change in extreme precipitation has been the

subject of extensive investigation based on a range of indices

and detectionmethodologies. The annual maximum amount of

precipitation accumulated over 1 day (Rx1day) or 5 consecu-

tive days (Rx5day) are two important indices, representing

extreme precipitation for moderate duration or more persis-

tent events that often cause severe impacts on society. Long-

term changes in these indices have been analyzed in numerous

studies and various assessments of the Intergovernmental Panel on

Climate Change (IPCC; e.g., IPCC 2012, 2013). These annual ex-

tremes have also been used to estimate the probability of rare

events such as 100-yr return values, which are used in the design of

infrastructure. Several previous studies have examined the trends in

these annual precipitation statistics over global (Alexander et al.

2006; Asadieh and Krakauer 2015; Donat et al. 2013a,b; Westra

et al. 2013) and Northern Hemisphere land areas (Groisman et al.

2005; Min et al. 2011; Zhang et al. 2013), different continents (Min

et al. 2011; van den Besselaar et al. 2013), and in some regions

(Barbero et al. 2017; Donat et al. 2016; Li et al. 2018). The IPCC

FifthAssessmentReport concluded that ‘‘it is likely that since about

1950 the number of heavy precipitation events over land has in-

creased in more regions than it has decreased’’ (Hartmann et al.

2013, p. 162). Extreme precipitation over land has intensified on

average, with about two-thirds of stations showing increases in

Rx1day (Groisman et al. 2005; Alexander et al. 2006; Donat et al.

2013b; Westra et al. 2013). Westra et al. (2013) estimated that the

observed increase in Rx1day per 1K increase in global mean sur-

face temperature (GMST) ranged from5.9% to 7.7%K21, which is

close to the intensification expected from the Clausius–Clapeyron

relationship (;7%K21; Boer 1993; Allen and Ingram 2002;

O’Gorman 2015).

Most recent global studies of observed changes in extreme

precipitation have used the HadEX2 dataset (Donat et al.

2013b) or its earlier version (Alexander et al. 2006), analyzing

either station values (e.g., Westra et al. 2013) or gridded values

(e.g., Donat et al. 2013b, Asadieh andKrakauer 2015). Some of

these studies analyzed only Rx1day (e.g., Westra et al. 2013)

while other studies examined more indices (e.g., Donat et al.

2013b). As HadEX2 ends in year 2010, it is important at the

time of the IPCC Sixth Assessment to ask if the earlier results

continue to hold and whether the climate change signal in

extreme precipitation has strengthened given the additional

precipitation observations and additional warming that has

occurred over the past 9 years. It is also useful to ask if
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the changes in extreme precipitation are detectable at the

regional scale.

To address these questions, here we first update the global

analysis of observed changes in daily extreme precipitation of

Westra et al. (2013), using the same methodologies but with

additional recent observations. This provides a reference for

comparison with the earlier study regarding the influence of the

additional observations that have accumulated over the past

nine years. Building on this, we then substantially expand the

earlier study. One extension is to include Rx5day in our analysis

as it provides an indication of the extremes of wet conditions

persisting over several days that may be linked to widespread

regional flooding and landslide disasters. Another important

extension is to examine precipitation trends at different spatial

scales including global, continental, and regional scales. As an

updated version of HadEX2 was not available at the time of this

analysis (although HadEX3 now exists; Dunn et al. 2020), we

used a combination of station-based Rx1day and Rx5day data

available from various sources that contributed toHadEX2, and

Rx1day andRx5daydata from stations thatwere not available to

HadEX2 such as a large collection of Chinese data. This ap-

proach is designed to provide as comprehensive a picture as

possible of past changes in extreme precipitation over land areas

from global to regional scales. As observations are lacking for

many stations prior to the 1950s, we will report results for two

periods, 1950–2018 and 1900–2018.

The paper is structured as follows: We describe the

station data and analysis methods in section 2. The main

results are presented in section 3. Conclusions are given in

section 4.

2. Data and methods

a. Precipitation data

In this study we first assemble comprehensive up-to-date

Rx1day and Rx5day datasets modeled after HadEX2. We

started collecting and compiling Rx1day andRx5day data from

some of the main sources on which HadEX2 was based. These

include the following: the European Climate Assessment

Dataset (ECA&D; https://www.ecad.eu//dailydata/index.php;

1900–2018), Southeast Asian Climate Assessment and Dataset

(SACA&D; http://sacad.database.bmkg.go.id/dailydata/index.

php; 1900–2017), Latin American Climate Assessment and

Dataset (LACA&D; http://lacad.ciifen.org/dailydata/index.php;

van den Besselaar et al. 2015; 1900–2015), and GHCNDEX

(Donat et al. 2013b) for the United States and India. Some of

these records, notably those for India, end in the 1970s. We ex-

tract station data from these sources for the stations included in

HadEX2, which represents the latest acquisition of high-quality

station data around the globe. For example, in HadEX2, the

subset of stations judged to be more likely to be free of discon-

tinuities after 1950 caused by changes in station location were

chosen for the United States by following the analysis by

Peterson et al. (2008), who only selected National Weather

Service cooperative and first-order weather observing sites with

reasonably long records. SomeHadEX2 data were also obtained

from various regional data workshops (Aguilar et al. 2009;

Caesar et al. 2011; Donat et al. 2014). If the station data are not

updatable from the above data sources, we retained the data

present in the HadEX2 dataset. Additionally, there were some

data in HadEX2 that were not made publicly available due to

data restrictions at the country of origin (e.g., Argentina). We

therefore supplemented our data for Argentina by extracting 52

stations from the ETCCDI Climate Extreme Indices dataset

(http://etccdi.pacificclimate.org/data.shtml).

Other stations used in this study are from the existing

compiled and packaged datasets supplied by the national me-

teorological and hydrological services of their countries. We

include the Adjusted and Homogenized Canadian Climate

Data–Daily Temperature and Precipitation (Mekis and

Vincent 2011), which includes adjusted daily precipitation

for more than 460 Canadian locations. We use 840 Chinese

stations available from the China Meteorological Administration,

Russian data available fromRussianMeteorological Service (http://

meteo.ru/english/climate/d_temp.php), and Australian data from

the Australian Bureau of Meteorology (http://www.bom.gov.

au/climate/change/datasets/datasets.shtml). Data from the

China Meteorological Administration have been tested for

inhomogeneities and have been assessed for vigorous quality

control to eliminate any spurious values. The Australian data

are based on a historical rainfall dataset first documented in

Lavery et al. (1992) that has been quality controlled by

identifying and removing problematic records using statisti-

cal techniques, visual checks, and station history information.

Since Rx1day and Rx5day values are not provided directly by

these various sources, we used daily precipitation from these

sources to calculate the indices, using the same criteria for the

completeness of daily records used in the HadEX2 dataset.

