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Abstract. Th.is work presents a global convergence theory for a broad class of trust-reg.ion 
algorithms for the smooth nonlinear programm.ing problem with equality constra.ints. The ma.in 
result generalizes Powell's 1975 result for unconstra.ined trust-region algorithms. 

The trial step is characterized by very m.ild conditions on its normal and tangential components. 
The nonual component need not be computed accurately. The theory requires a quasi-normal c01n­
ponent to satisfy a fraction of Cauchy decrease condition on the quadratic model of the linearized 
constra.ints. The tangential component then must satisfy a fraction of Cauchy decrease cond.ition 
on a quadratic model of the Lagrangian function in the translated tangent space of the constra.ints 
detenn.ined by the quasi-nonnal component. The La.grange multipliers estimates and the Hessian 
estimates are assumed only to be bounded. 

The other ma.in characteristic of th.is class of a.lgoritluns is that the step is evaluated by using the 
augmented La.gra.ng.ia.n as a merit function and the penalty para.meter is updated using the El-Alem 
scheme. The properties of the step together with the way that the penalty parameter is chosen are 
sufficient to establish global convergence. 

As an example, an algorithm is presented which can be viewed as a generalization of the Steiha.ug­
Toint dogleg a.lgoritlun for the w1constra.ined case. It is based on a quadratic programming algorithm 
that uses a step in a quasi-nonna.l d.irection to the tangent space of the constra.ints and then does 
feasible conjugate reduced-gra.d.ient steps to solve the reduced quadratic program. This algorithm 
should cope quite well with large problems for which effective precond.itioners a.re known. 

Key Words: Constrained Optimization, Global Convergence, Trust Regions, 
Equality Constrained, Nonlinear Programming, Conjugate Gradient, Inexact Newton 
Method. 

AMS subject classifications. 65K05, 49D37. 

1. Introduction. This work is concerned with the development of a global con­
vergence theory for a broad class of algorithms for the equality constrained minimiza­
tion problem: 

(EQC) = { minimize 
subject to 

f(x) 
C(x) = 0. 

The functions f : ?Rn - ?R and C : ?Rn - ?Rm are at least twice continuously differen­
tiable where C(x) = (c1 (x ), ... , Cm (x )f and m < n. 

Our purpose is to generalize to constrained problems a powerful theorem given in 
1975 by Powell for unconstrained problems. 

The global convergence theory that we establish in this work holds for a class of 
nonlinear programming algorithms for (EQC) that is characterized by the following 
features: 

1. The algorithms of the family use the tru.~t-region approach as a globalization 
strategy. 
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2. All these algorithms generate steps that satisfy very mild conditions on the 
trial steps' normal and tangential components. It is important to note that 
the condition is not required on the truely normal component of the trial 
step, instead it is on the quasi-normal component s;, which is allowed to 
satisfy the relaxed condition that lls;ll2 ~ K1IIC(xc)ll2 for some independent 
constant K 1 • The conditions are that the quasi-normal component satisfies a 
fraction of Cauchy decrease condition on the quadratic model of the linearized 
constraints, and that the tangential component ( as measured from the quasi­
normal component) satisfies a fraction of Cauchy decrease on the quadratic 
model of the reduced Lagrangian function associated with (EQC). 

3. The estimates of the Lagrange multiplier vector and the Hessian matrix are 
assumed only to be bounded uniformly across all iterations. 

4. The other main characteristic of this class of algorithms is that the step is 
evaluated for acceptance by using the augmented Lagrangian function with 
penalty parameter updated by the scheme proposed by El-Alem [9]. 

Conditions 1, and 3 are satisfied by the algorithms of Byrd, Schnabel, and Shultz 
[2], Celis, Dennis, and Tapia [4], Byrd and Omojokun [21], and Powell and Yuan [23]. 
Byrd, Schnabel, and Shultz and Byrd and Omojokun require a nm:mal, rather than 
just a quasi-normal s;, in 2. 

We use the following notation: the sequence of points generated by an algorithm 
is denoted by {xk}, This work also uses subscripts-, c and+ to denote the previous, 
the current and the next iterates respectively. However, when we need to work with 
a whole sequence we will use the index k. The matrix He denotes the Hessian of the 
Lagrangian at the current iterate or an approximation to it. Subscripted functions 
mean the function is evaluated at a particular point; for example, fc = f(xc), le = 
f(xc, Ac), and so on. Finally, unless otherwise specified, all the norms will be £2-norms, 
and we will use the same symbol O to denote the real number zero and the zero vector. 

The rest of the paper is organized as follows: In Section 2, we review the concept 
of fraction of Cauchy decrease. In Section 3, we review the SQP algorithm. In Section 
4, we survey existing trust-region algorithms for solving problem (EQC). In Section 5, 
we present a general trust-region algorithm with the conditions that the trial step must 
satisfy. In Section 6 we state the algorithm. Sections 7 and 8 are devoted to presenting 
the global convergence theory that we have developed. In Section 7.1, we state the 
assumptions under which global convergence is established. In Section 7.2, we discuss 
some properties of the trial steps. In Section 7 .3, we study the behavior of the penalty 
parameter. Section 8 is devoted to presenting our main global convergence result. In 
Section 9, we present, as an example, an algorithm that solves problem (EQC), and 
we prove that it fits the assumptions of the paper. This algorithm was one we had in 
mind as motivation for the convergence thepry. It can be viewed as a generalization 
to constrained case of the Steihaug-Toint dogleg algorithm for the unconstrained case. 
This algorithm has worked quite well for some large problems. Finally, we make some 
concluding remarks in Section 10. 

2. Fraction of Cauchy decrease condition. Consider the following uncon­
strained minimization problem 

(UCMIN) = { min_imize 
sub1ect to 

f(x) 
XE ~n, 

where f : ~n -. ~ is a continuously differentiable function. A trust-region algorithm 
for solving the above problem is an iterative procedure that computes a trial step as 
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an approximate solution to the following trust-region subproblem: 

(TRS) = { min_imize 
sub1ect to 

mc(s) = fe + 'ilf[ s + ½sTGes 
11s11 '.S be, 

where Ge is the Hessian matrix 'i7 2 fe or an approximation to it and be > 0 is a given 
trust-region radius. For complete survey see More [18] and the book of Dennis and 
Schnabel [7]. 

To assure global convergence, the step is required only to satisfy a fraction of 
Cauchy decrea,~e condition. This means that sc must predict via the quadratic model 
function me at least as much as a fraction of the decrease given by the Cauchy step 
on me, that is, there exists a constant r7 > 0 fixed across all iterations, such that 

(2.1) 

where s~P = -t~P'il /c and its step length 

l'f IIVfcll• ,: d ~JTG f 
VJ'f'GcVfc :s Ve an V C c'il C > 0 

otherwise. 

Thus, s~P is the steepest descent step for me inside the trust region. 
The form of (2.1) we use to prove convergence is given in the following technical 

lemma. More details about the role of this lemma in the convergence theory of trust­
region algorithms can be found in Carter [3], More [18], Powell [22], and Shultz, 
Schnabel and Byrd [25]. 

LEMMA 2.1. If the trial step sc satisfies a fraction of Cauchy decrease condition, 
then 

(2.2) 

Proof. See Powell [22]. D 
We end this section by stating Powell's powerful theorem for unconstrained trust­

region algorithms. The proof can be found in Powell [22]. More details about the 
convergence theory for trust-region algorithms for unconstrained optimization can be 
found in Fletcher [14], More [18], More and Sorensen [19], and Sorensen [26]. 

THEOREM 2.2. Let f : ~n -+ ~ be continuously differentiable and bounded below 
on the level set { x E lRn : f ( x) :S f ( x0 )}. Assume that the sequence { Gk} is uniformly 
bounded. If { Xk} is the sequence generated by any trust-region algorithm that satisfies 
(2.1} or (2.2), then: 

lim inf ll'v h II = 0. 
k-oo 

Notice that this theorem does not prove convergence to a solution to the un­
constrained problem, rather it proves a "weak" first order convergence. However, 
we do not see that as the point of this theorem, nor is it surprising given the weak 
assumptions on the sequence of local models. In other words, this theorem is not 
about convergence conditions on a quasi-Newton method. Such a theorem would be 
expected to be based on analyzing some way of estimating the Hessian, and we all 
know how important the method for estimating the Hessian is in the practical perfor­
mance of a trust-region algorithm. In the unconstrained case, the version of Powell's 
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theorem that says that the sequence of gradients converges to zero, requires the ad­
ditional hypothesis that the gradient is uniformly continuous. The algorithms here 
would probably require a uniformly continuous reduced gradient, a strengthening of 
the assumptions used here. The related algorithms mentioned earlier also prove weak 
first order stationary convergence, as do we. 

The point of this line of research is an analysis of the local quadratic-model/trust­
region paradigm for unconstrained optimization. In that context, this theorem says 
that the power of using a trust-region globalization is that if the first order information 
is correct, then little is required of the second order information. Specifically, the 
sequence of model Hessians need only be bounded. 

Our theory is analogous for problem (EQC). In this case, the local model of the 
problem is generally taken to be a linear model of the constraints and a quadratic 
model of the Lagrangian. The information in the local model depends on the La­
grange multiplier estimates as well as second order information. In this paper, we 
identify a way to extend the unconstrained paradigm to problem (EQC) for which 
the only requirement is boundedness of the sequence of model Lagrange multipliers 
and Hessians. 

The above discussion summarizes the point of this paper, which is not to give a 
convergence proof for a specific SQP approach using a specific Lagrange multiplier 
estimation technique and perhaps an exact merit function. 

