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1. Introduction 

In this research, we consider the following equality constrained optimization 

problem 

mm1m1ze f (x) , 

subject to hi (x) =0 i=l, ... ,m 

(EQ) 

where f and h; are assumed to be smooth nonlinear functions defined from 

Rn into R . A more detailed list of assumptions will be explicitly presented 

later. We will denote by h(x) the vector whose components are 

hi(x) i=l, ... ,m . It is convenient to introduce the Lagrangian function 

I : Rn X Rm - R associated with problem (EQ). It is the function: 

l(x, A) = f (x) + AT h(x) (1.1) 

where >. = (Ai, ... , >-m )7 is the Lagrange multiplier vector. The augmented 

Lagrangian function <I>: Rn X Rm X R - R associated with problem (EQ) is 

the function: 

<l>{x,A;r) = l(x, >.) + r II h(x) II?. (1.2) 

where r is the penalty parameter. 

Stating necessary optimality conditions in terms of the Lagrangian function 

requires a constraint qualification. A satisfactory but somewhat restrictive con­

straint qualification is the regularity assumption: that is, the vectors 

v'hi(x) i=l, ... ,m are linearly independent at the solution. We use the notation 

v'h(x) for the matrix whose columns are v'hi(x) i=l, ... ,m . 

The first-order necessary conditions, or Kuhn-Tucker conditions, for a point 

x. E Rn to be a solution of problem (EQ) are that x. be a feasible point ( i.e. 

h (x.) = 0 ), and that there exists a Lagrange multiplier >-. such that 

v'z I( xi ,Ai) = O . Equivalent first-order necessary conditions are that xi be a 
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feasible point and that P(x*) 'vf(x*) =0 where P(x) is the projection onto the 

null space of 'vh(x)T , i.e. , 

P(x) = I - 'vh(x)('vh(xf'vh(x)r1'vh(x)T. (1.3) 

For a detailed discussion of optimality conditions, see, for example, Fiacco and 

McCormick (1968). 

Problem (EQ) 1s often solved by the Successive Quadratic Programming 

(SQP) algorithm. Namely, at the k.t.h. iteration, the step is computed by solving 

the following quadratic programming subproblem: 

minimize 'vzl(x1c,>-11:)T s + ..!_ sT Bk s 
2 

subject to h(xk) + 'vh(x1cf s = 0, 

(QP) 

where B1c is the Hessian of the Lagrangian at (x1c,>.k) or an approximation to it. 

The local convergence analysis for the SQP algorithm has been well esta­

blished [for example see Tapia (1977),(1978)]. The area of global convergence is 

currently receiving much attention. 

Trust region approaches for unconstrained optimization have proven to be 

very successful both theoretically and practically. The most natural way to intro­

duce the trust region idea into constrained optimization is to add a constraint 

which restricts the size of the step in problem (QP). That is, at the k.t.h. iteration 

we solve the fallowing trust-region quadratic programming subproblem: 

minimize 'vzl(xk,>.k)T s + _!_ sT Bk s 
2 

subject to h(xk)+v'h(x1c)Ts = 0 

11 s 112 < .6." . 

(TRQP) 

However, this approach may lead to inconsistent constraints if h ( xk) :I O . To 

overcome this difficulty, two main approaches have been introduced. The first 

approach is to relax the constraints by considering the following subproblem: 



mm1m1ze Vzl(xk,>.kf s + ~ sT Bk s 

subject to a h(xk) + Vh(xkf s = 0 

11 8 I I 2 < .6.k ' 
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where O <a< 1 . This approach was first introduced by Vardi (1985). It was 

also used by Byrd, Schnabel, and Shultz (1987). This approach always leads to a 

feasible subproblem if a is chosen properly. However, this approach suffers from 

the disadvantage that the step depends on the unknown parameter a for which 

there is no clear way of choosing. 

The second approach is to add the trust-region constraint to a somewhat 

different problem. At the k-t.b. iteration the step is taken to be the one that 

minimizes the quadratic model of the Lagrangian subject to some required 

decrease in 11 h ( xk) + Vh ( xk f s 11 2 • This idea was first introduced by Celis, 

Dennis, and Tapia (1985). At each iteration the step is computed by solving the 

following subproblem: 

mm 1m 1ze 

subject to 

Vzl(xk,Ak)T s +.!_ST Bk s 
2 

11 h(xk) + Vh(xk)T s 11 2 < Ok 

11 s 112 < .6.k 

where Ok and .6.k are positive constants. 

(CDT) 

Celis, Dennis and Tapia (1985) chose 0k to be 11 h(xk) + Vh(xkf s? 112, 

where sfP = - ak Vh(xk) h(xk) is the step to the Cauchy point, i.e., the minim­

izer in the trust region {s : 11 s 11 2 < .6.k} of 11 h(xk) + Vh(xk)T s 11 2 along its 

negative gradient direction. That is, the Celis-Dennis-Tapia step is chosen from 

the set of steps from xk that are inside the trust region and give at least as much 

descent on the 2-norm of the residual of the linearized constraints as does the 

Cauchy step. 

In 1986, Powell and Yuan introduced another way of choosing Ok. They 



chose it to be any number that satisfies 

01: = min [ II h(x,t)+\i'h(x.1;fs 112: II s 112<0-~.1;], 

for some O < o- < l . [See Powell and Yuan (1986-b )] 
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A more general choice of 0.1; was suggested by Celis, Dennis, Martinez, 

Tapia, and Williamson (1989). They chose it to be 

0.1; = (l-r) 11 h(x.1;) 112 + T 11 h(x.1;) + \i'h(x.1;)T sfP 112, (1.4) 

for some O < T < l • Where sfP is the step to the Cauchy point and is defined 

above. 