Thus, (monthly) index values were calculated only if no more

than 3 daily observations were missing in a month and ac-

cordingly no more than 15 daily observations per year for the

annual indices. If one or more of the monthly index values for a

given year wasmissing, the corresponding annual index value was

set to a missing value flag for that year. When sites from different

sources overlapped, we retained those from the compiled and

packaged datasets supplied by National Meteorological and

Hydrological Services in preference to those from the ECA&D/

SACA&D/LACA&D/GHCNDEX datasets since the former

have been, at minimum, carefully quality controlled and in some

cases adjusted to improve homogeneity.

Overall, we were able to collect Rx1day and Rx5day data

from 14 796 land-based observing stations, with each station

having at least 30 years of record during 1900–2018. Figure 1

shows a map of station locations classified by sources. The

collection includes 5561 stations with data updated to year 2015

or later, which are mostly located in Canada, China, Europe,

Russia, southeasternAustralia, and theUnitedStates.Additionally,

there are 8040 stations for which data availability stopped in

2009. Compared with Westra et al. (2013), who analyzed 8326

stations with more than 30 years of record over the period of

1900–2009, this represents a 75% increase in the total number

of stations, resulting in improved spatial coverage including for

Russia and China, which were sparsely sampled by the earlier

study. There is, however, little improvement over most of

Africa, South America, andWest Asia, where spatial coverage

of stations is still very poor. In addition, prior to 1950 most
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station records are confined to North America, Europe, South

Asia, the Amazon, and Australia. The number of stations in-

creased notably after the 1950s (Fig. 1b), with 12 323 stations

having at least 30 years of record during 1950–2018. The

Westra et al. (2013) results based on stations with at least 30

years record during 1900–2009 were heavily weighted to

changes since the 1950s rather than the whole century, al-

though they found consistent results when using smaller

FIG. 1. Locations of stations and IPCC6 regions available for this study. (a) Sources of station observations. The

colored dots represent the different data sources that are described in the main text. (b) Number of stations that

have less than 30% missing Rx1day and Rx5day values for each period and each IPCC AR6 reference region.

(c) IPCC AR6 reference regions with more than 30 stations that have less than 30% missing Rx1day and Rx5day

values during the 1950–2018 period. There are 18 such regions.
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subsets of stations with at least 50 and 70 years of record over

the same time window. For these reasons, we will analyze two

periods, one starting from 1950 and another covering the whole

period.

We restrict our analyses to stations that have at least 70% of

the annual Rx1day/Rx5day data within the corresponding pe-

riod (at least 48 and 83 years for the 1950–2018 and 1900–2018

periods, respectively). In practice, this 70% lower bound for

temporal completeness results in a collection of stations for

which the median level of temporal completeness is about

85%. This is important, because the power of the trend de-

tection test is reduced when records are shorter. A total of 7293

and 1974 stations, respectively, met the 70% completeness

criterion for these two periods.

The completeness criterion represents a trade-off between

the power of the trend detection tests we use and spatial cov-

erage. A higher requirement for temporal completeness would

result in a substantial reduction of spatial coverage, with the

number of complete stations for 1950–2018 dropping to only

855 if we were to require 100% complete records. We have

subsampled the 855 complete records in various ways to mimic

how data might be missing to evaluate the impact of records

with different proportions of missing years, and different

placements of those years within the record, on the power of

trend detection and our estimates of the sensitivity of extreme

precipitation to warming (see details in Figs. S1 and S2 in the

online supplemental material). We find, not surprisingly, that

the rate at which significant intensification is detected is re-

duced when records contain fewer years. On the other hand,

our sensitivity estimates are not largely affected by missing

data, but may become more uncertain when records contain

few years and all stations have the same missing data profile.

To enable comparison between results presented here and

those of Westra et al. (2013), we also analyzed the data for the

stations with at least 30 annual maxima, and present the results

in the online supplemental material. In addition, we also

conduct a comprehensive analysis over different spatial do-

mains including the global land, continents, and regions used in

the IPCCWGI Sixth Assessment Report (Iturbide et al. 2020).

For this purpose, we select 22 regions with more than 30

stations that have at least 70% of the annual Rx1day and

Rx5day values during the 1950–2018 period (Fig. 1c).

b. Methods

We use two well-established methodologies that were employed

by Westra et al. (2013). These include the estimation of the long-

term trend in extreme precipitation and its statistical significance

based on nonparametric methods, and quantification of the rela-

tionship between extreme precipitation and GMST by fitting

generalized extreme value (GEV) distributions to the annual ex-

tremes of precipitation with GMST as a covariate. For the latter,

we use the GMST of the National Aeronautics and Space

Administration (NASA) Goddard Institute for Space Studies

(GISS) (Hansen et al. 2010) expressed as temperature anomalies

relative to the 1951–80 mean. These methods are applied to

station data separately. Field significance for a region is estab-

lished using the bootstrap method of Livezey and Chen (1983).

These methods are briefly summarized below; more details can

be found in Westra et al. (2013).

First, we use the nonparametric Mann–Kendall test (Mann

1945) to identify statistically significant trends in the Rx1day

and Rx5day series. The null hypothesis when applying the

Mann–Kendall test is that the data are independent and

identically distributed (iid). The actual significance level of the

test can differ substantially from the nominal level that is

specified when data are serially dependent, in which case the

data can be prewhitened before applying the test (e.g., Zhang

and Zwiers 2004). Westra et al. (2013), however, showed that

serial dependence is weak in annual maximum precipitation

across all global stations, and thus we have not applied a pre-

whitening procedure in this study. The test is two-sided, and a

trend is considered to be statistically significant if it is signifi-

cant at the 5% level. Stations are classified as having ‘‘signifi-

cant increasing,’’ ‘‘significant decreasing,’’ or ‘‘non-significant’’

trends depending on the sign and the absolute value of the test

statistic.

Second, the nonstationary GEV distribution is used to

quantify the precipitation-temperature relationship. The cu-

mulative distribution function for a GEV distributed random

variable Z has the following form:
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wherem, s, and j are the location, scale, and shape parameters,

respectively. The distribution can be made nonstationary, by

making one or more of the parameters functions of a covariate.

We would like to examine whether the distributions of the

annual maxima are changing with GMST change. Thus, we fit

station Rx1day or Rx5day series to nonstationary GEV dis-

tributions separately, with the location parameter of the

distributions m being a linear function of GMST:

m5b
0
1b

1
T, (2)

where T is the GMST anomaly and b0 and b1 are the intercept

and slope coefficients. Previous studies have suggested the

location-only model is sufficient when considering the precipitation–

temperature relation in observations, with similar results

derived from a time-varying scale parameter model (Westra

et al. 2013). The method of the maximum likelihood is used to

estimate the parameters. The statistical significance of this

relationship is inferred with the likelihood ratio test at the 5%

level. We classify stations as having significant positive as-

sociation, significant negative association, or non-significant
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association with the GMST series depending the sign of the

slope coefficient and the value of the likelihood ratio test

statistic.