3. The SQP algorithm. The Lagrangian function R: ?Rn x ?Rm -+ ?R associated 
with problem (EQC) is the function 

R(x, ,\) = f(x) + ,\T C(x), 

where ,\ = ( A1 , ••• , Am f is a Lagrange multiplier vector estimate. 
A common algorithm for solving problem (EQC) is the successive quadratic pro­

gramming algorithm. It is an iterative procedure. At each iteration, a step sQP and 
associated Lagrange multiplier AAQP are obtained by solving the following quadratic 
program 

{ 
minimize 

(QP) = subject to 
qc(s) = ½sT Hes+ V,,,{[s + Re 
VC'[s+Cc = 0, 

where the matrix He is the Hessian of the Lagrangian at ( Xe, Ac) or an approximation 
to it. 

Unfortunately, the SQP algorithm can not be guaranteed to work without modifi­
cation. There is a fundamental difficulty in the definition of the SQP step because the 
second-order sufficiency condition need not hold at each iteration. By this we mean 
that, the matrix He need not be positive definite on the null space of VCJ'; hence 
the QP subproblem may not have a solution or a unique solution. This difficulty will 
not arise near a solution of problem (EQC) if the standard assumptions for Newton's 
method hold at the solution. For this reason, the SQP algorithm usually performs 
very well locally. See Tapia [28] for more details. 

An effective modification that deals with the lack of positive definiteness on the 
null space is to use a trust-region globalization strategy. This takes us to the following 
section. 

4. Existing trust-region algorithms for (EQC). A straightforward way to 
extend the trust-region idea to problem (EQC) is to add a trust-region constraint to 
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the ( QP) subproblem to restrict the size of the step. So, at each iteration, we solve 
the following trust-region subproblem: 

{ 

minimize 
subject to 

qe(s) = ½sT Hes+ V xl[ s + fc 
VC'[s+Cc=0 
11s11 s; De. 

However, in this straightforward approach, observe that the trust-region constraint 
and the linearized constraints may be inconsistent, and thus the model subproblem 
will not have a solution. To overcome this difficulty, two main approaches have been 
introduced for dealing with the case when {s: VC;s +Cc= 0} n {s: llsil ~be}= 0. 
They are the tangent-space approach, and the full-space approach. We describe them 
briefly in the next section. More details can be found in Maciel [17]. See also Byrd, 
Schnabel and Shultz [2], Celis, Dennis and Tapia [4], Omojokun [21], Powell and Yuan 
[23], and Vardi [31] and [32]. 

4.1. The tangent-space approach. In this approach the trial step is deter­
mined as Sc = s: + s~ where s: is the normal component, that is s: is inside the 
trust region and in the normal direction to the null-space of the constraint Jacobian, 
N(VC'[), and s; is the component of the step in the tangent space of the constraints 
given bys~= Wc.s~, with .s~ E ~n-m and We is an n x (n - m) matrix whose columns 
form a basis for N(VC;). 

This gives two questions to be answered. We must say how to determine s~, and 
givens:, we must say how to determine s~. We proceed in reverse order. Given s~, 
we determine s~ by considering the transformed subproblem 

{ 

minimize qc(i. + s~. ) 
subject to VG; st = 0 

ll st ll '.She, 

where he = Jb; - 11s~ 112. We choose s~ by using one of the standard unconstrained 
trust-region trial-step selection methods on this reduced problem. 

These algorithms have the trust region capability of dealing quite well with zero 
or negative curvature in the tangent space of constraints. Thus, nonexistence of an 
SQP step at the current iterate is readily handled. 

To choose s:, Byrd, Schnabel and Shultz [2] and Vardi [31],[32] suggest relaxing 
the linearized constraints by replacing Cc by aCc where a E (0, 1], is chosen to ensure 
that the above trust-region subproblem is feasible. Thus, s: = -av'Cc(VC7'VCc)- 1 Cc. 
Observe that if a = 0 then VG'[ s+aCc = 0 contains s = 0 and hence for any a E (0, 1], 
there is some a" E (0, 1) for which {s: VC'[s + a"Ce = 0} n {s: llsll '.Sabe} =fa 0. 

The drawback of the above approach is that the step depends on the parameter 
a, which it is not clear how to choose. 

Omojokun [21], used this approach to compute a trial step that does not depend 
on a by choosing s: to be the step that solves the following problem 

for O <a< 1. 

{ 
minimize 
subject to 

½IIVC;s + Ccll2 
!Isl! '.S abc 

It might appear that Omojokun has traded the choice of a for the choice of a, 
but in fact, a is easy to choose. Some n·ominal value like a= 0.8 is used throughout 
and the particular value of a at a given iteration is allowed to be in some uniformly 



6 J. DENNIS, M. EL-ALEM. AND M. MACIEL 

bounded strict subinterval like (0.7, 0.9). This subinterval corresponds to stopping 
criteria on a trust-region algorithm to solve for s~. See More [18], More and Sorensen 
[19], or Dennis and Schnabel [7]. 

4.2. The full-space approach. The other approach to overcoming the problem 
of inconsistency is the full-space approach. Algorithms based on this approach com­
pute sc at once in the whole ~n space instead of considering the decomposition of the 
trial step. This has the advantage of avoiding the computation of a Moore-Penrose 
pseudoinverse solution. 

The first example we know of this category of trust-region subproblems is the 
CDT subproblem proposed by Celis, Dennis and Tapia [4]. Instead of considering 
the linearized constraints "ilC'[ s + Cc = 0, they replace it by a particular inequality: 
IIVC;s +Cell~ 8c, where 8c E ~- The CDT subproblem can be written as follows 

{ 

minimize 
subject to 

qc(s) 
IIVC[s +Cell~ 0c 
llsll ~ De. 

The key to the CDT subproblem (and its variants) is the choice of 8c. For more 
details, see Williamson [33]. Celis, Dennis, and Tapia [4] choose 8c based on a fraction 
of Cauchy decrease condition on IIVC'[s+Ccll2. They ask the step to satisfy, for some 
r1 E (0, l], 

This can be done by choosing 

( 4.1) 

where s~P solves the problem, 

{ 

minimize 
subject to 

½IIVC'{s + Ccll2 
llsll ~ rbc 
S = -t"ilCcCc, 

Note that in this case the CDT subproblem minimizes the quadratic model of£ 
over the set of steps inside the trust region that gives at least r 1 times as much decrease 
in the Rrnorm of the residual of the linearized constraints as does the Cauchy step. 

In order to prevent the possibility of a single point for the subproblem and obtain 
a meaningful trust-region subproblem, it is suggested that r < 1, for instance r = 0.8. 

5. A general trust-region algorithm. In this section we describe a very in­
clusive class of trust-region algorithms. 

The typical form of trust-region algorithms for solving (EQC) is basically as 
follows: At the current point Xe with associated multiplier estimate Ac, a step Sc 

is computed by solving some trust-region subproblems, and a Lagrange multiplier 
estimate A+ is obtained by using some scheme. The point x+, where x+ = Xe+ sc, 
is tested using some merit function to decide whether it is a better approximation 
to a solution x*. Such merit functions often involve a penalty parameter, which is 
updated using some scheme. The trust-region radius is then adjusted and a new 
quadratic model is formed. 

In our requirements on the trust-region algorithm, the way of computing the 
trial steps is replaced by some conditions the steps must satisfy and the estimates 
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of the Lagrange multiplier vectors and the Hessian matrices need only be uniformly 
bounded. This allows the inclusion of a wide variety of trust-region algorithms and it 
is exactly in the spirit of Powell's Theorem 2.2 for unconstrained trust-region methods. 
In Section 9, we will present an example algorithm that satisfies these mild conditions. 

5.1. Computing the trial steps. We first write the trial step as Sc = s! + s~, 
where s! and s; are respectively the tangential and a quasi-normal component. We 
do not require that s; be normal to the tangent space. 

We will require that the components s; and s! satisfy a fraction of Cauchy de­
crease condition on appropriate model functions. At the current iterate, if Cc "I- O, 
then we will require that the quasi-normal component gives at least as much decrease 
as s~P = -n~Pv'CcCc on the quadratic model of the linearized constraints in a trust 
region of radius roe, where the step length n~P is given by 

UVCcCcjj 2 

l!VC] VCcCclJ 2 

h, 

'f UVCcCcU
3 8 

l IIVCJ'VCcCcll 2 ~ C 

otherwise, 

where 8c = roe and O < r < 1. In words, the step s~ is chosen from the set of steps 
that satisfy a fraction of Cauchy decrease condition on the quadratic model of the 
linearized constraints inside !lsll ~ 8c. Equivalently, s; lies in the set 

where (0~cd)2 is given by (4.1). Because the quasi-normal components; is not required 
to be normal to the tangent space, a condition on the step is needed to ensure global 
convergence. In particular, the following condition is required 

(5.1) 

where K 1 is some positive constant independent of the iteration. 
If s; is normal to the tangent space, this condition holds ( see Lemma 7 .1) as long 

as K 1 is greater than a uniform bound on the norm of the right inverse for v'C(xf. 
When s; is not normal to the tangent space, we do not suggest choosing K 1 and 
enforcing (5.1). Rather, we suggest (as in Section 9) that (5.1) is enforced naturally 
by any reasonable algorithm for computing a linearly feasible point. 