This latter choice of 0.1; enforces a fraction of Cauchy decrease on the 2-

norm of the linearized constraints in the CDT subproblem. Powell and Yuan's 

choice of 0.1; enforces a fraction of optimal decrease [see Celis, Dennis, Martinez, 

Tapia, and Williamson (1989)]. The choice given by Celis, Dennis and Tapia 

(1985) gives at least as much decrease in the 2-norm of the linearized constraints 

as does the Cauchy step sfP. Other choices of 0.1; are suggested in Celis, Dennis, 

Martinez, Tapia, and Williamson (1989). We are going to consider only the choice 

of 0.1; given by (1.4). This choice is appropriate since it insures considerable free­

dom in the subproblem feasible set, allowing the minimization of the subproblem 

objective function to pull the iterate toward the optimal point for problem (EQ) 

rather than progressing too fast toward nonlinear feasibility at the expense of 

optimality. Our numerical experiments reinforce the validity of this choice. [See 

Dennis, El-Alem, and Tapia (1989)] 

In this paper we consider a trust-region algorithm for solving the equality 

constrained optimization problem. This algorithm is a variant of the 1984 Celis­

Dennis-Tapia trust-region algorithm in that it uses a different scheme for updat­

ing the penalty parameter. 
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The remainder of this paper is organized as follows. In Section 2, we describe 

in detail the trust-region subproblem that will be considered and the way of com­

puting the trial steps. A scheme for updating the radius of the trust region is 

presented together with a discussion about the criteria for accepting or rejecting 

the trial steps. A scheme for updating the penalty parameter is also presented. 

In Section 3, we present the algorithm. In Section 4, we state the standard 

assumptions under which our global convergence theory is established. In Section 

5, we state our main global convergence results. Sections 6,7 and 8 are devoted to 

the analysis of the global behavior of our algorithm. Section g contains conclud­

ing remarks. 

Notation: 

The trial step at the k.t.h. iteration is denoted by sk and its associated 

Lagrange multiplier by ~"" . If the step is accepted it will be denoted by sk 

and its associated Lagrange multiplier by &" . 

The decomposition of the step sk into a tangential and a normal component 

is considered. These components are denoted by sl and sf respectively and are 

defined by and where 

The expressions V2h(xk) & and V2h(xk) h(xk) are used to denote 

m m 

~ &i V2hi(xk) and ~ hi(xk) V2hi(xk) respectively. The matrix Bk denotes 
i-1 i-1 

v';l(xk,'-k) or an approximation to it. 

Subscripted values of functions denote evaluation at a particular point. For 

example h means f (xk). 



7 

2. Description of The Algorithm 

The algorithm is iterative. At each iteration a trial step 8" is obtained by 

solving a model problem. At the k.il! iteration, we try to update the estimate of 

the solution x" to an improved estimate xk+l • To do this, the step s"QP and 

the multiplier A'>ip are obtained by solving the QP subproblem (see Section 1). 

If they exist and if s"QP lies inside the trust region, i.e. if 11 s"QP 11 < A" , then 

we set 8" = s"QP and &" = A>.."QP • Otherwise, the CDT subproblem will be 

solved (see Section 1). On the other hand, if x" is feasible, then we solve the 

TRQP subproblem (see Section 1 ). This can be summarized in the following 

scheme: 

SCHE:ME 2.1 Computing the Trial Step 

Solve (QP) to get slP and A>.."QP (see Section 1) 

Else, if x" is feasible 

then solve (TRQP) (see Section 1) 

Else, solve ( CDT) ( see Section 1) 
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When xk is feasible, then Ok = 0 , and the CDT subproblem reduces to the 

TRQP subproblem. This shows a continuity in the behavior of xk on switching 

between the CDT and the TRQP subproblems. 

If the trial step is either the TRQP step or the CDT step, our choice of the 

multiplier requires solving the following linear system in the least-squares sense 

Powell and Yuan (1986-a and 1986-b) have used as a multiplier update for­

mula the least-square multiplier estimate. Using this formula, the following linear 

system has to be solved in the least-squares sense 

Powell and Yuan's choice of &k is more expensive since it requires a factor­

ization of 'vh ( xk +sk) at each trial step. Our choice of &k requires the factori­

zation only when the algorithm moves to a new point after finding an acceptable 

step. On the other hand, when the SQP step is taken, our multiplier is obtained 

with no extra cost because it is the SQP multiplier. 

Let sk be the step computed by the algorithm and &k be the correspond­

ing Lagrange multiplier step, we test whether the point ( xk+sk , >-.k+&k ) is a 

better approximation to the solution ( x.- , .>.._. ). In order to do this, we use, as a 

merit function, the augmented Lagrangian (1.2). 

The actual reduction in the merit function m gomg from (xk,>-k) to 

( xk+sk , .>..k+&k } is given by 

We can write 

Aredk - l(xk,>-k) - l(xk+sk>.>..k) - &[ h(xk+sk) 

+ rk [ 11 h ( xd 11 I - 11 h ( xk +sk) 11 I l. (2.1} 
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The calculation of the step s1c is based on a quadratic approximation of the 

Lagrangian function and a linear approximation to the constraints. Now by using 

the same approximations, we can compute the predicted reduction 

defined by 

Hence, 

A T . T + A>-1c [ h (x1c )+v'h (x1c) s1c ] 

+ rk 11 h(x1c) + v'h(x1c)T sk I If. 

Predk = - v'zl(x1c,A1c)T S1c - ! S1c T Bk S1c - S.>..{( h(x1c)+v'h(x1c)T s1c) 

+ rk [ 11 h(x1c) I If - 11 h(x1c) + v'h(x1cf sk I Ii l. (2.2) 

We accept the step and set xk+l = xk+sk and Ak+l = >-k+~k , if 

Aredk 

Predk 
> r,1 where r,1 E (0,1) is a small fixed constant. 

If the step is rejected, then we set xk+1 = xk and Ak+l = >-1c and decrease 

the radius of the trust region by picking Ak+l E [ a 1 11 sk 11 2 , a 2 11 sk 112 ] , 

where O < a 1 < a 2 < 1 . [See Dennis and Schnabel (1983)]. 

If the step is accepted, then the trust-region radius is updated by comparing 

the value of Aredk with Predk . Namely, if 
Aredk 

T/1 < p d < T/2 re k 
where 

r,2 E (r,1,1) , then the radius of the trust region is updated by the rule: 

However, if 
Aredk 

Predk 

then we increase the radius of the trust reg10n by setting 
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~Hl =min[~. , max ( ~k , o3 11 s1 11 2 )] , where ~. is a positive constant. 