The percentage change in annual extreme precipitation

per 1K of GMST increase is estimated with the fitted GEV

distributions and interpreted as an estimate of the sensitivity of

extreme precipitation to GMST change. This is achieved by

considering how the median of the fitted distribution, which

corresponds to the 2-yr return value, changes conditional on

temperature anomalies of 1 and 0K from the fitted nonsta-

tionary GEV distributions and interpreting the ratio between

the two values as a scaling estimate. Since the pth quantile of

the GEV distribution is given by m 1 s{[2ln(p)]2j
2 1}/j,

where the location parameter m is given by Eq. (2), it is easily

seen that the sensitivity of the median to 1K of warming is

given by [b1/(b0 1 s{[2ln(p)]2j
2 1}/j)] 3 100%.

We estimated the uncertainty of the sensitivity value using a

resampling method. We selected n years (n 5 69 for the 1950–

2018 period, n5 119 for the 1900–2018 period) at random with

replacement, and fitted the nonstationary GEV models using

the precipitation extremes and temperatures appropriate to

the years selected, which preserves the connection between

extremes and temperature. Then, we estimated the sensitivity

from the fitted models. Resampling was performed 1000 times

to develop a sampling distribution for the sensitivity, which was

used to estimate a 5%–95% confidence interval for the sensi-

tivity value. Some studies suggested using a block bootstrapping

approach with a block size of two or three, to account for au-

tocorrelation effects (e.g., Alexander et al. 2006; Kiktev et al.

2003). We compared the outcome of the conventional spatial

bootstrap procedure and the 2-yr block bootstrap. The results

are similar. For this reason, we only report results based on the

conventional spatial bootstrap procedure. In addition, we use

latitudinal temperature change to adjust local sensitivity values

to ensure that reported sensitivities correspond to latitudinal

temperature changes.

Third, the field significance for the ensemble of test results

obtained from all stations was assessed using the method of

Livezey and Chen (1983) in order to avoid ‘‘false discovery.’’

All statistical tests are designed to have a specified false dis-

covery rate (i.e., type I error rate) when the null hypothesis is

true, which is given by the stated significance level. When a 5%

significance level is set, we should expect rejection of the null

hypothesis to occur, on average, at 5% of locations when the

null hypothesis is true. The Livezey and Chen procedure is

used to determine whether there is evidence that the null hy-

pothesis is being rejected at more locations than would be

consistent with the specified false discovery rate. The proce-

dure does this taking the effects of the spatial correlation be-

tween test results into account. Field significance can be

evaluated for the whole global land area, or a continent or a

region. This procedure involves shuffling the spatial fields of

extreme precipitation by year such that data for the same year

in the observation for all stations are kept in the same year

in the shuffled series to retain the spatial dependence.

Temperature, however, is not reshuffled, thereby breaking

any connection between extreme precipitation and temper-

ature. After each reshuffling, trends are computed and tested

for statistical significance for both the nonparametric and

GEV-based approaches. The bootstrap sampling is con-

ducted 1000 times. The statistics such as the percentage of

stations with significant trends are used to construct the

probability distribution for those statistics. A particular

statistic computed from the original unshuffled data that lies

above the 95th percentile of statistics from the bootstrap

sample is considered to be field significant at the 5%

significance level.

3. Results

a. Changes in extreme precipitation since 1950s

1) GLOBAL SCALE

Figure 2 shows themaps of Rx1day andRx5day trends along

with the proportion of stations with a significant positive or

negative trend for 1950–2018 and the bootstrap distribution of

this proportion when the link between time and the observed

sequence of annual maxima is broken. Overall, trends over the

space are very noisy with widely scattered increasing and de-

creasing trends. This is consistent with the Li et al. (2019)

finding that a well-constrained estimate of changes in extreme

precipitation is difficult to obtain with individual records of

limited length and a relatively weak signal compared to

background year-to-year variability. There are important

patterns, however. There are many more stations showing in-

creasing than decreasing trends, with about two-thirds (66%)

of stations showing increasing trends and close to one-third

(34%) showing decreasing trends in Rx1day. This result is very

close to the findings in previous studies using HadEX2 station

data (Westra et al. 2013) or gridded values (Min et al. 2011).

Furthermore, 9.1% of stations show a statistically significant

increasing trend, which is much higher than could be expected

from random chance alone, as it is far outside of the simulated

bootstrap distribution when the link between time and extreme

precipitation is broken (indicated by the blue bars in Fig. 2b).

In contrast, the percentage of stations showing a statistically

significant decreasing trend is only about 2.1%, comparable

with what one would expect from random chance (Fig. 2c).

This means that at the global scale, there is indeed a detectable

increase in Rx1day. Although the spatial distribution of sta-

tions with significant increasing trend is largely random, there

is slightly higher concentration in eastern North America,

Europe, and South Africa. It is also noted that even though

stations with significantly decreasing trends are largely ran-

domly distributed over space, there are a few relatively well-

organized areas where the intensity of extreme precipitation

seems to be weakening, such as the Canadian Prairies, some

parts of the westernUnited States, Australia, and northern China.

Results for Rx5day are very similar to those for Rx1day,

with a larger percentage of stations (10.9%) showing statisti-

cally significant increasing trends, which is again highly field

significant. Of all the stations, about 5% show statistically

significant increasing trends for both Rx1day and Rx5day.

About 2.3% of stations have statistically significant negative

trends in Rx5day, consistent with what one would expect from

random chance.
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2) RELATIONSHIP WITH GLOBAL MEAN SURFACE

TEMPERATURE

Figure 3 provides maps of local extreme precipitation sen-

sitivity to global warming along with global median sensitivity

based on the GEV fitting. About two-thirds (68%) of stations

show an increase in Rx1day with warming while the remaining

stations show a decrease. The percentage of stations showing a

significant positive relation, at 11.6%, is significantly higher

than what would be expected from random chance alone, while

the percentage of stations showing a significant negative rela-

tion is only about 2.4%, consistent with expectations from

random chance. Taking all stations together, the median per-

centage Rx1day increase is about 6.6% per 1K of GMST in-

crease (5.1% to 8.2%K21; 5%–95% confidence interval). This

value is comparable to that of Westra et al. (2013). Results for

Rx5day are similar to Rx1day except the precipitation sensi-

tivity is slightly smaller at 5.7%K21 (5.0% to 8.0%K21). As

global land warms faster than GMST, precipitation sensitivity

is thus smaller than what may be expected from the Clausius–

Clapeyron relation when scaled with land temperature change,

although a detailed comparison between global sensitivity and

local sensitivity is outside of the scope of this analysis.