We will deal with the quasi-normal components of the trial steps assuming that 
they satisfy (5.1). We are indebted to Robert Michael Lewis for informing us of the 
effectiveness of this feature in the algorithm which he has implemented to solve a 
PDE inverse problem [6]. Specifically, this allows special linear algebra developed for 
simulation constraints to be used in place of prohibitively large least-squares solutions. 

Now we use the quasi-normal component to pick a linear manifold Mc parallel 
to the null-space of the constraints in which we will select the tangential component. 
Let Mc= {s: v'C'[ s = v'C'[s~}. Thus, Mc n {s =st+ s~: !Is\\~ De}-/- 0. 

Observe that, in the set Sc, we are taking a fraction of De, in order to forestall 
the case that Mc lies too close to the boundary of the trust region of radius De. 

On the manifold Mc, we consider a quadratic model qc(s) of the Lagrangian 
function associated with problem (EQC). Then, when W.;v'qc(s~) "I- O, we ask the 
tangential component to satisfy a fraction of Cauchy decrease condition from s~ on 
qc(s) reduced to Mc. That is Sc = s! + s~ E Yen Mc, where 
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for some (J" > 0, and 

(5.2) •'.' = { 
if 11w;Vqc(•:JH 2 l!WcW,;Vqc(•:)U < 6-

Vqc(•:,')TWcHcWJ'V~(·:o') - e 

and v'qc(.s~fWcffcWe v'qc(s~) > 0 
otherwise, 

where He = W7' He We is the reduced Hessian matrix and 8c is the maximum length of 
the step allowed inside the set Mc n {s = 1-l + s;: llsll:::; be} in the negative reduced 
gradient direction -W.;v'qc(s~). 

It is easy to see that, 8c satisfies 

(5.3) 

We have intentionally not stated the computation of the tangential component as a 
trust-region subproblem. Condition 5.2 is a lopsided condition in the sense that 8c 
is direction dependent because the quasi-normal step is not the center of the natural 
trust region for the reduced quadratic. A better step might come from minimizing the 
reduced quadratic in Mc n { s =st+ s~ : llsll :::; b-c}, and an ideal step would probably 
come from minimizing the reduced quadratic in Mc n {s =st+ s~ : llsll :::; be}. In 
any case, both result in steps that satisfy our conditions. 

We have defined the tangent space Cauchy step along -W.;v' qe ( s~ ), which is the 
steepest descent direction for qc(.s~ + We.5t) in the f2 norm. The steepest descent 
direction in the II We· II norm would be -[We wn- 1 W;v'qc(s~ ). Of course, as long as 
[We w,!]- 1 is uniformly bounded, which seems a reasonable assumption, then either 
step satisfies a fraction of Cauchy decrease condition with respect to the other, and our 
theory holds for either. We do not need this boundedness assumption for our choice of 
Cauchy step. For a particular application, the choice of variables may be determined 
by which form of the reduced problem is easiest to precondition. See the discussion 
after Algorithm 9 .2. For the problems of interest to us, -[We W.;']- 1 W.; v' qe ( s~) would 
be an extremely expensive - or impossible - direction to compute. 

5.2. Updating the model Lagrange multiplier and the model Hessian. 
The method for estimating the multiplier Ac is left unspecified. We only require 
that the sequence of estimates { ,\k} be bounded. Any approximation to the Lagrange 
multiplier vector that produces a bounded sequence can be used. For example, setting 
,\k to a fixed vector ( or even the zero vector) for all k is valid. Similarly we require 
only boundedness of the sequence { Hk} of approximate Hessians. Thus all Hk = 0 
is allowed. Note that, here, we are not addressing the question of the choice of the 
Lagrange multiplier and Hessian estimates that produce an efficient algorithm. We are 
addressing some weak assumptions on those estimates { ,\k} and { Hk} that produce a 
globally convergent algorithm. For example, our theory applies to a form of successive 
linear programming. 

5.3. The choice of the merit function. Let Xe be the current iterate. We 
need to decide if a trial step chosen to satisfy s~ E Sc and Sc = s~ + s! E Yen Mc is a 
good step, that is, if the step sc gives a new iterate x+ that is a better approximation 
than Xe to a solution, say x*, of (EQC). In constrained optimization, the meaning 
of better approximation should consider improvement not only in / but also in the 
constraint violation IICll2- The evaluation of the trial step requires the choice of 
a merit function, which usually involves the objective function and the constraint 
violations. 
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Here, we use the augmented Lagrangian as a merit function 

(5.4) .C(x, A; p) = f(x) + AT C(x) + pC(xf C(x), p> 0. 

This function has been used as a merit function in trust-region algorithms also by 
Celis, Dennis, and Tapia [4], El-Alem [9], [10] and Powell and Yuan [23]. 

El-Alem [10] and Powell and Yuan [23] used the formula A(x) = -(v'C(xfv'C(x))- 1 

v'C(x f v' f(x) for updating the Lagrange multiplier. For this particular choice of the 
multiplier, A is a function of x and (5.4) is an exact penalty function. This means that 
if pis sufficiently large, then the solution to problem (EQC) will be an unconstrained 
minimizer of the penalty function. See Fletcher [12], [13]. 

Celis, Dennis, and Tapia [4] and El-Alem [9], on the other hand, with a particular 
choice of the multiplier, have treated the multiplier as an independent parameter 
that really only enters in the merit function for accepting the step and updating the 
other parameters in the algorithm. In other words, one never explicitly uses the merit 
function in computing the optimization step; it is used only for evaluating the steps. 
The effect on the trial step computation of the multiplier estimates is in the tangential 
component through the estimate of the Hessian of the Lagrangian. This is a major 
difference between merit function roles in trust region algorithms and in line-search 
algorithms. 

In the context of a line-search globalization strategy, Gill, Murray, Saunders, 
and Wright [15] and Schittkowski [24] have considered the augmented Lagrangian as 
a merit function, but also as an objective function for choosing the step along the 
direction of search. They have treated the multiplier as an independent variable and 
proved global convergence for their algorithms. 

In summary, we believe that having an exact penalty function as a merit function 
is, of course, a desirable property, especially in line-search algorithms. On the other 
hand, in practice, one never really knows anyway that the penalty constant has been 
chosen so that the exactness property holds. In [8], [9] global convergence for a 
particular trust-region method is shown with no assumption of exactness. 

In this work, the choice of the multiplier estimate is left open and A = 0 is allowed, 
in which case one is using the R2 penalty function as a merit function. 

5.4. Evaluating the trial step. Let Sc be a trial step chosen to satisfy the 
conditions of Section 5.1. We will accept it if sufficient improvement is produced in 
the merit function. To measure this improvement we compare the actual reduction 
and predicted reduction in the merit function from the current iterate Xe to the new 
one x+ = Xe + Sc, The actual reduction is defined by 

(5.5) .C(xc, Aci Pc) - £(x+, A+; Pc) 

f(xc, Ac) - f(x+, A+)+ Pc(IICcll 2 
- IIC+ll 2

), 

and the predicted reduction is defined to be 

(5.6) 

where Q( Sc, ~Ac; Pc) = £(xc, Ac)+ v' xf(xc, Ac f Sc+ ½sI He.Sc+ (~Ac f (Cc+ v'CJ' Sc)+ 
Pc(IICc + v'C,?'scll 2

). 

We will accept the step and set x+ = Xe+ sc if ~::~: ::::: ry1 where r11 E (0, 1) is a 
fixed constant. A typical value for r/1 might be 10-4 . 
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5.5. Updating the trust-region radius. The strategy that we follow for up­
dating the trust-region radius is based on the standard rules for the unconstrained 
case. More details can be found in Dennis and Schnabel [7] or Fletcher [14]. How­
ever for our global convergence theory, we use a modification due to Zhang, Kim, 
and Lasdon [34] (see also El Hallabi and Tapia [11]) of the strategy of updating the 
trust-region radius. The reader will see that this modification is of no importance 
in practice; it is merely an analytic formality. At the beginning we set constants 
8max 2: 8min and each time we find an acceptable step, we start the next iteration 
with a value of 8+ 2: 8min. In short, 8c can be reduced below 8min while seeking an 
acceptable step, but 8+ 2: 8min must hold at the beginning of the next iteration after 
finding an acceptable step. The following is the scheme for evaluating the step and 
updating the trust-region radius. 

ALGORITHM 5.1. Evaluating the step and updating the trust-region ra­
dius 

Given the constants: 0 < o:1 < 1, 0:2 > 1 and 0 < T/I < T/2 < 1 and 8max > 8c > 
8min > 0. 

While Ared, < 7/1 (* e g T/1 - 10-4 *) Predc • • -
Do not accept the .~tep. 
Reduce the trust-region radius: 8c +- 0:1 Ilse II (* e.g. 0:1 = 0.5 *}, and 
compute a new trial step Sc. 

End while 
If 171 ~ ;~~~~ < 7/2 (* e.g. r72 = 0.5 *) then 

Accept the step: x+ = Xe+ Sc. 

Set the trust-region radius: 8+ = max{ 8c, 8min}. 

End if 
If Ar,d" > 11 then 

Predc - 2 

Accept the step: x+ =Xe+ Sc, 

Increase the trust-region radius: 

(5.7) 

(* e.g. 0:2 = 2 *). 
End if 

It is worth noting that in practice one might have another branch in which some 
17½ E (111,112) is used to reduce the trust-region radius if T/I ~ ;;:~; ~ T/½· A typical 
value for 7/! is .1, and the motivation is to try to avoid the expense of a next unaccept-

2 

able trial step. Another modification sometimes used in practice is to allow internal 
doubling. This can be viewed loosely as letting o:2 in (5.7) depend on Apredd". See 

rec 
Dennis and Schnabel, page 144, [7]. The present analysis would allow these niceties, 
but to avoid further complication, we do not include them here. Observe that in (5.5) 
and (5.6) we have expressed the quantities Ared and Pred as functions of p. Thus, 
although Pc does not effect the choice of the trial step sc, we need to determine Pc be­
fore deciding the acceptance of the step sc. The right choice of the penalty parameter 
is one of the most important issues for algorithms that use the augmented Lagrangian 
as a merit function. This takes us to the following section. 