This can be summarized in the following scheme: 

SCHEJvfE 2.2 Testing the Step and Updating the Trust Region Radius 

< 'f/1' 

then set 

(2.3) 

Ared1 
Else, if 'f/1 < --- < 'f/2 

- Pred1i; 

then set x1i:+i = x1i; + s1i; , 

Else, set x1i:+i = x1i; + s1i;, 

Now, we describe our strategy for updating the penalty parameter r . 

Numerical experiments have suggested that efficient performance of the algorithm 

is linked to keeping the penalty parameter as small as possible. Our global con­

vergence theory requires that the sequence { r1i; } be nondecreasing and that the 

predicted reduction in the merit function at each iteration be at least as much as 

a fraction of Cauchy decrease in the 2-norm of the residual of the linearized con­

straints. The idea now is to keep the penalty parameter as small as possible, sub­

ject to satisfying these two conditions needed for our convergence theory. Hence, 
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our strategy will be to start with r = 1 and increase it only when necessary to 

satisfy these two conditions. The following is the scheme that we use for updat­

ing the penalty parameter. 

SCHE1\1E 2.3 Updating the Penalty Parameter 

If 

then set 

Else, set 

where p > O is a small fixed constant. 

The initial choice of the penalty parameter r = 1 is scale dependent. Here 

we assume that the constraints have been made to be well scaled compared to the 

objective function. 

Finally, we discuss the strategy for updating the matrix Bk • If sk is not an 

acceptable step, then set otherwise compute 

Bk+I = v"2 J k+I + v"2gk+1 >-k+I if the exact Hessian is used, or update Bk by 

some other update formula that satisfies the standard assumption 5. (See Section 

4) 
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3. The Algorithm 

The following represents the outline of the Algorithm. It differs from the 

1984 Celis-Dennis-Tapia algorithm in its way of updating the penalty parameter 

in step 3 of the algorithm and in its way of updating the trust region radius in 

step 4. 

Step O: 

Set XO E Rn ' BO E R n Xn ' >.o E R m ' r -l = 1 ' p > 0 ' 

0 < 0'1 < 0'2 < 1 < 0'3 ' 0 < T/1 < T/2 < 1 ' 

O < T < 1 , E > 0 , ~ > 0 , and k = O . 

Step 1 : 

If 

where P1e is defined by (1.3), stop. 

Step 2 : 

Compute s1e and &1e according to Scheme 2.1 above. 

Step 3 : 

Update the penalty parameter according to Scheme 2.3 above. 

Step 4: 

Test the step and update ~le according to Scheme 2.2 above. 

Step 5 : 

(3.1) 
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Update Bk as above. 

Step 6: 

Set k := k + l and go to step 1. 

4. The Standard Assumptions 

In this section we state the assumptions under which we prove global conver­

gence. 

1) There exists a convex set 11 €. Rn such that, for all k, xk and 

xk + sk €. 11. 

2) J and hi €. C2(11) i =1, ... ,m . 

3) "vh (x) has full column rank for all x €. 11 . 

4) J(x), h(x), "vh(x), "vf(x), v'2J(x), ("vh(x)T "vh(x)t 1 

'v2hi(x), for i=l, ... ,m are all uniformly bounded in norm in 11. 

5) The matrices { Bk , k=l,2, ... } have a uniform upper bound. 

and each 

If 11 were a compact set assumption 4 would follow from continuity. 

If the exact Hessian is used, assumption 5 is a strong one, since in most cases 

it requires that the Lagrange multiplier estimates be uniformly bounded. How­

ever, if an approximation to the Hessian of the Lagrangian is used, then any 

update formula that satisfies the standard assumption 5 can be used. For exam­

ple, setting Bk be a fixed matrix for all k is a valid one. The question of how 

to use secant approximations of the Hessian of the Lagrangian in order to produce 

a more efficient algorithm is a research topic. (See Section 9). Typically, secant 

updates can be shown to satisfy the standard assumption 5 only as a by-product 

of the convergence analysis. 
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The same assumptions as our standard assumptions were used by Byrd, 

Schnabel, and Shultz (1987) and Powell and Yuan (1986-b ). 

5. The Global Convergence Theory 

In this section we state the main results in our global convergence analysis in 

order to understand the motivation for the lemmas presented in Sections 6 and 7. 

These lemmas are necessary to the proofs of our main global convergence results 

presented in Section 8. 

Section 6 is devoted to presenting all results that deal with decrease in the 

merit function. The behavior of the penalty parameter is discussed in Section 7. 

Theorem 5.1 

Under the standard assumptions, at any point ( xk , >-1c ) generated by the algo­

rithm, either the termination condition of the algorithm will be met or an accept-

able step will be found. i.e. the condition 
Aredk+i > r,1 will be satisfied for 
Predk+i 

some J • 

The proof of this theorem is given in Section 8. Theorem 5.1 shows that the 

algorithm is well defined in the sense that it always finds an acceptable step from 

any point that does not satisfy the termination criteria. From this theorem we 

see that the algorithm can not loop indefinitely without finding an acceptable 

step. 

Now, we state our main global convergence result, Theorem 5.2. 

Theorem 5.2 

Under the standard assumptions, the algorithm produces iterates { xk } which 
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satisfy 

The proof of this theorem is presented in Section 8. It is well known that a 

point x. E Rn is a stationary point if and only if h ( x.) = 0 and 

P(x.)v'J(x.) =0. Theorem 5.2 shows that the algorithm will successfully ter­

minate. It means that the Celis-Dennis-Tapia trust-region algorithm for equality 

constrained optimization generates at least a subsequence converging to a station­

ary point of the problem. 

6. The Decrease in The Model 

All results in this section deal with the reduction of the merit function and 

the predicted reduction of the model. 

In the following lemma we use the fact that the step s1c is chosen to give at 

least as much decrease in the 2-norm of the linearized constraints as does the Cau­

chy step sfP. 

Lemma 6.1 

There exist constants b1 and b2 independent of k such that at the kih. itera­

tion the predicted decrease in the merit function given by the trial step satisfies 

Predk > ~ 11 ~: 112 min [ ~" , 11 :: 112 l . 

Proof 

First we prove that 

11 h,. 11 J - 11 h,. + Vh[ s,. 11 J > 11 h,. 112 
---- min [ ~,. , 

bi 
(6.1) 
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where b1 and b2 are constants independent of k . 