To reduce the influence of the uneven geographic distribu-

tion of stations, we adopted the area-weighted average method

suggested inWestra et al. (2013) to calculate a revised estimate

of the sensitivity of Rx1day and Rx5day to GMST. The global

land area is divided into 18 3 18 latitude–longitude grid boxes.

Within each grid box, the mean of the sensitivity values

obtained at all stations within that grid box is calculated. An

area-weighted global average sensitivity is then calculated

from the grid box averages. The revised global land sensitivity

values, which are slightly lower than their unweighted coun-

terparts, are 6.1% and 5.4%K21 for Rx1day and Rx5day,

respectively. Evidence from climate models suggests that

these numbers (either weighted or unweighted) should be

roughly representative of global land areas despite incom-

plete land coverage. In particular, Kharin et al. (2013) cal-

culated sensitivities of 20-yr return levels of extreme precipitation

to warming from CMIP5 (see Figs. 5 and 6 in their paper) and

obtained sensitivities that are relatively uniform over land.

Overlaying the locations of the stations used in this study on

their map of estimated sensitivities suggests that the available

observing network configuration roughly samples land areas

where sensitivities are representative of typical values for

global land areas.

3) CONTINENTAL SCALE

Figure 4 shows the percentage of station with significant

positive or negative trends during the 1950–2018 period over

six continents. The percentage of stations with significant

FIG. 2. Summary of Mann–Kendall trend analyses for the period 1950–2018 for 7293 stations. (a),(d) Maps of

locations of stations with trends for Rx1day and Rx5day, respectively. Light blue open dots indicate non-significant

increasing trends and light red open dots mark non-significant decreasing trends. Dark blue and red filled dots

indicate statistically significant trends as determined by a two-sided test conducted at the 5% level. (b),(c),(e),(f)

Percentage of stations with statistically significant increasing and decreasing trends. The histogram represents the

distribution of percentage of stations with significant trends from 1000 bootstrap realizations when the connection

between time and the occurrence of annual extremes is broken. The red dots represent the values from the ob-

servational data.
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negative trends is not field significant for both Rx1day and

Rx5day in all continents. The evidence for intensification is field

significant in thewell-gauged continental domains (Asia, Europe,

and North America) but not in Africa, South America, and

Australasia (including Australia and New Zealand). As also

detailed in the following paragraphs, increasing trends in Rx1day

and Rx5day can be detected in all continents except Australasia.

Europe has the highest station density used in our analysis with

3510 stations. The fraction of stations exhibiting positive trends is

also largest among all continents at about 70% inRx1day.Among

them, there are about 10.6% of stations showing significant pos-

itive trends, mostly located in northern and central Europe where

a higher station density can be found. Only 1.3% of stations have

significant negative trends, and these are distributed quite ran-

domly over Europe. These results are in general agreement

with previous European-wide studies (e.g., Zolina 2012; van

den Besselaar et al. 2013) and some national studies (e.g.,

Blöschl et al. 2012; Zolina 2012; Jones et al. 2013) of changes is

daily precipitation in which an increase in extreme winter

precipitation over Europe and an increase in extreme autumn,

winter, and spring precipitation in northern Europe were

found. Results for Rx5day are similar to those for Rx1day,

except the percentages of stations with increases and with

significant trends are both slightly higher.

Asia has a second highest number of gauges, being repre-

sented by 1684 stations in our study. The fractions of stations

showing increasing trends and statistically significant increas-

ing trends are 60% and 7.2%, respectively, with increases

mainly located in southern China and Russia. About 40% of

stations show a downward trend, mostly in northern China.

The percentage of stations showing significant positive trends

in Rx5day is close to that for Rx1day. The percentage of sta-

tions with significantly increasing trends lies outside the 95%

uncertainty range determined with the 1000 bootstrap reali-

zations under the no-trend hypothesis for both Rx1day and

Rx5day (Fig. 4), implying that an overall increasing trend in

extreme precipitation can be detected. Note that it is more

difficult to detect significant increases (or decreases) at smaller

spatial scales. For instance, Li et al. (2018) found that fractions

of significant increase or decrease in Rx1day in Chinese sta-

tions are both within the 95% uncertainty range when a similar

method was used. Note that Indian data in GHCN-Daily

mostly end in the early 1970s; thus, trends for India cannot

be updated this point.

FIG. 3. Estimated local sensitivity of precipitation extremes to temperature change (percentage change per 1K in-

crease in global mean surface temperature) during the period 1950–2018 for (a),(b) Rx1day and (c),(d) Rx5day. The red

dots in (b) and (d) represent median sensitivity among global land-based observing stations while the box-and-whisker

plots summarizes the breadth of the estimated distribution of the sensitivity from 1000 bootstrap realizations under

conditions when the null hypothesis that the sensitivity is zero is true (i.e., the resampling process has broken the link

between temperature and precipitation). In these plots, the 25th and 75th percentiles are shown as lower and upper edges

of the boxes while the median is marked by the center line. The upper and lower whiskers show the 97.5th and the 2.5th

percentiles. The observed median sensitivity estimate is evidently significantly larger than zero.
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The results for North America are similar to those for Asia

and Europe, again showing that extreme precipitation has

increased in many more locations than where it has decreased

in both Rx1day and Rx5day. These results are also consistent

with earlier studies (e.g., Barbero et al. 2017), which analyzed

changes in extreme precipitation at 733 North American sta-

tions for the period from 1950 to 2011. The similarity of our

results with those of Barbero et al. (2017) indicates intensifi-

cation of daily precipitation extremes is robust to differences in

sample size.

The spatial coverage of stations over Africa and South

America is poor and uneven, making it difficult to infer

whether there is an overall significant increasing trend in ex-

treme precipitation in these two continents. Nevertheless,

more than 64% of stations available in these continents show

positive trends.

Australasia is distinct from other continents in that, among

available stations, more stations show negative trends than

positive trends for both Rx1day and Rx5day. Stations with

decreasing trends are mainly located in southwestern and

southeastern Australia (Figs. 1a,c). The fraction of stations

with significant decreases are 4.5% for Rx1day and 6.8% for

Rx5day. This is consistent with previous studies that suggested a

decrease in extreme precipitation in southwestWesternAustralia,

southeastern Australia, and southeast Queensland (Dey et al.