5.6. The penalty parameter. Numerical experience with nonlinear program­
ming algorithms that use the augmented Lagrangian as a merit function has shown 
that good performance of the algorithm depends on keeping the penalty parameter 
as small as possible. See Gill, Murray, Saunders and Wright [16]. On the other hand, 
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global convergence theories developed by El-Alem [8], [9] and Powell and Yuan (23], 
require that the sequence {Pk} be nondecreasing. El-Alem [8] requires that p be cho­
sen so that the predicted decrease in the merit function be at least as much as the 
decrease in llv'C.;-5 + Cc!l2, 

We consider, as an update formula for the penalty parameter, El-Alem's scheme 
given in [9], since it ensures that the merit function is predicted to decrease at each 
iteration by at least a fraction of Cauchy decrease in the quadratic model of the 
constraints. This indicates compatibility with the fraction of Cauchy decrease condi­
tions imposed on the trial steps. In addition, good performance was reported when 
implementing this scheme. See Williamson [33]. It can be stated as follows: 

ALGORITHM 5.2. Updating the penalty parameter 
1. Initialization 

Set P-1 = 1 and choose a small constant {3 > 0. 
2. At the current iterate Xe, after Sc has been chosen: 

Compute 

Predc(sc; P-) = qc(O)-qc(sc)-~,\y (Cc+v'C[ sc)+P-[!1Cc!l 2-llv'C[ sc+CclJ2]. 

If Predc(.sc; P-) 2:: P2 [IICcll2 - llv'C;sc + Ccll2l, 
then set Pc = P- , 

else set Pc = Pc + (3, where 

_ 2[qc(sc) - qc(0) + ~-'I(cc + 'vC'[ Sc)] 
Pc= IICcll 2 - ll'vCJ' Sc+ Ccll 2 • 

End if 
The initial choice of the penalty parameter p_ 1 is arbitrary. However, it should 

be chosen consistent with the scale of the problem. Here, we take p_ 1 = 1 for 
convenience. 

An immediate consequence of the above algorithm is that, at the current iteration, 
we have 

(5.8) 

5.7. Termination of the algorithm. We use first order necessary conditions 
for problem (EQC) to terminate the algorithm. The algorithm is terminated if 
IIW.;'vxCcll + IICcll :S €tol where €tol > 0 is a pre-specified constant and We is a 
matrix with columns forming a basis for the null space. We require that {Wk} be 
uniformly bounded in norm for all k. 

6. Statement of the algorithm. We present a formal description of our class 
of nonlinear programming algorithms. 

ALGORITHM 6.1. The NLP-algorithm. 
step O. (Initialization) 

Given xo, Ao, compute Wo. 
Choose bo, Dmin, Dmax, and €tol > 0. 
Set P-1 = 1 and (3 > 0. 

step 1. {Test for convergence) 
If IIW.;'vxC(xc)II + IJC(xc)II :S €to/ 

then terminate. 
End if 
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step 2. ( Compute a trial step) 
If Xe is feasible then 

else 

a) find a step s! that satisfies a fraction of Cauchy decrease condition 
on the quadratic model qc(s) of the Lagrangian around Xe. (This 
might be done by solving a trust-region subproblem since s; = 0 is 
available. See Section 5.1) 

b) Set Sc= s~. 

a) 
(* C(xc) -:f. 0 *) 

Compute a quasi-normal step s; that satisfies a fraction of Cauchy 
decrease condition on the square norm quadratic model of the lin­
earized constraints. {See Section 5.1) 

b) If W.;v'q(s~) = 0 
then set s~ = 0 

else find s~ that satisfies a fraction of Cauchy decrease condition 
on the quadratic model qc(s~ + s) from s~. (Perhaps not by 
solving a specific trust-region subproblem. See Section 5.1) 

End if 
c) Set Sc= s~ + s~. 

End if 
step 3. (Update Ac) 

Choose an estimate A+ of the Lagrange multiplier vector. 
Set LlAc = A+ - Ac. 

step 4. (Update the penalty parameter) 
Update p_ to obtain Pc by using Algorithm 5.2. 

step 5. (Evaluate the step) 
Compute 

Evaluate the step and update the trust-region radius by using Algo­
rithm 5.1. 
If the step is accepted 

then update He and go to step 1. 
else 

go to step 2. 
End if 

The above represents a typical trust-region algorithm for solving problem (EQC). 
We leave the way of computing the trial steps undefined. This will allow the inclusion 
of a wide variety of trial step calculation techniques. For similar reasons we left the 
way of updating the Lagrange multiplier vector and the Hessian matrix undefined. 

In the next two sections we prove global convergence of the above algorithm class. 

7. The global convergence theory. Before beginning our global convergence 
theory, let us give an overview of the steps that comprise this theory. 

The trial step is chosen to satisfy a sufficient predicted decrease condition, the 
fraction of Cauchy decrease. Note that in our algorithm, we assume that the tangential 
and the quasi-normal components of any trial step each satisfy this condition. In 
Lemma 7.2, we will express this in a technical form similar to inequality (2.2). 

The definition of predicted reduction is shown to give an approximation to the 
actual reduction that is accurate to within the square of the trial step length times 
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the penalty parameter. This is proved in Lemma 7.5. However, we emphasize again 
that the step is not chosen to maximize the predicted decrease. 

We introduce some notation for the quantities computed during the trial steps. 
We have not introduced this notation up to now because it obscures the simplicity of 
the algorithm. However, in the analysis that follows we need to show some properties 
of every trial step, not just the successful steps {sk}. Therefore, let 8i, sL and Pi 
denote the quantities set by Algorithm 6.1 as it searches for an acceptable step. Thus, 
82 = 8k at the first trial step of the kth iteration, sZ is set by the first time though 
step 2, and PZ is set using P"i: 1 = Pk- I the first time through step 4. If the trial step si 
is acceptable, then sk = sj,, Pk = pi,, and 8i is updated to become 8k+I. In short, the 
algorithm is simpl~r to explain and code if one counts only successful steps. However, 
for the analysis, one needs a way to refer unambiguously to all the trial steps. 

The model Lagrange multipliers also may depend on i. However, to keep the 
notation as simple as possible, we do not make this dependence explicit. 

The penalty parameters Pi are shown to be bounded for ftol > 0 as long as the 
algorithm does not terminate. The technique is to prove that, at any iteration k 
at which the penalty parameter is increased, we have: the product of the penalty 
parameter Pi and the trust-region radius 8i is bounded by a constant that does not 
depend on k or i (this is done in Lemma 7.10); and the sequence of the trust-region 
radii 8i is shown to be bounded away from zero (this is shown in Lemma 7.11). The 
proof of this lemma shows the crucial role that is played by setting the trust region to 
be no smaller than Dmin after every acceptable step. See Section 5.5. Finally, under 
the assumption that the algorithm does not terminate, the penalty parameter Pk is 
shown to be bounded. The proof is given in Lemma 7.12. 

The algorithm is shown to be well-defined in the sense that at a given iterate, it 
either terminates, or finds an acceptable step after finitely many trials. This result 
is proved in Theorem 8.1. Using the above results and Theorem 8.1, the trust-region 
radius is shown to be bounded away from zero. The proof is given in Lemma 8.2. 

Finally, in Theorem 8.4, it is shown that for any E:to/ > 0, the algorithm always 
terminates, i. e., the termination condition of the algorithm will be met after finitely 
many iterations. 

7.1. The problem assumptions. We start by stating the assumptions under 
which global convergence is proved for Algorithm 6.1. Assumptions Al - A5 (see 
below) are used by Byrd, Schnabel, and Shultz [2], El-Alem [8], [9], [10] and Powell 
and Yuan [23] and their particular choices of Lagrange multiplier vectors satisfy A6. 

Let the sequence of iterates { x,.} generated by the algorithm satisfy: 
Al. For all k, Xk and Xk + si En, where n is a convex set of )Rn. 

A2. f, CE C 2(n). 
A3. rank(v'C(x)) = m for all x En. 
A4. f(x), v'f(x), v'2 f(x), C(;i::), v'C(x), (v'C(xfv'C(x))- 1 , W(x), and 

v'2 c; ( x) for i = 1, · · · , m are all uniformly bounded in n. 
A5. The matrices H,., k = 1, 2, .. are uniformly bounded. 
A6. The vectors .X,., k = 1, 2, .. are uniformly bounded. 

Assumption A4 means that for all x E n, there exist positive constants v, v0 , v1 , 

V2, V3, V4, V5, and VG such that: 11/(x)II :S v, llv'f(x)II :S Vo, IIC(x)II :S v1, IIVC(x)II :S 
V2, ll(v'C(xfv'C(x))- 1 11 :S V3, llv'2 f(x)II :S V4, llv'2c;(x)II :S V5 'vi= 1,··· ,m, and 
//W(x)// :S V6-

An immediate consequence of Assumptions A4 and A5 is the existence of a con­
stant V1 > 0 that does not depend on k such that IIH,.1/ ~ v1, l!W[ H,.11 :S v1, and 
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IIW[ Hk Wkll::; 1/7. 