When the TRQP step is used, inequality (6.1) is valid a fortiori. 

Consider the case when either the QP step or the CDT step is used. From the 

way of computing the step and using the fact that 

11 h1e 11 11 h1e + v'h{ s cp 112 < 11 h1e 11 i ' we have 

Note that when the QP step is used, we have 

From the definition of sfP , we have sfP = - a1e v'h1e h1e , where a1e is defined 

by 

if ( 6.2-a) 

otherwise, 

(6.2-b) 

v'h1e h1e 
Consider the first case. i.e. , the case when s{ P = - 6.1e --,--,-------,,-,-- In this 

11 v'h1e h1e 112 . 

case, using 
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(6.3) 

Now, consider the second case. We have 

Hence, 

From the last inequality and (6.3), we can write 

Now, using the standard assumption 3, we have 

The rest of the proof of (6.1) now follows from the standard assumption 4. 

From the way of updating the penalty parameter r1c in step 3 of the algorithm, 

we have 

The proof of the lemma follows immediately from (6.1) and the last inequality . 

• 

Lemma 6.1 shows that the way we update the penalty parameter ensures 

that the predicted reduction at each iteration will be at least as much as a frac­

tion of Cauchy decrease in the merit function. This indicates compatibility of the 
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step choice algorithm with the augmented Lagrangian merit function. 

Lemma 6.2 

Let s£ and sf: be the tangential and the normal components of the trial step sk 

generated by the algorithm. Then, s£ satisfies 

where .6.k = V .6.f - 11 sf: 11 i . 

Proof 

The proof follows directly from Lemma 3.2 in Powell and Yuan (1986-b ). 

Lemma 6.3 

where a 1 , a 2 , a 3 are constants independent of k . 

Proof 

From (2.1), (2.2) and the Cauchy-Schwarz inequality, we can write: 

Hence, 

I Aredk - Predk I < I t(xk,>-.d + v'zl(xk,>-.k)T sk + l_ s{Bksk - l(xk+sk '>-.k) 
2 

+ I &{ [ hk + v'h[sk - h(xk+sk) l I 



+.!_I s{ [ v"2h(xlc+e2slc) &le ] S1c I 
2 

+ r1c I st[ 'vhlc 'vh{ - 'vh ( X1c +e3s1c) 'vh T ( X1c +e3s1c) ] S1c 

for some e1 , e2 , e3 € ( 0 , 1 ) · 
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By using the standard assumptions 2, 4 and 5, the form of &1c , and the fact 

that 11 s1c I I 2 < ~k , we get 

which is the desired result. • 

The result we obtained in the last lemma does not depend on any property of 

the matrices { B1c } except that their norms have a uniform upper bound, and does 

not depend on any property of the steps except that they lie inside O . 

Corollary 6.4 

where a4 is a constant independent of k . 

Proof 

The proof follows immediately from the last lemma, the fact that r1c > 1 , the 

fact that 11 s 11 2 < ~ .. , and the standard assumption 4. • 

Corollary 6.4 shows that, if the penalty parameter is bounded, our definition 

of predicted reduction implicitly gives an approximation to the merit function 

that is accurate to within the square of the steplength. 
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Lemma 6.5 

If sk is a trial step generated by the algorithm and sl is its tangential com­

ponent, then 

Proof 

If sk is the step obtained from the CDT subproblem, then 

where µ , a > 0 . See Celis, Dennis, and Tapia (1985). Now 

Hence 

Now, assume that the step is generated from the TRQP subproblem. Then sk 

must satisfy 

where µ > 0 with µ = 0 if the step is generated from the QP subproblem, i.e. if 

the trust region constraint is not binding. By multiplying by Pk , we obtain 

Hence, 

This implies that in all cases the lemma is true. • 

Lemma 6.6 

There exists a constant b3 such that, for all k , the normal component st 
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satisfies 

Proof 

The proof follows directly from the standard assumptions 3 and 4. • 

Lemma 6.7 

Let sk be a step generated by the algorithm and let sl and s't be its tangential 

and normal components respectively. Let Pk be defined by (1.3), ~k be as in 

Lemma 6.2 and hk = v'hk('v'h{v'hk(1hk , then 

Predk > ! 11 Pk(v'lk + Bksk) 112 min [ ~k ' 
11 Pk(v'\ :4BkSk) 112 l 

- bs II sk 112 II hk 112 - I (v'Lk + Bkskf lik 

(6.4) 

where b4 and b5 are constants independent of k . 

Proof 

From the definition of Predk and &k , we can write 

P d ('t"'7[ B A )TA 1 AT B A re k - - v k + k sk sk + 2 sk k sk 

+ (v'tk + Bksk)rv'hk (v'h[v'hk)- 1
( hk + v'h[sk ) 

Now, since v'hk ( v'h[ v'hk )-1 v'h[ sk = s't , we can write: 

P d ( 't"'7/ B A )TA 1 AT B A re k - - v k + k sk sk + 2 sk k sk 

+ ( v'lk + Bksk f [ hk + s't] 



Pred1c > - ! (''vi" + B1cs1cf sJ + ! s{B1cs1c + ('vi" + B1cs1cf ~ 

+ r" [ 11 h" 11? - 11 h" + 'vh{s" 11? l 

which can be written as 

By using Lemma 6.2, we obtain 

But by Lemma 6.6 and the standard assumption 5, we can write 

22 

where b4 is a constant such that 11 B1c 11 2 < b4 • Now, by setting b5 = b4 b3 , 

we obtain the result. • 
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In order to prove that the algorithm is making an improvement in the merit 

function, we have to prove that we will get a positive predicted reduction at each 

iteration. Toward this end we must prove that the positive quantities in (6.4) are 

greater than or equal to the absolute value of the negative quantities. If this is 

not the case, then the algorithm, according to Scheme 2.3, will increase the 

penalty parameter to ensure that this will be the case. First we need to derive an 

upper bound on the third quantity. The following lemma will give us this bound. 

Lemma 6.8 

Let h" be as in Lemma 6.7, then there exist constants a5 and a 6 such that 

where sk-t, is the last acceptable step. 