2019). Someof the causes of the observed decrease in the intensity

of precipitation extremes in these regions have been linked

to changes in circulation, including the southward shift in the

subtropical ridge due to Hadley cell expansion (Timbal and

Drosdowsky 2013; Whan et al. 2014), external forcing induced

reduction in the number of synoptic systems (Hope 2006; Raut

et al. 2014; Dey et al. 2019), or changes in the southern annular

mode due to ozone depletion over Antarctica and increasing

GHGs (Cai et al. 2011; Thompson et al. 2011).However, note that

other parts of Australia (e.g., the northwest) have seen observed

increases in extreme rainfall including Rx1day (e.g., Alexander

and Arblaster 2017). Also, Alexander and Arblaster (2017) and

Contractor et al. (2018) found evidence of an overall intensifica-

tion of Rx1day for Australia as a whole. For example, Alexander

and Arblaster (2017) looked into trends in Rx1day and Rx5day

averaged over Australia (their Table 3 and Fig. 4 for time series)

and found increasing Rx1day trends over the period 1911–2010.

This somewhat contradicts the findings here but it should be noted

that the stations included in this study are primarily located in the

regions (southern Australia) where most of the declines in ex-

treme precipitation have been detected. Results for Australia are

sensitive to the choice of indices, time period, and dataset used

and are heavily affected low-frequency modes of variability such

as ENSO/IPO (e.g., King et al. 2013), which makes trend esti-

mation substantially more uncertain. Therefore, some care is

required when interpreting the results from this study as

‘‘Australia-wide.’’

FIG. 4. Continental summaries of the percentage of stations with statistically significant

trends (according to the Mann–Kendall trend test) in extreme precipitation for 1950–2018.

The blue and red colors indicate significant positive and negative trends, respectively. Dots

indicate percentages estimated from the observations. Box-and-whisker plots summarize the

breadth of the distribution from 1000 bootstrap realizations under the no-trend null hy-

pothesis. In the plots, the 25th and 75th percentiles are shown as lower and upper edges of the

boxes while the median is marked by the center red line. The upper and lower whiskers show

the 97.5th and the 2.5th percentiles, respectively.
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Figure 5 displays continental summaries of changes in

Rx1day and Rx5day, expressed as percentage change per 1K

GMST increase, as estimated by fitting GEV distribution to

precipitation data with GMST as a covariate. Results indicate

significant intensification of extreme precipitation with warm-

ing over continents where sufficient data are available to make

confident assessments (i.e., Europe, Asia, andNorthAmerica).

Themedian sensitivities over these continents for both Rx1day

and Rx5day are significantly greater than zero, with median

values close to ;7%K21 warming in GMST in Europe and

North America, and values that are somewhat smaller in Asia.

The sensitivity has a wider spread from bootstrap samples over

regions with poor spatial coverage including Africa, South

America, and Australasia. Based on available data, sensitiv-

ities to warming appear to be positive in Africa and South

America, and negative in Australasia.

4) REGIONAL SCALE

Table 1 summarizes trend analysis results for Rx1day and

Rx5day over 22 of 45 land regions used in the IPCCWGI Sixth

Assessment Report that contain at least 30 stations that satisfy

our data completeness criteria. Almost all regions have a

higher fraction of stations with positive trends than that with

negative trends for Rx1day, except for northwestern North

America, the Russian Arctic, and southern Australia. Further,

statistically significant intensification in Rx1day is found in

seven regions, comprising central North America, eastern

North America, northern Central America, northern Europe,

the Russian Far East, east central Asia, and East Asia, with the

percentages of stations with significant increases being higher

than would be expected in a stationary climate. It should be

noted that the percentages of stations with significantly in-

creasing and significantly decreasing trends are both higher

than would be expected in a stationary climate in the Russian

Arctic. The results for Rx5day are similar except that night

regions (two more than Rx1day) showed statistically signifi-

cant intensification. These results indicate again that the in-

tensification of extreme precipitation is widespread since the

1950s, occurring over almost all observed regions based on the

data used in this study.

Regional results for GEV modeling analysis are listed in

Table 2. Overall, Rx1day and Rx5day have intensified signifi-

cantly with warming over 10 and 8 regions, respectively, al-

though extreme precipitation decreases with warming in the

South Australia region. Donat et al. (2016) showed that

Rx1day averaged over both dry and wet regimes increases

with global surface temperature change in both observations

and climate models. The dominant increasing trends over dry

FIG. 5. Continental summaries of sensitivity of extreme precipitation per 1K increase in

global mean surface temperature for 1950–2018. The red dots indicate the median of local

sensitivities estimated at stations within each continent. The box-and-whisker plots sum-

marizes the breadth of the distribution from 1000 bootstrap realizations under the zero

sensitivity hypothesis. In these plots, the 25th and 75th percentiles are shown as lower and

upper edges of the boxes while the median is marked by the center red line; the upper and

lower whiskers show the 97.5th and the 2.5th percentiles, respectively. The horizontal dashed

line shows the nominal Clausius–Clapeyron rate of 7%K21 for reference.
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regions do not change since other arid/semiarid regions, such as

eastern and western Siberia, western and eastern central Asia,

and the Tibetan Plateau, show positive sensitivity value.

Overall, results are generally similar to those for long-term

trends as summarized in Table 1, although the magnitude of

sensitivity varies widely. Different factors may have contrib-

uted to the wide sensitivity range, especially for large sensitivity

values. These include possible regional forcing differences,

circulation changes that may or may not be due to an anthro-

pogenic influence, and, likely most importantly, differences

between the regional and global warming rates. In addition,

sampling variability is expected to be much higher at the re-

gional scale, and this is also likely to contribute to the wider

sensitivity range. The sensitivity in the northern high latitudes

becomesmuch smaller if changes in precipitation are scaledwith

latitudinal temperature change since temperature changes in the

TABLE 1. Percentage of stations with increasing, decreasing, statistically significant increasing, and statistically significant decreasing

trends in Rx1day and Rx5day based on the Mann–Kendall test over the IPCC AR6 reference regions (Iturbide et al. 2020) during the

1950–2018 period. Values higher than the upper 97.5th percentile from the 1000 bootstrap realizations under the no-trend null hypothesis

are shown in boldface. There are no regions in which the percentage values lie below the lower 2.5th percentile of these bootstrap

distributions.