Assumption A6 means that for all x E n, there exists a constant v8 > 0 that does 
not depend on k, such that I I Ak 11 ::; 1/g. 

Th"' following thr':'':' subsections ar':' d':'Vot':'d to pr':'senting l':'mmas ne':'ded to prove 
global convergence. 

7.2. Properties of the trial step. The following lemma shows that condition 
(5.1) holds for the normal component sj, n of s~ when it is truly normal to the tangent 
space. 

LEMMA 7.1. At the current iterate Xk, let the trial step components~ n actually 
be normal to the tangent space, then under the problem assumptions, there exists a 
constant K1 > 0 independent of the iterates, such that 

(7.1) 

Proof. Because s;. n is actually normal to the tangent space, we have 

lls~ nil 11vck(VC[v'Ck)- 1VC[ s~II 
11vck(v'Cfv'Ck)-1 (Ck + vcf st - C1,)II 

< 11vck(vc[vck)-1 ll[IICk + vc[s~II + IICklll. 

Now, using the fact that IICk + VC[sill::; IICkll, we have 

The rest follows from the problem assumptions. D 
The following lemma ':'Xpresses in a workable form the pair of fraction of Cauchy 

decrease conditions imposed on the trial steps. 
LEMMA 7.2. Let the trial steps satisfy the conditions given in step 2 of Algorithm 

6.1, then under the problem assumptions there exist positive constants K 2 , K3 , and 
K4 independent of the iterates such that 

and 

(7.3) 

Proof. The proof is an application of Lemma 2.1 to the two subproblems, followed 
by a use of the problem assumptions and (5.3). D 

Now we deal with the trial steps assuming that they satisfy inequalities (7.2) and 
(7.3). In what follows, we will use implicitly that VC[s',. n = VG[ s~. 

LEMMA 7.3. Under the problem assumptions, there exists a constant K 5 > O 
independent of the iterates, such that 

(7.4) 
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Proof. Consider 

qk(O)-qk(skin) v' £Tin 1( ,n)TH in - x k 81, - 2 81, kSI, 

> -IIV,,£,.11 llsi. nll- ~IIH,.11 llsi. nll2 

1 n n 
-(llv',,£kll + 211Hkll llsi. ID llsi. II-

Using (5.1), the fact that llsi nll < bmax, A1, and~,\,. are bounded, IIC,. + VG[ si,II :S 
IIC,.11, and the problem assumptions, we have 

·n T T. 
q1,(0) - q1,(si. ) - ~,\k (C1, + v'Ck si,) 2:: -KsllC,.11, 

and we obtain the desired result. 0 
The following lemma gives an upper bound on the difference between the actual 

reduction and the predicted reduction. 
LEMMA 7.4. Under the problem assumptions, there exist positive constants 

K6, K1 and Ks, independent of k, such that 

Proof. The proof follows directly from El-Alem [9]. 0 
If the penalty parameter were uniformly bounded, the next lemma would show 

that the predicted reduction provides an approximation to the actual merit function's 
reduction that is accurate to within the square of the step length. 

LEMMA 7.5. Under the problem assumptions, there exists a constant K 9 > 0 that 
does not depend on k, such that 

(7.6) 

Proof. The proof follows directly from the above lemma and the fact that llsi II 
and IIC,.11 are bounded. 0 

7.3. The decrease in the model. This section deals with the predicted de­
crease in the merit function produced by the trial step. We start with a lemma. 

LEMMA 7.6. Let si be generated by Algorithm 6.1. Then under the problem 
assumptions, for any positive p, the predicted decrease in the merit function satisfies 

~2 IIW[v'qk(si, n)II min{K4IIW[v'qk(si n)II, l - r bn 
v6 

(7.7) - KsllC,.11 + P[IICkll2 - IIVC[si + c,.112], 

where K 5 is as in Lemma 7.3. 
Proof. We have 

. T T' 
Qk(O) - Qk(sj.) - ~,\k (C,. + v'Ck sj.) 

+P[IIC,.11 2 -11vc[ si + c,.11 2
] 

( Qk ( si, n) - Qk ( si)) 
·n T T . 

+(qk(O) -·q,.(sj. )) - ~,\k (Ck+ VG,. si.) 

+ P[IIC,.11
2 

- IIVC[si + Ckll 2
]. 
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From (7.3) and Lemma 7.3, we have 

Hence the result is established. D 
If Xk is feasible, then the predicted reduction does not depend on Pk, so we take 

Pk as the penalty parameter from the previous iteration. The question now is how 
near to feasibility must an iterate be in order that the penalty parameter need not be 
increased. The answer is given by the following lemma. 

LEMMA 7. 7. Assume that the algorithm does not terminate at the current iterate. 
If IICkll ~ obi where a satisfies: 

(7.8) 

then, for any positive p, 

1- r } -} 
1/5 

Predk(si;P) ~ ~
4 

IIW,;v'qk(si n)/1 min{K4IIW,;v'qk(si n)II, l - r bt} 
1/5 

(7.9) + P[IICkll2 - llv'Cf si + Ckll 2
]. 

Proof. If the algorithm does not terminate at Xk, then IIW,;v' xfkll + IICkll > €to/, 

and since IICkll ~ obl with o ~ 3~'~0~x, therefore, IICkll ~ ¥ and the reduced 

gradient satisfies IIW,;v' xfkll > fetal· Now, 

T . n T . n 
IIWk v'qk(si, )II I/Wk (v'xfk + Hksk )II 

T T · n > //Wk v'xfk// - /lWk Hks',. II 

> ~€to/ - 111K1 IICkll ~ ~cto1 - 111K1obl. 

But since o < 3 ; ~ , it follows that 
- v7 i max 

From Lemma 7.6, we have 

a T ·n 1-r · T ·n 
-
2 

IIWk v'qk(s',. )I/ min{--bi, , K4IIWk v'qk(s',. )II} 
1/5 

- K5IICkll + P[IICkll2 - llv'Cfsi. + Ckll2]­

Since IIW[v'q(si n)II > ½cto/, we have 
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and since 

we have 
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> 

o: < -- mm --- ---<:T€tol . { K4€tol 1 - r} 
- 12K5 38max ' V5 ' 

~IIW[Vq,.(si, n)II min{K4 jjW[Vq1c(s~ n)II, 
4 

+ P[IIC1cll 2 
- IIVC[s~ + C1cll2]. 

This completes the proof. D 
Inequality (7.9) with p = Pt-i guarantees that if the algorithm does not terminate 

and if IIC1cll :S o:8i, then the penalty parameter at the current trial step does not need 
to be increased in step 2 of Algorithm 6.1. This is equivalent to saying that the 
possible increases in the penalty parameter will occur only when II Ck II > o:8i. 

LEMMA 7.8. Given €to/ > 0, there exists K 10 > 0, which depends on €to/, but not 
on k or i, such that at any trial step s~ of iteration k at which the algorithm does not 
terminate and 11 Ck I I :S o:8i where o: is as in Lemma 7. 7, the following inequality holds 

(7.10) 

Proof. Since the algorithm does not terminate and IIC1cll :S o:8i, where o: is as in 
(7.8), then from (7.9) and using a similar argument as in Lemma 7.7, we can write 

P d ( i i ) <T€tol • { 1 - r ci K4€to/ } <T€tol • { 1 - r K4€to/ } ci re k s,.;pk 2: --mm --v,., --- > -- mm --, --- o,.. 
12 V5 3 - 12 V5 38max 

Defining 

<T€tol • { 1 - r· K4€to/ } K10 = -- min --, --- , 
12 V5 38max 

we have Pred,. ( si; Pi) 2: K 10 oi and this is the desired result. D 
In the next section we will discuss the role of the penalty parameter in the global 

convergence of the nonlinear programming algorithm. 

7.4. The behavior of the penalty parameter. In this section we discuss the 
behavior of the penalty parameter. The crucial result here is that the sequence { 8i} of 
trust-region radii is bounded away from zero at those iterations for which the penalty 
parameter is increase at some trial step. This will allow us to conclude that the 
sequence {p~} of penalty parameters is bounded. 

According to the rule for updating the penalty parameter, we use the penalty 
parameter from the previous trial step if the amount of predicted decrease with the 
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old penalty parameter is at least a fraction of the decrease in the quadratic model of 
the linearized constraints, that is, if 

(7.11) 
•-1 

Predk(si;pt 1
) 2: Pk

2 
[l[Ck[[ 2 

- [[Ck+ v'C[sil!2J, 

then pi, = Pt-•. Otherwise, we use pj, = Pk i + /3, which enforces (5.8). See Section 
5.6. 

LEMMA 7.9. Let {pi.} be the sequence of penalty parameters generated by the 
algorithm, then 

1. {pi,} forms a nondecreasing sequence. 
2. If the penalty parameter is increased, it will increase by at least (3. 
3. If the penalty parameter is not increased, then inequality (7.11) will hold. 

Proof. The proof is straightforward. 0 
LEMMA 7.10. Let k, i be any pair of indices such that Pi is increased at the ith 

trial step of the kth iteration. If the algorithm does not terminate at Xk, then there 
exists K11 > 0 which depends on €to/ but does not depend on k or i, such that for 
every j 2: i, 

(7.12) 

Proof. If Pi is increased at the ith trial step of the kth iteration, then it is updated 
by the rule 

Hence, 

i 

p; [[[Ck [[ 2 
- [[Ck + v'C[ sin 112] · T T · n [qk(sj,) - qk(O)] + ~Ak (Ck+ v'Ck sj, ) 

+i[l1Ck[[ 2 
- [[Ck+ v'C[si nli2] 

[qk(si) - qk(si n)] 
. n T T . n 

+ [qk(sj, ) - qk(O)] + ~Ak (Ck+ v'Ck si, ) 
/3 r·n r·n2 + 2[-2(v'CkCk) si, - [[v'Ck si, II ]. 