Proof 

We have 

Now 

Q" v1 h = v'h" ( v'h{ v'h" r1 v1h{v1 h = - v'h" >-c 

where '>-f = - ( v'h{ v'h" )-1 v'h{ v'J k , and 

Q" v'h" = v'h" ( v'h{ v'h" r1 v'hl v'h" = v'h" . 

Since sk-t, is the last acceptable step, then xk-t,+1 = xk and >-k-t,+1 = >-k • We 

have 
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This implies that 

11 Qk(Vlk + Bk sk) 112 < 11 Vhk (>..f - >..f_,.) 112 

+ bi 11 Vhk 112 11 Bk-1, 112 11 sk-t, 112 
+ 11 Bk 112 11 sk 112' (6.5) 

where b1 is as in Lemma 6.1. Now by using the standard assumptions, there 

exists a constant b6 , such that 

and since xk = xk-t,+1 , we have 

(6.6) 

Substitute (6.6) in (6.5), and by using the standard assumptions 4 and 5, we 

obtain 

(6.7) 

where b7 and b8 are constants independent of k . 

Now, by using (6.7) and the fact that 11 hk 11 2 < b9 11 hk 11 2 , where 

bg = SU}) 11 'vh(x)('vh(xf'vh(x)r1 112 the proof follows immediately. • 
XEO 
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The following lemma proves the important property that if 11 h1c 11 2 is 

small enough, then the penalty parameter will not be increased in step 3 of the 

algorithm. 

Lemma 6.9 

Let k index an iteration at which the algorithm does not terminate. If 

11 h1c 11 2 < c 1 .6.1c where c 1 is a small constant that satisfies 

where a 5 and a6 are as in Lemma 6.8, b3 is as in Lemma 6.6, b4 and b5 are 

as in Lemma 6.7, and .6.* is the upper bound on the trust region radius, then 

Pred" > ~ [ 11 h" 11? - 11 h" + "vh{s" 11? l 

1 1 11 P" ("vt" + B" sf ) II 2 l _ + - 11 P1c("vl1c + B1c sf) 112 min [ -.6." ' ---------
8 2 2b4 

Proof 

If k is the index of an iteration at which the algorithm does not terminate, then 

Now 

(6.9) 

But, since 11 h1c 11 2 < ~ E, it follows that 11 P1c "vl1c 11 2 > ~ E. We have 

(6.10) 

Now, from Lemma 6.7, Lemma 6.8 and 11 h1c 11 2 < c1 .6.1c , we obtain 
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1 11 P,.(v't,. + B,.sr) 112 l 
Pred,. > - 11 P,. (v'l,. + B,.sr) 112 min [ ~,. '--------

4 2 b4 

(6.11) 

So, by using (6.10), we can write 

1 I I . [ - 11 Pk(v'tk + Bk sP) 112 l 
Predk > 8 11 Pk(v'lk + Bk sf) 2 mm ~,. ' 2b4 

+ _!_ ( _!_E) min [ ~k , --.£._b ] - c 1 [ ( a5 + b5 + a6) ~. ] ~k 
8 3 6 4 

(6.12) 

Now, since ~k = \) ~l - 11 skn 11:f, and by using Lemma 6.6 and 

11 hk 11 2 < Y3 ~k , we obtain 
2 b3 

By substituting the last inequality in (6.12), we obtain 

1 1 11 Pk(v'lk + Bk s:) 112 l 
Predk > - 11 Pk(v'lk + Bk st) 11 2 min [ - ~k , --------

8 2 2b4 

+ _!_ ( _!_E ) min [ _!_ ~k , _E _ ] - c 1 [ ( a 5 + b 5 + a 5) ~. ] ~k 
8 3 2 6 b4 

Since c 1 satisfies inequality (6.8), we have 

(6.13) 

This is the desired result. • 
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If 11 hk 11 2 < c 1 ~k, then half of the first term in (6.11) will cancel the 

second and the third terms, and the fourth term need never enter into the calcula­

tion. This implies that if we set rk = rk-l , inequality (6.13) remains valid. So, 

in this case, the algorithm will not increase the penalty parameter. 

Lemma 6.10 

Let k be the index of an iteration at which the algorithm does not terminate. If 

11 hk 11 2 < c1 ~k , where c1 is as in Lemma 6.9, then there exists a constant c2 

such that 

Predk > c2 ~k 

Proof 

From (6.10) and (6.13), we have 

Predk > .!_ ( .!_ E ) min [ .!_~k _E _ ] 
8 3 2 ' 6 b4 

> -1
- E min [ 1 , E ] ~k . 

- 48 3 b4 ~., 

The result now follows if we set c2 
1 . [ f_ l - - E mm 1 , --- . 

48 3 b4 ~., • 

7. The Behavior of The Penalty Parameter 

This section is devoted to the study of the behavior of the penalty parameter. 

Our objective is to prove that the penalty parameter is bounded. This will imply 

that rk is fixed for k sufficiently large. This result is very important in proving 

global convergence of the algorithm. 

Lemma 7.1 
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If k is the index of an iteration at which the penalty parameter r1e is increased, 

then 

where a7 and a 8 are constants independent of k and s1e-t; is the last accept­

able step. 

Proof 

Let k be the index of an iteration at which the penalty parameter is increased, 

then by step 3 of the algorithm r1e is updated by the following rule: 

This can be written as 

( 't"'7[ B A )T A 1 AT B A 

v k + k sk s1e - 2 sk k sk 

( v'lk + B1e s1e )T ( h1e +sf) (7.1) 

Thus, from (7.1), (6.1), and Lemma 6.5 

r1e 11 h1e 112 
min [ 6.1e , 11 hk 112 l < 1 ctfB An 1 ATE An - - s1e le sk - - s1e le sk 

2 bi b2 2 2 

T -( v'l1e + B1e sk ) hk 

p h{ v'h{ sk , 

and we can write 

r1e 11 h1e 112 
min [ 6.k , 11 hk 112 l < 11 B1e 112 11 S1e 112 11 sr 112 2 bi b2 
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(7.2) 

Now by using Lemma 6.8, 

But, by Lemma 6.6 11 s: 11 < b3 11 h1; 11 and from the standard assumption 4 

11 '1h1c 112 < b10 where b10 = su2 11 '7h(x) 11 , 
z f 0 

r1; 11 h1; II 2 . [ A 

b 
min .u.1; , 

2 1 

The result follows immediately upon dividing by • 

Corollary 7 .2 

If k is the index of an iteration at which the algorithm does not terminate and 

the penalty parameter r" is increased, then 

where a9 and a10 are constants independent of k and s1c-t, is the last accept­

able step. 