Reference regions

No. of

stations

Rx1day Rx5day

Increase

(%)

Decrease

(%)

Significant

increase (%)

Significant

decrease (%)

Increase

(%)

Decrease

(%)

Significant

increase (%)

Significant

decrease (%)

Northwest North

America (NWN)

89 43.8 56.2 3.4 4.5 55.1 44.9 9.0 2.2

Western North

America (WNA)

218 60.6 39.4 4.6 2.8 53.7 46.3 5.5 3.2

Central North

America (CNA)

270 74.8 25.2 12.2 0.7 75.6 24.4 11.5 0.0

Eastern North

America (ENA)

269 72.9 27.1 9.3 0.4 79.2 20.8 13.4 0.7

Northern Central

America (NCA)

44 61.4 38.6 11.4 0.0 61.4 38.6 9.1 0.0

Northern South

America (NSA)

39 64.1 35.9 2.6 0.0 82.1 17.9 2.6 0.0

Northern

Europe (NEU)

1988 76.1 23.9 14.4 1.2 79.9 20.1 18.4 1.1

Western and central

Europe (WCE)

1236 65.0 35.0 6.6 1.1 63.0 37.0 10.0 2.1

Eastern

Europe (EEU)

163 73.6 26.4 7.4 1.8 79.1 20.9 14.7 0.6

Mediterranean

(MED)

343 54.2 45.8 4.7 3.8 50.7 49.3 4.4 5.5

West Southern

Africa (WSAF)

249 66.3 33.7 8.0 1.2 65.9 34.1 8.8 0.8

East Southern

Africa (ESAF)

279 64.9 35.1 5.7 1.1 54.5 45.5 2.2 0.7

Russian

Arctic (RAR)

95 48.4 51.6 11.6 17.9 55.8 44.2 14.7 15.8

Western

Siberia (WSB)

146 73.3 26.7 7.5 1.4 65.8 34.2 11.6 0.0

Eastern

Siberia (ESB)

215 59.1 40.9 5.6 0.9 58.6 41.4 7.0 1.4

Russian Far

East (RFE)

131 56.5 43.5 11.5 6.9 64.1 35.9 12.2 2.3

Western central

Asia (WCA)

53 64.2 35.8 7.5 0.0 83.0 17.0 3.8 0.0

Eastern central

Asia (ECA)

106 72.6 27.4 12.3 0.0 71.7 28.3 12.3 0.9

Tibetan

Plateau (TIB)

37 59.5 40.5 5.4 2.7 64.9 35.1 5.4 2.7

East Asia (EAS) 599 59.9 40.1 5.5 1.2 53.3 46.7 3.7 3.3

Southeast

Asia (SEA)

412 55.6 44.4 7.8 4.1 65.8 34.2 8.3 4.4

Southern

Australia (SAU)

75 44.0 56.0 4.0 2.7 30.7 69.3 0.0 9.3
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high northern latitudes are larger than global mean temperature

changes. This does raise a question regarding which temper-

ature—global, regional, or local temperature—to use when

discussing extreme precipitation sensitivity at the regional scale.

Exactly what temperature to use to satisfactorily approximate

the change in saturation vapor pressure with temperature under

nonideal conditions is far from clear. Several previous studies

summarizing and assessing observed or projected changes in

extreme precipitation at a global scale have used GMST, and

thus for comparability as well as its policy relevance (IPCC

2018) we do so here as well.

b. Changes in extreme precipitation in longer records

Figure 6 displays the percentage of land-based stations

globally with significant trends in relation to sample size.

Figure 6a and Table 3 shows results for the 1900–2018 period

using 1974 stations that have at least 70%of the annual Rx1day

and Rx5day data. These long-term stations are located mainly

in the Northern Hemisphere midlatitudes and parts of Australia

and SouthAfrica (Fig. S3). It is clear that extremeprecipitation has

increased over the region with data coverage. Overall, extreme

precipitation has increased inmanymore regions thanwhere it has

decreased, for both Rx1day and Rx5day. The fraction of stations

showing an increasing trend is greater than 70% for both Rx1day

and Rx5day, and the fraction of stations with significant increasing

trends is 17.1% and 23.0% for Rx1day and Rx5day, respectively.

These fractions are roughly double the corresponding fractions of

the same collection of stations when only data for 1950–2018 are

used (Fig. 6a). The fractions are also larger when at regional scales

(Table 3; see also Table S1). These large differences in the pro-

portion of stations with significant increase between the two pe-

riods is unlikely due to the difference in spatial coverage of the

stations. Over the regions where long-term observations exist,

stations with significant trends are also quite evenly distributed.

The percentage of stations with significant increases is also

much larger than that obtained from analysis using stations

TABLE 2. Percentage of stationswith statistically significant positive or negative association between extreme precipitation (Rx1day and

Rx5day) and globalmean surface temperature (GMST), and themedian sensitivity of extreme precipitation to a 1K increase inGMST for

IPCC AR6 reference regions during the 1950–2018 period. Values significant at the 5% level are shown in boldface.

Region name

Rx1day Rx5day

Significant

positive (%)

Significant

negative (%)

Sensitivity

(% K21)

Significant

positive (%)

Significant

negative (%)

Sensitivity

(% K21)

Northwest North

America (NWN)

6.7 4.5 21.9 12.4 0.0 0.1

Western North

America (WNA)

7.3 2.3 5.5 6.0 0.9 5.4

Central North

America (CNA)

14.1 1.1 8.7 13.0 0.4 9.9

Eastern North

America (ENA)

9.3 0.0 8.7 13.4 0.7 7.9

Northern Central

America (NCA)

2.3 4.5 1.0 6.8 2.3 21.6

Northern South

America (NSA)

0.0 2.6 0.2 0.0 2.6 2.9

Northern Europe (NEU) 16.5 1.4 8.8 20.6 1.2 9.3

Western and central

Europe (WCE)

12.1 1.1 5.9 14.5 1.5 5.5

Eastern Europe (EEU) 17.8 1.2 13.0 18.4 0.0 12.1

Mediterranean (MED) 5.2 4.7 2.3 2.0 7.3 22.6

West southern

Africa (WSAF)

12.9 2.8 9.5 6.8 2.0 8.7

East southern

Africa (ESAF)

5.4 2.5 2.8 3.6 2.5 20.4

Russian Arctic (RAR) 11.6 14.7 4.8 14.7 12.6 10.0

Western Siberia (WSB) 8.2 0.7 8.0 11.0 0.7 9.3

Eastern Siberia (ESB) 8.8 2.3 4.1 7.4 3.3 2.6

Russian Far East (RFE) 6.9 6.9 3.8 9.9 3.1 4.9

Western central

Asia (WCA)

3.8 3.8 2.7 9.4 0.0 7.8

Eastern central

Asia (ECA)

13.2 0.0 17.2 13.2 0.0 14.0

Tibetan Plateau (TIB) 8.1 0.0 1.3 10.8 5.4 3.5

East Asia (EAS) 7.7 1.3 5.5 3.8 2.7 1.4

Southeast Asia (SEA) 11.9 7.0 3.2 8.0 4.9 3.8

Southern Australia (SAU) 1.3 5.3 22.2 1.3 6.7 -8.3
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withmore than 30 years of data (Figs. S4 and S5) as was done in

Westra et al. (2013). The station selection criterion allowing

stations with records as short as 30 years would have resulted

in a predominance of information from trend tests based on

shorter records with a shorter median length of record; such

tests are inherently less powerful than tests based on longer

records. On the other hand, the percentage of stations with

significant negative trends is unchanged, remaining consistent

FIG. 6. Summaries of the percentage of stations with statistically significant trends in extreme

precipitation for different datasets and different periods. Results are shown for subsets of stations

that have less than 30% missing values during (a) 1900–2018, (c) 1900–2009, and (c) 1950–2009,

respectively. Blue and red dots indicate the percentage of significant positive and negative trends,

respectively. The box-and-whisker plots summarize the breadth of the distribution from 1000

bootstrap realizations under the no trend null hypothesis. These plots show the 25th and 75th

percentiles as the lower and upper edges of the boxeswhile themedian ismarkedby the center red

line. The upper and lower whiskers show the 97.5th and the 2.5th percentiles, respectively.