Applying (7.2) to the left-hand side, and (7.3) and Lemma 7.3 to the right-hand side, 
we can obtain the following: 

< -~[[W[v'qk(si n)[[min {K4[[W[v'qk(si n)[[, l - r bi} 
2 ~ 

+ K5 l!Ck II - {3(v'Ck ck f sin -111vc[ sin 11
2 

< K5[[Ck[[ - 8(v'CkCk fsi, n 

< K5[[Ck[[ + 8[[v'Ck[i ilCk[[ [[si nil 
< (K5 + B[[v'Ck [j j[si n [[)[[Ck[[. 
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Then, 

Pt ~
2 

min {rl5l, K3IICkll} ~Ks+ f3v215max· 

Since at the current trial step the penalty parameter increases, then from Lemma 7. 7 
we have IICkll > o:15i,. Hence 

• K2 . { d K' i:i } < K i~ i: Pk 2 mm ruk , 30:uk _ 5 + 1JV2umax 

and 

Now, if j ~ i, then 15{ :S bi, Assume without loss of generality that I,. = PL 
i.e., that the ith trial step was the most recent increase with respect to j. Then 
Pi 15{ ~ Pi l5l, and defining 

, 2Ks + 2/3v215max 
Kn= K . { K }' 2 mm r, 30: 

we obtain the desired result. D 
The following lemma gives a lower bound for the sequence {bi} for those iterates 

at which the algorithm does not terminate and the penalty parameter is increased. 
In the next section, we will be able to do away with the assumption that the penalty 
parameter is increased. 

LEMMA 7.11. Let the penalty parameter be increased at the ith trial step of the kth 
iteration. Then under the problem assumptions, if the algorithm does not terminate, 
there exists J, which depends on c:101 but does not depend on the iterates, such that 

(7.13) 

Proof. To begin, we note that if i = 0, i.e. we are at the first trial step of iteration 
k, then by Algorithm 5.1. 15k can not have gotten smaller than bmin during the course 
of the iteration. Thus, we can restrict our attention to the case where i ~ l. 

Our proof will consist in showing the existence of J such that bi ~ b whether or not 
si is acceptable. Remember that for all the rejected trial steps we have 15{ +I = 0:1 llsl, II­

We consider two cases: 
i) IICkll > o:15{ for all j = 0, ... , i. 

ii) IICkll > o:15t does not hold for some j between O and i. 

i) Consider the case where the constraint violation I I Ck I I > o:15{ for all j = 0, · · · , i. 
We have from Lemma 7.5, 

IAredk(s{;I,.)- Predk(s{;l,.)I ~ K9,l,.lls{ll2. 

Now since IICkll > o:15i, then from the way of updating Pi and using inequality (7.2), 
we have 
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Hence 

(7 .14) 

J. DENNIS, M. EL-ALEM , AND M. MACIEL 

IAred1,(s{;p{) - Pred,.(s{;fJi)I 

Pred1, ( s{; pf,) < 

Since all the steps .s{ for j = 0, · · · , i - l are rejected, it must be the case that 

(7.15) l-111 < 
I 

Ared,.(s{; ~) _ 11 · 

Pred1,(sl,.;il,.) 

So from (7.14) and (7.15), we have 

(7.16) 

(7.17) ,; _ II i-III [(1- 171)K2 min{aK3, r}] ,o 
uk - a1 s,. 2 a1 

2
K

9 
au,.. 

Now, according to the rule for updating the trust-region radius, we know that 82 2: 
bmin· Then 

(7.18) 

ii) If IIC,.11 > abt does not hold for all j = 0, · · ·, i, then there exists a largest index/, 
0 :'.S / < i, such that IIC,.11 :'.Sabi holds. 

If i = I+ l then, from the way of updating the trust-region radius, bl = a1 llsi 11· 
On the other hand, if i =p I+ 1, since IIC,. jj > ab{, for all j = l + 1, · · ·, i, then from 
(7.16) we have 

Now, because s~-l and st+' are rejected trial steps and using IIC,.11 > abi+', we can 
write 

bi a1 llst-' 11 
> a, (1- 111)K~~:{aK3, r} IIC,.II 

> (1 - 1J1)K2min{aK3, r} 
8

1+1 
a1a 2Kg ,. 

(7.19) > 2 (1 - 11,)K2min{aK3, 1·} II 'II 
a1a 2Kg s,. . 

So, if we set 
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then we have 

(7.20) 

Therefore, using the above inequality and Lemma 7.10, 

From (7.5) we have 

IAredk(si; Pi) - Predk(si; pi)I < [K6 + (K1 + aKs)Pi llsi ll]llsi lloi. 

Therefore, 

(7.21) 

Also, since IICkll:::; aoi, then from Lemma 7.8, we have 

(7.22) 

Using (7.21), (7.22) and the fact that si is rejected, we obtain 

I

Aredk(si;Pi) I [K6+K1K14+aKsK14]llsill 1 - 7)1 < __ _;_~--'=--'- - 1 < .;:__ ________ ...:..;_;_~ 
Predk(si;pi) - Kio 

Hence 

(7.23) 
K6 + K1K14 + aKsKu. llsill > 

(1 - r11)K10 

Now, using (7.20) and (7.23), we obtain the bound 

; (1 - r7i)K10 
ok ~ K13 K + K K + K K = K15, 

6 1 14 a s 14 

Defining 

b = min{6min,K12,K1d 

we obtain the desired bound. D 
Now we can show that the nondecreasing sequence of penalty parameters gener­

ated by the nonlinear programming Algorithm 6.1 is bounded. 
LEMMA 7.12. Under the problem assumptions, if the algorithm does not terminate 

then there is some p*, which depends on €to/, for which 

(7.24) lim Pk = p* < oo. 
k-= 

Furthermore, there exists some index kp such that Pk = p* for every k ~ kp. 
Proof. We need to show that p• ~ p~ for all pairs k, i. Clearly, it suffices to 

consider the sequence p~ of different Pk 's where the double index k, i means that the 
penalty constant was increased to be p~ at the ith trial step of the kth iteration. 
Thus, there may be no terms or more than one term for a given k. Then from Lemma 
7.10 and Lemma 7.11, we have 
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Therefore {Pk} is a bounded sequence, and since it is nondecreasing, there exists 
p* < oo such that 

liin Pk = p*. 
k-oo 

Now since the existence of p* ensures that Pk is bounded, and since we know that 
when it is increased it is increased by at least (3, there must be at most finitely many 
increases, and the proof is complete. D 

This last result and the following one will play crucial roles in the proof of the 
global convergence of Algorithm 6.1. 

LEMMA 7.13. Under the problem assumptions, if the algorithm does not terminate 
then the augmented Lagrangian is bounded on n 

Proof. The proof is immediate from the boundedness of the penalty constant and 
the problem assumptions. D 

8. The main global convergence results. This section is devoted to present­
ing our main global convergence results. We start with the finite termination theorem 
where we show that the general nonlinear programming algorithm is well-defined. In 
Section 8.2, we will present more properties of the trust-region radius sequence gen­
erated by the algorithm under the assumption that it does not terminate. In Section 
8.3, we prove global convergence of our algorithm. 

8.1. The finite termination theorem. The following lemma shows that the 
nonlinear programming Algorithm 6.1 is well-defined in the sense that at each iteration 
we can find an acceptable step after finite number of trial step computations, or 
equivalently, trust-region reductions. This will allow us to drop the consideration of 
trial steps, and only consider "successful trial steps," { sk}. 

THEOREM 8.1. Under the problem assumptions, unless some iterate Xk satisfies 
the termination condition of Algorithm 6.1, an acceptable step from Xk will be found 
after finitely many trial steps. 

Proof. The proof follows from Theorem 5.1 of El-Alem [9]. D 
LEMMA 8.2. Under the problem assumptions, assume that the algorithm does not 

terminate. Then there exists b* > 0, which depends on E:tol but does not depend on 
the iterates, such that for all k, i, 

(8.1) 

Proof. The proof is very similar to the proof of Lemma 7.11. 
To begin, we note that if the first trial step is acceptable, then by Algorithm 5.1, 

bk can not have gotten smaller than bmin during the course of the iteration. Thus, 
we can restrict our attention to the case where there is at least one unsuccessful trial 
step. Let us assume then that we have j unsuccessful steps. Our proof will consist 
in showing the existence of b such that 6i ~ b whether or not s{ is acceptable, i.e., is 

sk. Remember that for all the rejected trial steps we have 6i+i = 0111.si II < 6( 
We consider two cases: 

i) IICkll > obi for all i = 0, ... ,j. 
ii) IICkll > obi does not hold for some i such that 0 < i ~ j. 

The proof of (i) is exactly the same as in the proof of Lemma 7.11, so let us 
proceed to (ii). 

ii) Now if II Ck II > obi does not hold for all i = 0, ... , j. As in Lemma 7.11, we let l 
be the largest index such that IICkll ~ obi holds. Now, since IICkll ~ obi for all i ~ /, 
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it follows from Lemma 7.8 that for all such i, Predk(si; pt) 2: Kw5i. Furthermore, 
from Lemma 7.5, IAredk(si; pi) - Predk(sj,; Pi )I -S Kgpj, llsi 112, and because the step 
si is an unacceptable step, we have 

I

Aredk(st;p~) I K9p~lls~i12 Kgp*llsl.11 
1 - 1/t < . . - 1 < . < ----. 