Proof 

From Lemma 7.1, if k is index of an iteration at which the penalty parameter 
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rk increases, then rk must satisfy the following inequality: 

From Lemma 6.9 if 11 hk 11 2 < c1 ~k , then we do not increase rk • So, for any 

iteration at which the penalty parameter increases, we must have 

and we obtain 

Hence, 

and we get the desired result. • 

Under the standard assumptions, at each iteration at which the termination 

criteria is not satisfied and the penalty parameter is increased, rk ~k is bounded. 

However, if we can bound 
11 sk-1, 112 

~k by a constant independent of k , we 

obtain an upper bound on rk itself. In the following lemma we derive a relation 

between 11 sk-t, 11 2 and ~k • In Lemma 7.4 we prove that the penalty parame­

ter is bounded. 

Lemma 7.3 

Let k be the index of any iteration at which the algorithm does not terminate 

and the penalty parameter rk is increased, then 

where sk-t, is the last acceptable step and c3 is a constant independent of k 
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and t1c . 

Proof 

We consider three cases: 

First, if t1c = 1 , i.e., s1c-i is the last acceptable step, then from (2.3), we have 

The result in this case follows if we set c3 = a 1 • 

Second, if s1c-i is not the last acceptable step and at the same time 

11 h1c-i 11 2 > c1 ~k-i for all i E [ 1 , t1c-l ] , in this case, from Corollary 6.4, we 

have 

Now, from Lemma 6.1, we have 

Predk-i > 
2 

But since all k-i , i=l, ... ,t1c-l satisfy 11 h1c-i 11 2 > c1 ~k-i >c 1 11 s1c-i 112, 

we have 

Predk-i > 

Hence, 

I Ared1c-i - Predk-i I < 2 a4 b1 b2 11 s1c-i 11 2 

Predk-i min [ b2, c1] 11 hk-i 112 

But since all k-i , i=l, ... ,t1c-l index unacceptable steps, we have 

( 1 - 171 ) < I Aredk-i -1 I ' 
Predk-i 

So, for all i E [ 1 , t1c-l ], we have 

1<i<t1c-l 



> 
a 1 ( 1 - 1J1 ) 

min [ b2 , c 1 ] 11 hk-1 112 
2a4 b1 b2 

a1 ( 1 - 1J1 ) 
min [ b2 , c 1 ] 11 hk-(tt-1) 112 -

2a4 b1 b2 

> af c1 ( 1 - 1J1) . [ b ] 11 11 
- b b mm 2 ' c 1 sk-t, 2 . 

2 a4 1 2 

The result in this case follows by setting 

af C 1 ( 1 - 1J1 ) 
------ min [ b2 , c1 ] . 

2a 4 b1 b2 
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Finally, if the step indexed by k-1 is not the last acceptable step and not all 

i E [ 1 , tk -1 ] satisfy 11 hk-i 11 2 > c 1 ~k-i , then there exists at least one 

j E [ 1 , tk -1 ] such that 11 hk-j 11 2 < c 1 ~k-j • Let l be the smallest integer 

E[l,tk-1] suchthat llhk-ill 2 < c1 ~k-t· Forall iE[l,l-1],wehave 

As in the first two parts, if we set 

(7.3) 

we obtain 

(7.4) 
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where c4 is given by (7.3). Now, for k-l we have 

(7.5) 

From Lemma 6.3 (where we replace k by k-l ), the inequality 

11 s1c_, 11 2 < ~k-l and the inequality (7 .5 ), we have 

If k indexes an iteration at which r1c is increased, then from Corollary 7 .2 and 

the standard assumptions we know that r1c ~k is bounded. By using inequality 

(7.4 ), we arrive at 

where m 0 is a uniform bound. Hence inequality (7.6) can be written as 

By using Lemma 6.10, we have 

I Aredk-l - Pred1c-t 

Pred1c-1 
< 

a 1 + ( a 2 + c 1 a 3 ) m 0 -------11 s1c-1 112. 
C2 

But since the k-l th. is not an acceptable step, then 

I Ared1c-1 I 
( 1 - 171) < --- -1 < 

Pred1c-1 -

a 1 + ( a 2 + c 1 a 3 ) m 0 ------- 11 81c-1 112 -
C2 

Hence, by using inequality (7.4), we obtain 

C2 C4 > -------- ( 1 - 171 ) . 
[ a 1 + ( a 2 + c 1 a 3 ) m 0 ] 

C 2 C 4 ( 1 - 171 ) 
>---------II s1c-11; 112 

[ a 1 + ( a 2 + c 1 a 3 ) mo ] ~ ... 
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The result then follows if we set 

This completes the proof. • 

The following lemma uses Corollary 7 .2 and Lemma 7 .3 to prove that if each 

member of the sequence of iterates generated by the algorithm does not satisfy the 

termination condition in step 1 of the algorithm, then the penalty parameter is 

bounded. 

Lemma 7.4 

Under the standard assumptions, if each member of the sequence of iterates gen­

erated by the algorithm does not satisfy the termination condition (3.1 ), then the 

penalty parameter sequence { rk } is bounded. 

Proof 

The proof is by contradiction. Suppose that { rk } is not bounded. This implies 

that there exists an infinite subsequence of indices {ki} such that {rk
1

} is increased. 

Now, from Lemma 6.9, we never rncrease the penalty parameter if 

11 hk 112 < c 1 .6.k • So, 

Let m be any integer E { ki }, then from Corollary 7.2 we can write 

(7.7) 

where sm-tm is the last acceptable step. On the other hand, from Lemma 7.3 we 

have 

By substituting the last inequality in (7.7), we get 
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Since 
a10 

a9 + -- is independent of m , it is an upper bound of the sequence 
C3 

{ r1c } contradicting the assumption that the sequence { r1c } is increased. This 
J J 

proves the theorem. • 

From the last lemma, we can conclude that for all k , 1 < r,: < r* where 

r* is a constant independent of k . 