TABLE 3. Percentage of stations with increasing, decreasing, statistically significant increasing, and statistically significant decreasing

trends in Rx1day andRx5day based on theMann–Kendall test over the IPCCAR6 reference regions during the 1900–2018 period. Values

higher than the upper 97.5th percentile from the 1000 bootstrap realizations under the no-trend null hypothesis are shown in boldface.

There are no regions in which the percentage values lie below the lower 2.5th percentile of these bootstrap distributions.

Region name

No. of

stations

Rx1day Rx5day

Increase

(%)

Decrease

(%)

Significant

increase (%)

Significant

decrease (%)

Increase

(%)

Decrease

(%)

Significant

increase (%)

Significant

decrease (%)

Northwest North

America (NWN)

40 57.5 42.5 5.0 10.0 57.5 42.5 15.0 0.0

Western North

America (WNA)

78 61.5 38.5 14.1 2.6 61.5 38.5 12.8 3.8

Central North

America (CNA)

126 79.4 20.6 21.4 0.8 81.0 19.0 11.9 1.6

Eastern North

America (ENA)

120 72.5 27.5 13.3 2.5 79.2 20.8 14.2 1.7

Northern South

America (NSA)

62 56.5 43.5 4.8 3.2 25.8 74.2 1.6 16.1

Northern

Europe (NEU)

314 79.9 20.1 22.0 0.6 90.1 9.9 38.5 0.3

Western and central

Europe (WCE)

323 72.8 27.2 18.0 0.3 76.8 23.2 25.4 1.5

Eastern

Europe (EEU)

54 88.9 11.1 38.9 0.0 88.9 11.1 46.3 0.0

Mediterranean

(MED)

82 57.3 42.7 12.2 3.7 54.9 45.1 15.9 3.7

West Southern

Africa (WSAF)

64 71.9 28.1 9.4 0.0 76.6 23.4 9.4 1.6

East Southern

Africa (ESAF)

79 73.4 26.6 13.9 1.3 65.8 34.2 13.9 0.0

Eastern

Siberia (ESB)

45 84.4 15.6 42.2 0.0 86.7 13.3 35.6 0.0

Southeast

Asia (SEA)

329 62.3 37.7 11.9 10.3 68.1 31.9 25.8 8.2

Southern

Australia (SAU)

78 48.7 51.3 5.1 5.1 41.0 59.0 1.3 5.1
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with that which would be expected from the null hypothesis of

no trend.

For the 1900–2018 period using 1974 stations, the estimated

precipitation sensitivities of Rx1day and Rx5day to GMST

increase are 5.5%K21 (4.8%–7.5%K21) and 6.3%K21 (4.9%–

7.5%K21), respectively. They are comparable with that for the

1950–2018 period and Westra et al. (2013), indicating that the

analysis period does not have a substantial effect on the scaling

relationship between annual maximum precipitation and GMST

on a global scale.

The addition of 9 years of data since 2010 increases the

fraction of stations with significant positive trends while the

percentage of stations with significant negative trends remains

unchanged and consistent with what would be expected under

the null hypothesis of no trend. This is the case for long-term

stations that have sufficient data for trend analysis over 1900–

2018 but have relatively confined spatial distribution and for

the shorter time period 1950–2018 when spatial coverage of

data is much improved. It is clear that the signal of extreme

precipitation intensification is more detectable with additional

records, which may due to the higher power of detection that

results from using longer records (Zhang et al. 2004).

To help interpret these findings we produced 1000 Monte

Carlo simulations of annual extremes for the period 1950–2018

by sampling from the nonstationary GEV distributions de-

scribed in section 2 that were fitted at each station. Mann–

Kendall trend analysis was conducted on the simulated time

series of annual extremes. The percentage of stations with

significantly increasing trends during 1950–2018 is always

larger than that over 1950–2009, indicating a larger power of

detection when the data since 2010 are added. The observed

difference in fraction of stations with significant trends in

Rx1day between the periods 1950–2009 and 1950–2018 is also

consistent with that due to the sample size increases by nine

years. Thus while low-frequency climate variability could have

contributed to higher rates of detection when recent data are

included, it seems more likely that this is the result of the en-

hancement statistical power of trend detection for longer

records.

4. Conclusions and discussion

We have analyzed trends in the annual maximum amount

of precipitation accumulated in 1 day (Rx1day) and in 5

consecutive days (Rx5day) over global land areas for which

we have access to station observations. We have also ana-

lyzed the relation between annual maximum precipitation

and GMST.

Our analyses are conducted for two time periods, over 1950–

2018 when we have the best spatial coverage and over 1900–

2018 when we have longer station records (i.e., better temporal

coverage) but muchmore limited spatial coverage. Rx1day and

Rx5day have both intensified significantly at the global and

continental scales, as well as in many large regions. For the

period 1950–2018, close to two-thirds of stations show in-

creasing trends, with about 9.1% and 10.9% of stations show-

ing statistically significant increasing trends for Rx1day and

Rx5day, respectively, based on a nonparametric trend test that

is expected to falsely detect increasing trends 2.5% of the time.

These percentages are significantly greater than 2.5%, indi-

cating evidence for broad and systematic change in the inten-

sity of extreme precipitation. This same test shows significant

decreasing trends at rates that are consistent with the 2.5%

false detection rate, indicating that the test performs as ex-

pected in the absence of processes that would be expected to

weaken extreme precipitation over time in land areas with

observations. This latter result also indicates that any depar-

tures from the assumption of serial independence that is made

when applying the test do not produce spurious significant

trends. For the period 1900–2018, more than two-thirds of

stations show increasing trends with the percentage of stations

showing significant increasing trends double that in 1950–2018.

On the other hand, the percentages of stations with significant

decreasing trends are again small and consistent with the ex-

pected false detection rate.