Predk(sj,; pl,) - K1obi, - K10 

The above inequality implies that, for all i -S l, 

bi > 11.si II> (1- 111)K10. 
k _ k _ Kgp* 

For all i > l, we have from (7.20) and the above inequality, 

i I , (1- T/1)K10 
bk 2: Kdlskll 2: K13 K * · 9p 

It remains only to collect the constants as in Lemma 7.11. 0 

8.2. The global convergence results. Now we present our main global con­
vergence result. Namely, under the problem assumptions, the general nonlinear pro­
gramming algorithm generates a sequence of iterates {xk}, which has at least a subse­
quence that converges to a stationary point of problem (EQC). We start with a proof 
that if the algorithm does not terminate it will converge to a feasible point. 

THEOREM 8.3. Under the problem assumptions, if there exists €to/> 0, such that 

for all k, then 

(8.2) lim II Ck II = 0. 
k-= 

Proof. We prove (8.2) by contradiction. We begin by assuming that there exists 
an infinite sequence of indices {kj} such that IICkll is bounded away from zero for all 
k E {kj}- This implies that there exists T > 0 such that for all k E {kj}, IICkll 2: T. 

Now for each ki 2: kP where kp is as in Lemma 7.12, we have from (5.8) and (7.2) 
that 

Predk, > P~, [II Ck, 112 - II Ck,+ vc[skJ2
] 

> K~p* IICk,11 min{K3IICk, II, rbk,} 

> 

Remember that we are only looking at successful steps at this point in the analysis 
so, 

(8.3) 

Since {.Ck} is bounded below, a contradiction arises if we let k i go to infinity. 0 
THEOREM 8.4. Under the problem assumptions, given any €to/ > 0, the algorithm 

terminates because 

(8.4) 
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Proof. Notice that if we suppose that the algorithm does not terminate and 
that some subsequence of {IIW[v' xfk \I} converges to zero, then nontermination is 
immediately contradicted by Theorem 8.3. 

So, let us suppose that IIW[v' xfk 11 2:: T1, for some T1 > 0. Since II Ck II goes to 
zero by Theorem 8.3 and the sequence of trust-region radii is bounded below by 6*, 
there exists an index N1 > kp such that for all k 2:: N1, IIC1, II '.S; a6* '.S; a6k, with a as 
in (7.8). Therefore, by Lemma 7.8 with the i taken so that si = Sk was the successful 
step, and by Lemma 8.2, we have again an infinite sequence of steps in which the 
actual decrease in£ is at least 171K 106*. This contradicts the boundedness of£ and 
completes the proof. D 

9. An example algorithm. In this section we propose, as an example, a par­
ticular step choice algorithm for step 2 of Algorithm 6.1. We include different ways 
for computing s; according to the dimension of the problem. We will then state the 
complete algorithm for finding the trial step. Finally, in Sections 9.5 and 9.6 we will 
show that the trial step generated by this algorithm satisfies the pair of fraction of 
Cauchy decrease conditions and (5.1). 

The step choice algorithm we propose in this section is based on a conjugate 
directions method. It can be viewed as a generalization of the Steihaug-Toint dogleg 
algorithm for the unconstrained problem. This algorithm is much like a trust-region 
version of an algorithm due to Nash [20]. 

9.1. The Steihaug-Toint dogleg algorithm. This section is devoted to de­
scribing the generalized dogleg algorithm introduced by Steihaug [27] and Toint [30], 
for approximating the solution of problem (TRS), (see Section 2). This algorithm is 
based on the linear conjugate gradient method. 

ALGORITHM 9.1. Steihaug-Toint dogleg algorithm for (TRS) 

Given Xe, be, and ~c '.S; ~ < 1. 

step 0: (Initialization) 
Set ,5o = 0. 
Set ro = -(Gcso + v'fc). 
Set do = ro. 
Set i = 0. 

step 1: Compute 'Yi = d[ Gcdi. 
If 'Yi > 0 then go to step 2 . 
Otherwise (* d; is a direction of negative or zero curvature *) 
compute T > 0 such that 11,5; + Td;II = be. 
Set Sc = s; + Tdi and terminate. 

step 2: Compute O'.i = llr~!l
2 

• 

Set .§;+I = ii; + a;d;. 
If lls;II < be go to step 3: 
Otherwise (* the step is too long, take the dogleg step *) 
compute T > 0 such that 11,5; + Td;jl = be. 
Set Sc = .§; + Td; and terminate. 

step 3: Compute ri+I = r; - a;Gcd;. 

If 11
11
~!j

1
11 '.S; ~c, then 

set sc = ,5i+I and terminate. 
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4 C 'J ll.!:i.±.ill:. step : ompute /); = ll~dl 2 • 

Set d;+ 1 = r;+I + /3;d;. 
Set i = i + 1 and go to step 1: 

The Steihaug-Toint dogleg algorithm is well-known for being suitable for large­
scale unconstrained problems. It can be used in the framework of any general trust­
region algorithm for solving problem (UCMIN). 

9.2. Computing a quasi-normal component. We start our proposed step 
choice algorithm by finding a quasi-normal component s~ of the trial step. This step 
must satisfy a fraction of Cauchy decrease condition on the constraint norm inside 
the inner trust region. It determines for us which translate of the null space of the 
constraint Jacobian will be the one in which we choose the next iterate. 

We repeat, because it is so important, that we do not require that s~ be normal 
to the tangent space, just that it satisfies (5.1). In fact, below we will see that one 
way we might choose the quasi-normal component by finding a linearly feasible point 
and just scaling it back onto the inner trust region. 

9.2.1. Via Craig's algorithm. First we note that we can solve for a linearly fea­
sible point by using Craig's algorithm on the underdetermined linear system VG'[ s + 
Cc = 0 (see [5]). Craig's algorithm consists of making the transformation s = VCcy 
and applying the standard conjugate gradient algorithm to the following m x m linear 
system 

This implies that 

Scraig = smn = -VC (Verve )-tc 
C · C C C C C• 

Furthermore, the result is the Moore-Penrose pseudoinverse constraint normal and it 
requires no more than m iterations. Preconditioning is very important of course, but 
how to do it certainly will depend on the particular application. 

Therefore, we can find the step s~ by a Steihaug-Toint version of Craig's algorithm 
in the inner trust region of radius r6c. In this algorithm, iterates will be generated 

until we find the desired constraint normal s:?'" such that lls:?'"11 :S r6c or until s;raig 

and si~~g straddle the r6c trust-region boundary. For the first case, we set s~ = s:?'". 
For the second case, we choose the dogleg step: s~og E [sraig, si~!g] n { s : llsll = r6c} 

d t n dog an Se Sc = Sc • 

It is not difficult to prove that each Craig iterate is the £2 projection of the origin 
onto the subspace of the tangent space spanned by the steps up to that point and that 
each {s?aig} satisfies (5.1). Now, the Craig steps may not give monotone increasing 
£2 length, so a more agressive strategy that works perfectly well with our theory is to 
take the last pair of Craig iterates that straddle the trust-region boundary. In either 

b · dog 1 · fi (~ 1) F h · · 1 h n dog case, y convexity, Sc a so sat1s es o. . urt ermore, 1t 1s c ear t at sc = Sc 

satisfies the fraction of Cauchy decrease condition required by step 2 of Algorithm 
6.1. 

9.2.2. Via a linearly feasible point. There are some problems for which 
Craig's method might be too slow and too hard to precondition to use the "inner 
Steihaug-Toint" algorithm given above.· Or, for reasons too technical to be of much 
interest here, someone might prefer to do an implementation that computes a linearly 
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feasible point s~ either by Craig's method or by some special application dependent 
methods. The point of this subsection is that when this is the case, s~ can be taken 
to be the projection of s~ back onto the inner trust region. Ifs~ satisfies (5.1), then 
so does 8~. 

Suppose we have any linearly feasible points~ that satisfies (5.1). Then, if it is 
inside the inner trust region, we can take s~ to be that point and it clearly satisfies 
the fraction of Cauchy decrease condition required by step 2 of Algorithm 6.1. If 
i\s~\\ ~ r6e, then we take 

A classical mathematical programming way to compute a linearly feasible point 
that encompasses some special purpose methods we have seen for some inverse prob­
lems is as follows. In some way, divides into so-called basic and nonbasic components. 
Let us assume that we have done so, and using column pivoting, we write vcr as 
vcr = [B\N] where Bis a nonsingular matrix corresponding to the basic components 

of s. This corresponds to We = [ -IB;I Ne ] . Now since 
n-1n 

we have 

and then if we choose s N = 0 and s B = -B; 1 Cc, a feasible point will be 

As long as {1\B_;- 1 11} is uniformly bounded by some constant")'*, s~ satisfies (5.1) 
where the constant here is '*. This is a standard assumption for important classes of 
discretized optimal control problems, though it is stronger than our assumption that 
[VC(xe fv'C(xc)]- 1 is uniformly bounded. 

9.3. Computing the tangential component. We now assume that we have 
the quasi-normal component step s~. We start the process of computing the tangent 
space component s~ by formatting the basis matrix We E ?Rnx(n-m). The columns of 
We form a basis to the null space of the constraints J\/(VC'[). 