Since if r1c is increased, it is increased by a quantity > p , then the number 

of iterations at which the penalty parameter is increased must be finite. Hence, 

there exists a constant k such that 

for all k > k. (7.8) 

8. The Global Convergence Theory 

In this section we present the proofs of our main global convergence results 

that have been stated in Section 5. We start by restating and then proving 

Theorem 5.1. First we introduce some notation that will be used in the remainder 

of this paper. 

We call an iteration a successful iteration if the trial step of that iteration 

d b Ared,: 0 h · h · · · 'd b was accepte ecause --- > r,1 • t erw1se, t e 1terat1on 1s sa1 to e unsuc-
Pred1c 

cessful. 

We denote by S( k1 , k2 ) the set of indices of successful iterations in the interval 

Theorem 5.1 
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Under the standard assumptions, at any point ( xk , >..k ) generated by the algo-

rithm, either the termination condition of the algorithm will be met or an accept-

AredH; . • > 771 will be satisfied for 
Predk+i 

able step will be found. i.e. the condition 

some J 

Proof 

If the termination condition of the algorithm is satisfied, then there is nothing to 

prove. Assume that the point ( x1c , >..k ) does not satisfy the termination condi­

tion in step 1 of the algorithm. 

First, we assume that 11 hk 11 2 > c1 D.1c where c1 is as in Lemma 6.9. Using 

Lemma 6.1 we obtain 

then, using Corollary 6.4, we obtain 

I Aredk I 
---1 < 
Predk -

2 a 4 bi b2 

11 hk 112 min [ b 2 , c 1 ] D.1c · 

Now, as D.1c gets smaller, the quantity I 
Aredk 
---1 I 
Predk 

approaches O and hence 

the condition > 171 will be met after a finite number of trials. 

Now, assume that 11 h1c 11 2 < c1 D.k • Using Corollary 6.4, Lemma 6.10 and 

rk < r* , we can write 

So, as D.1c gets smaller, the quantity 
Aredk 
---1 
Predk 

approaches 0, and hence 

the condition > 771 will be met after a finite number of trials. This 
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completes the proof. • 

The proof of our main global convergence result, Theorem 5.2, uses the fol­

lowing two lemmas. The first lemma proves that under the standard assump­

tions, either the algorithm terminates, or converges to a feasible point. The 

second lemma proves that under the standard assumptions, either the algorithm 

terminates, or 11 P1c "v h I I 2 < E , for some k sufficiently large, where E > 0 is 

any given constant. This means that if each member of the sequence of iterates 

generated by the algorithm does not satisfy the termination condition (3.1 ), then 

the sequence { 11 P1c "v f 1c 11 2 } will not be bounded away from zero. 

Lemma 8.1 

Let the standard assumptions hold. If each member of the sequence of iterates 

generated by the algorithm does not satisfy the termination condition (3.1 ), then 

Proof 

Suppose lim sup 11 h1c 11 2 = E0 > 0 . Then there exists an infinite sequence of 
1c-oo 

indices { ki } such that 11 h1c 11 2 > ~ for all k E { ki }. 

Let k be such that k E { ki }, k > k, where k is the same as in (7.8). Since 

h E C 2 
, we have that for some f3 > O and any x E 0 

II h(x) 112 > II hf 112 - II h(x) - hf 112 > II hf 112 - /3 II x - Xf ll2. 

This implies that for all x that satisfies 11 x - Xfc I I 2 < II h" 112 ---- , we have 
2/3 

11 h(x) 112 > 



11 hf 112 
Let u = ---- and consider the ball 

2 (3 

First we will show that eventually the iterate must move outside Bu. 

If x1c E Bu for all k > k , then from Lemma 6.1 and r1c > 1 , 

Pred1c > 1 11 h1c II 2 
min [ 6.1c , 11 h1c 112 l -

2 b1 b2 

> 1 11 hf 112 
min [ 6.1c , 11 hf 112 l . 

2 2 b1 2 b2 

If all k > k are not acceptable steps, then we contradict Theorem 5.1. 
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Hence, 

there exists an infinite sequence of indices indexing successful steps inside the ball. 

For any such k we have 

(8.1) 

Since <I>1c is bounded below and 11 hf 11 2 > 0, inequality (8.1) implies that 

lim inf 6.1c = 0 
k--+oo 

(8.2) 

Define u1 to be a constant that satisfies: 

where a = max [ r* , 2 r*2 a 4 ] and b = max [ b1 , b2 ] • Now, because of (8.2), 

there exist some sufficiently large k such that 

(8.3) 

Let m be the first integer greater than k such that (8.3) holds. This implies 
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that m > k+l , and using (2.3) we get 

0"1 '* < -- ( 1 - T/2) 
a 

(8.4) 

< O" 1 ( 1 - T/2 ) < O" 1 · (8.5) 

Now, by using Lemma 6.1 and the fact that r m-l > 1 , we obtain 

P > 1 11 hm-1 112 . [ 11 A 11 11 hm-1 112 ] 
redm-1 - 2 b1 mm Sm-1 2 , b2 , (8.6) 

and since m -1 > k , xm-l lies inside the ball Bu and by using the definition of 

o-1 above, we have 

From (8.5) and (8.7) we have 

By substituting the last inequality and (8.7) into (8.6), we obtain 

But, by Corollary 6.4, 

So, 

I Aredm-1 - Predm-1 < a4 '* 11 Sm-1 11} . 

I Aredm-l - Predm-l 

Predm-l 

Now using (8.4), we 0otain 

(8.7) 

(8.8) 
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Aredm-l - Predm-l 

Predm-l 

2 a 4 rJ o-1 < --- ( 1 - ¾ ) < ( 1 - T/2 ) . 
0'1 a 

This implies that 

Aredm-l > T/2 . 
Predm-l -

Hence from the rule of updating the radius of the trust region, we have 

The last inequality implies that k = m -1 satisfies ( 8.3 ). This contradicts the 

supposition that m is the smallest such index and means that there is no 

m > k such that (8.3) holds. Hence, for all k > k , we have 

which contradict (8.2). Hence, eventually { xk } must leave the ball Bu for some 

k > k . Let l +1 be the first integer greater than k such that x1+1 does not lie 

inside the ball Bu. Since x1+l =;t; Xfc , there must exist at least one acceptable step 

in the set of iterates indexed { k , ... ,/ }, so by Lemma 6.1, 

I 

<I>k - <I>1+1 = I; ( <I>k - <I>k+l ) > I; T/1Predk 

11 h" 112 

k=k kES(k,1) 

> E T/1 

kES(k,1) 2 

for all k E S(k ,l) , then 

.if,. .if,. > r/1 
'¥f - '¥/+1 

2 

> T/1 
2 

11 h" 112 11 h· 112 
---- min [ .D.k ' k ] . 