Intensification of extreme precipitation is evident through-

out global land areas for which station data are available; sta-

tions with significant increasing trends are not limited to

specific geographic locations but are widespread. At the con-

tinental scale, a significant intensification of extreme precipi-

tation has been observed in well-gauged continental areas

including Europe, Asia, and North America. Uncertainty in

the characterization of changes in precipitation extremes is

higher in continents where data coverage is poor including

Africa, South America, and Australasia due to sparse station

coverage and nonrepresentative spatial sampling. It appears

that increases in extreme precipitation dominate in bothAfrica

and South America over areas with data coverage. At the re-

gional scale, detection of significant trends becomes more

difficult as the signal-to-noise ratio decreases. Nevertheless,

statistically significant intensification in extreme precipitation

is still observed in many regions, including central and eastern

North America, northern Central America, northern Europe,

the Russian Far East, eastern central Asia, and East Asia,

whereas an obvious decreasing trend in Rx5day is observed in

southern Australia.

Fitting Rx1day and Rx5day to GEV distributions with

GMST as a covariate reveals a significant association between

changes in extreme precipitation and temperature. The con-

nection is again statistically significant at the global scale, as it

is in three continents and many regions where precipitation

data are more abundant. The median estimated sensitivity of

extreme precipitation to warming over the global land areas

with station data is 6.6% (5.1% to 8.2%; 5%–95% confidence

interval) and 5.7% (5.0% to 8.0%) per 1K of temperature

increase for Rx1day and Rx5day, respectively. These scaling

rates are broadly consistent with the expected increase in the

water holding capacity of the atmosphere governed by the

Clausius–Clapeyron relation. Estimated scaling rates are more

uncertain for records that are less complete, but do not seem to

be greatly influenced by the timing of the missing years in the

indices records. Nevertheless, the sensitivity of extreme pre-

cipitation to warming can differ substantially from these me-

dian values regionally, both because circulation change may be

an important factor in some regions and because GMST

change may not be a good indicator of regional changes in

atmospheric water holding capacity. Warming over global land
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is typically larger than that of GMST due to differences in

sensible heat production over land and ocean surfaces. As a

result, extreme precipitation sensitivity is generally smaller

over land than predicted by the Clausius–Clapeyron relation if

local or regional temperature change is used in the estimation,

except in some tropical convergence regions. Yet, it is unclear

what is the most appropriate temperature for the purpose of

estimating the sensitivity (Trenberth et al. 2015).

While our results are generally consistent with those of

Westra et al. (2013), the extent to which direct comparison can

be made is limited because of different selections of stations in

the two analyses and also because we have used more stringent

criteria for retaining stations for analysis in our study. We

compared our analyses with data ending in year 2018 with

analyses using data ending 2009 and found, with the additional

9 years of data, that a larger percentage of stations show sig-

nificant increases in extreme precipitation but that there is

effectively no change in the number of stations showing sig-

nificant decreases. We showed that this increase is consistent

with the expected increase in detection power that should re-

sult from the availability of records that are nine years longer in

the context of a warming climate. Based on the results pre-

sented here, the findings of extreme precipitation intensifica-

tion over land by Westra et al. (2013) appear robust.

Although the distribution of trends across space is very

noisy, our results do exhibit some spatial structure at the re-

gional scale, such as a weakening of extreme precipitation in

the Canadian Prairies, some parts of the westernUnited States,

Australia, and northern China. This suggests that other factors,

such as changes in atmospheric circulation, oceanic oscilla-

tions, and aerosols may also have influenced regional trends in

extreme precipitation to some extent. For instance, the decline

of the Asian monsoonal circulation strength that has been re-

lated to aerosols may have contributed to the regionally co-

herent pattern of decreasing trends in extreme precipitation in

northern China (Wang and Zhou 2005; You et al. 2011).

Decreasing extreme precipitation over the Canadian Prairies

may be connected with low-frequency atmospheric, oceanic

oscillations, and snowfall decreases (Vincent et al. 2015; Yang

et al. 2019). Atmospheric circulation change and low-frequency

modes of variability have also been implicated in changes in

southern Australian precipitation (Li et al. 2012; Dey et al. 2019).

Changes in the subtropical ridge (Timbal and Drosdowsky 2013;

Whan et al. 2014) and the southern annular mode (Cai et al.

2011; Thompson et al. 2011) were shown as potential drivers

for the decline in extreme precipitation in parts of Australia.

Despite the considerable research in this area, the causes of

these variations are not fully understood. The association

between large-scale circulation anomalies, aerosols, and

changes in non-well-mixed GHGs such as ozone and changes

in extreme precipitation events therefore requires further

investigation.

We conclude by pointing out some caveats to our analysis.

While we have used an area weighting scheme that should

ensure that statistics are representative of the global land area

that is sampled by the available observing networks, their un-

even and incomplete spatial coverage means that our results

may not be fully representative of the global land surface

average of extreme changes. In particular, we note that the

vast majority of stations are in the midlatitudes of the

Northern Hemisphere. Tropical, subtropical, and midlatitude

Southern Hemispheric areas are much less well sampled, and

there is a dearth of observations in regions where projections

(e.g., Kharin et al. 2013) suggest declines in future precipi-

tation extremes. There remains an urgent need to improve

data collection in regions in which the stations records are

limited, especially subtropical and tropical regions, Africa,

and South America, to better constrain changes in extreme

precipitation.

Another caveat is that while we have attempted to use data

that have been systematically quality controlled, the data

quality remains a concern. Precipitation measurements are

difficult to homogenize due to their high spatial and temporal

variability. Thus the data we use are likely not free of inho-

mogeneities from, for example, changes in the type of instru-

mentation used to measure precipitation since different rain

gauges have different wind undercatch, wetting losses, and

evaporation losses (Metcalfe et al. 1997). Automatic gauges,

which have different recording characteristics than the gauges

that they have replaced (WMO 2017), have been widely

adopted owing to the cost of manual or mechanically recorded

gauges together with the development of electronic recording

gauges (Kidd et al. 2017). The adoption of these gauges has no

doubt induced inhomogeneities in the precipitation data we

analyze that for the moment are unavoidable since the ex-

clusion of data from automated stations would result in ex-

tremely limited global coverage in recent decades (Kidd et al.

2017). However, we were careful to focus on data that have

previously been assessed to be of high quality and, in some

cases, have been adjusted to improve homogeneity. As in-

homogeneities are unlikely to be systematic globally, our

results should hold.

While these are important caveats, we reiterate that the

preponderance of evidence from the available global collection

of well-studied long records of observed daily precipitation

amounts indicates that precipitation extremes are intensifying

in most observed regions and on a global scale, and that these

changes appear to be consistent with the warming that has been

observed over the same period.Moreover, this evidence, which

is also supported by formal detection and attribution analyses

(Min et al. 2011; Zhang et al. 2013; Li et al. 2017; Dong et al.

2020, Kirchmeier-Young and Zhang 2020; Paik et al. 2020), has

strengthened somewhat with the additional observations that

have accumulated over the past 9 years.
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