We then transfer the constrained problem into an unconstrained trust-region prob­
lem of dimension n - m, in the following form: 

{ 
minimize 
subject to 

where .s~ E Rn-m, and set s~ = Wes~. The step s~ is the component in the tangent 
space of the constraints and the matrix Jfc = wt He We E ?R(n-m)x(n-m) is the 
reduced Hessian matrix. Now we use the Steihaug-Toint algorithm to determine .s~ 
such that IIWc-st + s~II :S De. 

The complete algorithm for finding the trial step is presented in the following 
section 
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9.4. Conjugate reduced gradient algorithm for EQC. Here we write, in 
more detail, the example algorithm for computing a trial step. 

ALGORITHM 9.2. The CRG step choice algorithm 
Given Xe E ~n, De > 0, and ~e ~ ~ < 1. 

I. FEASIBILITY: 
1) If Xe is feasible go to IL 
2) Determine s~. (* Use, for example, s~ 

dog 
Sc or s~ 

.,If= (-B-lC O)T *) 
C C c, 0 

II. MINIMIZATION: 

rb .,If and jj:1tij C 

(* Find He by applying the CRG/Steihaug-Toint algorithm, to 

{ 

minimize 
subject to 

starting from s = s~ *) 
step 0: (Initialization) 

Set ,so = s~. 
Set ro = -W7'(Hcs~ + v'xfc)• 
Set do= ro. 
Seti= 0. 

step 1: Compute "fi = d[' Hedi. 
If "fi > 0 then go to step 2:, 

Qc(s) 
v' cf ( s - s; ) = 0 
llsll ~ De. 

otherwise (* di is a direction of negative or zero curvature *) 
computer> 0 such that 11,s; + rd;jj = De, 
Set Sc = .s; + rd; and terminate. 

step 2: Compute a; = l)r~)I'. 
Set .s;+ 1 = .s; + a;d;. 
If lis;II < 6c go to step 3:, 
otherwise (* the step is too long, take the dogleg step *) 
computer> 0 such that II,§;+ rd;II = De, 
Set Sc =.§;+rd; and terminate. 

step 3: Compute r;+1 = r; - a; W7' Hedi. 

If 11 fi~:j
1

11 ~ ~c, then 
set Sc = ,Si+l and terminate. 

step 4: Compute (3; = 11
11

~=;j
1
r . 

Set d;+l = r;+1 + /3;d;. 
Set i = i + 1 and go to step· 1: 

It is worth noting here that this way of computing the tangent step does not have 
the property that once a step goes outside the trust region it could not come back 
in were the cg iteration continued. This means that the relaxed SQP step might lie 
inside the trust region, but the algorithm above might not return this more desirable 
step if the gradient scale and trust-region scale are inconsistent. 

It would be better otherwise, of course, but the steps given here will lead to 
convergence, and we hope that near the solution when it becomes important to take 
SQP steps, the trust region will be large enough to compensate for the difference in 
shape. If the implementer wanted to be more agressive, there are various ways that 
fit our theory to deal with this situation. For example, we could take the dogleg step 
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based on the last time the cg iteration leaves the trust region rather than the first. 
Our concern here is to prove convergence theorems for the weakest conditions on the 
algorithm, and to show that reasonable algorithms satisfy those conditions, not to 
advocate particular implementation details of no consequence to the theory. 

9.5. Sufficient decrease by the steps. In this section we show that the con­
jugate reduced gradient algorithm produces steps that satisfy the conditions we im­
pose on the steps in step 2 of Algorithm 6.1. In particular, we show that both the 
quasi-normal and the tangential components of the trial steps satisfy their respective 
fraction of Cauchy decrea.5e conditions. 

The following Lemma gives a bound on the reducer matrix We. The proof is 
straightforward, so we will omit it. 

LEMMA 9.3. Under the problem assumptions, if there is a uniform bound on the 
matrix B(x)- 1 , then the reducer matrix 

W(x) = [ -B(x)-
1 
N(x) ] 

ln-m 

is bounded for all x E n. 
The following lemma shows that the quasi-normal component s~, satisfies a frac­

tion of Cauchy decrease condition on the quadratic model of the linearized constraints. 
LEMMA 9.4. Let Sc be a step generated by Algorithm 9.2 at the current iterate. 

Then sc satisfies a fraction of Cauchy decrease condition on the quadratic model of 
the linearized constraints, i. e., 

where K2 and K3 are constants independent of the iterates. 
Proof. Suppose that we are applying Craig's algorithm to find s~. Let { s1 , s2 , ••• } 

be the sequence of iterates generated by the algorithm, hence for all i. 

s; = arg min{IIVC;s + Cell, s E span{p1, ... ,p;} }. 

Assume that lls;II :S rbc and lls;+1II 2:: rbc. Therefore 

s~og =as;+ (1 - a)s;+1 with a E [O, 1]. 

It is easy to see that 

and 

By convexity, 

Thus, 

Thus we can apply Lemma 2.1. 
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Now suppose thats~ is given bys; = "'feS~ with 'Ye= ;;Jt; when lls~II > rbe and 
II• C II 

'Ye = 1 otherwise. When 'Ye = 1, we have 

When 'Ye < 1, we have 

IICcll2 - IICc + v'C;s;ll2 IICcii2 - IICc + r'c v'C;s~ll2 

> IICcll2 - [ (1- r'c) IICcll + r'c IICc + v'C'[ s~II ]
2 

[ 1 - (1- 1'c)
2

] IICcll2 ~ 'YcllCcll
2

• 

The desired result will follow from the definition of s~ and Lemma 9.3. D 
The following lemma shows that the null-space component s!, satisfies a fraction 

of Cauchy decrease condition on the quadratic model of the Lagrangian. 
LEMMA 9.5. Let Sc be a trial step generated by the algorithm. Then, under the 

problem assumptions, there exists a positive constant K 4 , which does not depend on 
Xe such that 

Proof. Since we are solving the reduced problem 

{ 
minimize 
subject to 

½stTJfc.st + v'qe(s;fWc.st +q(s~) 
IIWe,St + s;II::; be, 

which is an unconstrained trust-region subproblem, the proof is immediate from The­
orem 2.5 of Steihaug [27] followed by the use of the problem assumptions and Lemma 
9.3. D 

We state the following lemma here for completeness. 
LEMMA 9.6. The quasi-normal component computed by our proposed step choice 

algorithm satisfies 

where K 1 is a positive constant independent of c. 
Proof The proof is given with the discussion of how to compute a quasi-normal 

component. See Section 9.2. D 

10. Discussion and concluding remarks. We have established a global con­
vergence theory for a broad class of nonlinear programming algorithms for the smooth 
problem with equality constraints. The class includes algorithms based on the full­
space approach and the tangent-space approach. The family is characterized by gen­
erating steps that satisfy very mild conditions on the normal and tangential compo­
nents. The normal component satisfies a fraction of Cauchy decrease condition on the 
quadratic model of the linearized constraints and the tangential component satisfies a 
fraction of Cauchy decrease condition on the quadratic model of the Lagrangian func­
tion associated with the problem, reduced to the tangent space of the constraints. Of 
course the step, which is the sum of these components, satisfies both conditions. 

The augmented Lagrangian was chosen as a merit function. The scheme for up­
dating the penalty parameter is the one proposed by El-Alem [9] since it predicts 
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that the merit function is decreased at each iteration be at least a fraction of Cauchy 
decrease on the quadratic model of the linearized constraints. This indicates compat­
ibility with the fraction of Cauchy decrease conditions imposed on the trial steps. 

In presenting the algorithm, we have left open the way of computing the trial 
steps to satisfy the double fraction of Cauchy decrease condition. This will allow the 
inclusion of a wide variety of trial step calculation techniques. For the same reason 
we have left unspecified the way of approximating the Lagrange multiplier vector and 
the Hessian matrix. 

With respect to the trial steps, we have suggested an algorithm of the class that 
should work quite well for large problems. The algorithm is a generalization of the 
Steihaug-Toint dogleg algorithm for the unconstrained case. This algorithm was one 
we had in mined as motivation for the convergence theory. 

The least-squares or projection formula can be used as a scheme for estimating 
the multiplier since it fits the condition imposed on the multiplier updating scheme. 
Namely, under the standard assumptions, it produces bounded multipliers for the local 
models. For large problems,,\= -B- 1v'Bf is likely to be a much preferable formula 
because of the cost of the least-squares solution. Furthermore, this will match better 
with the reducer matrix W, especially for problems where B can be easily identified. 
See Dennis and Lewis [6]. In either case, the uniform boundedness of {,\k} follows 
from the problem assumptions. 

The exact Hessian matrix perhaps can be gotten by using automatic differentia­
tion or an adjoint integration approach. See Bischof et al. [1]. However, an approxi­
mation to the Hessian of the Lagrangian can be used. Also, for example, setting H,. 
to a fixed matrix (e. g. H,. = 0) for all k is valid. The question of how to use a secant 
approximation of the Hessian of the Lagrangian in order to produce a more efficient 
algorithm is a research topic. We believe that Tapia [29] will be of considerable value 
here. 

A related question that has to be looked at is the search for preconditioners to 
produce more efficient algorithms. We believe that the reducer matrix W should play 
a role in that search. See Dennis and Lewis [6]. 

This theory is developed for the equality constrained case, but it can be applied to 
the general case, by one of the strategies known as EQP and IQP. Here, we mean that 
in the EQP strategy the choice of the active set is made outside the algorithm that 
determines the step while in the IQP strategy, that choice is made inside the procedure 
that determines the step. Since the active set may change at each iteration, the choice 
of the submatrix B, will be strongly affected. Certainly, this is an important topic 
that deserves to be investigated. 
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