2b 1 2 b2 

O' . 
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Otherwise, 

In either case 

q>k - 4>1+1 > rJ1 11 hf II 2 
min [a, 

11 hf 112 l -
2 2 b1 2 b2 

rJ1 11 hf 112 
min [ 

11 hf 112 11 hf 112 l - -
2 2 bi 2 (3 2 b2 

rJ1 11 hf 11? . [ 1 1 ] - - mm fi, ~ . 2 4 bl 

Since { <l>k } is bounded below and is a decreasing sequence, { <l>k } converges to 

some limit cl>,. • Taking the limit as l goes to infinity in inequality (8.9), we 

obtain 

4>· - <I> .. > rJ1 
k - 2 

11 hf 11? . [ 1 1 l 
4 bi mm fi' ~ · 

If we now take the limit as k goes to infinity, we obtain 

rJ1 Eo . 1 1 
0 > - -- mm [ - - ] 

2 8 b1 (3 ' b2 

which contradicts E0 > 0 . The supposition is wrong and hence the lemma is 

proved. • 

Lemma 8.2 

Let the standard assumptions hold. If each member of the sequence of iterates 

generated by the algorithm does not satisfy the termination condition (3.1 ), then 

lim inf II Pk "vh 112 = 0. 
k-oo 

Proof 
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The proof is by contradiction. Suppose that there exists an Eo > 0 and an 

integer K such that 11 Pk '\JJ k 11 2 > E0 for all k > K . 

Since, by using (6.9), 

From Lemma 8.1, there exist k1 sufficiently large such that for all k > k1 , we 

have 

Thus for k > max [ K , k1 ] 

1 
--Eo. 
2 65 

Now, since from (6.4) and Lemma 6.8, 

and since 11 hk 11 2 converges to zero and 11 sk 11 2 and 11 sk-t, 11 2 are 

bounded, then there exists an integer k2 > max [ K , k1 ] such that for all 

k > k2 we have 

Thus, for all k > k2 , we have 

1 Eo . 1 Eo 
Predk > - - mm [ -~k - ] . 

8 2 2 ' 464 

From Theorem 5.1 there exists an infinite sequence of successful iterations. Now, 

for any successful iteration indexed k > k 2 , we have 
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If 'f2 > max [ k2 , k] , then the last inequality and the assumption that {c1>.d is 

bounded below imply that 

00 00 

oo > ~ ( cl>k - cl>k+l ) - ~ Aredk 
k=k2 k=k2 

> 
171 Eo 

~ - Eo min [ .6.k '-b-] . 
k=S(k2 ,oo) 32 2 4 

This implies that 

lim inf .6.k = 0 . 
k-oo 

(8.10) 

This means that there exists an integer k3 > k2 such that 

(8.11) 

32 a4 r* 
is satisfied for some k > k3 , where a = max [ 1 , --- ] and a2 is defined to 

Eo 

be a constant that satisfies 

a .6.k3 Eo 
a2 < min [ 1 , ----- , -- ] . 

a 1 ( 1 - rJ2 ) 2 b 4 

Let m be the first integer greater than k3 such that (8.11) holds. This implies 

that m > k3+1 . So, from (2.3), 

(8.12) 

We obtain 

Eo 
Predm-1 > 32 11 Sm-1 112 · 



So, by using Corollary 6.4, (8.12), and the last inequality, we get 

Aredm-l - Predm-l 

Predm-1 
I< 

32 a 4 r* 0'2 < ---- ( 1 - T/2 ) 
E0 a 

< 0'2 ( 1 - T/2 ) < ( 1 - T/2 ) · 

The last inequality implies that 

Aredm-l 
> T/2. 

Predm-l -
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Hence, from the rule of updating the radius of the trust region in Scheme 2.2, we 

obtain 

~m-1 < ~m · 

This implies that m-1 satisfies (8.11) which contradicts the assumption that m 

is the smallest integer > k3 such that (8.11) holds. Hence, for all k > k3 , we 

have 

0:'1 0"2 
~k > -- ( 1 - T/2 ) · 

a 

The last inequality contradicts (8.10). The supposition is contradicted and hence 

the lemma is proved. • 

Now let us again state and then prove, our main global convergence result, 

Theorem 5.2. 

Theorem 5.2 

Under the standard assumptions, the algorithm produces iterates { xk} which 

satisfy 
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Proof 

The proof follows immediately from Lemma 8.1 and Lemma 8.2. • 

g_ Concluding Remarks 

We have presented a global convergence analysis for a variant of the 1984 

Celis-Dennis-Tapia algorithm in which we use a different scheme for updating the 

penalty parameter. This scheme ensures that the merit function is decreased at 

each iteration by at least a fraction of Cauchy decrease. This indicates compati­

bility with the choice of Ok in the CDT subproblem. 

To force global convergence, we have employed, as a merit function, the aug­

mented Lagrangian which is naturally compatible with the subproblem. For more 

details, see Celis, Dennis, Martinez, Tapia, and Williamson (1989). 

Schittkowski (1983), Gill, Murray, Saunders, and Wright (1986) and Powell 

and Yuan (1986-a and 1986-b) have also considered this function as a merit func­

tion. 

Powell and Yuan (1986-a and 1986-b) used the least-squares multiplier esti­

mate to update the estimate of the multiplier ).. , and hence they treated it as a 

function of x rather than a separate variable. They proved several global and 

local convergence properties using this merit function. We pref er our way of 

updating the multiplier >-. for several reasons including the fact that it is less 

expensive to calculate than the Powell and Yuan's choice. 

For future work, there are many questions that need to be answered. 

Although intensive numerical investigation with the CDT algorithm was 

reported by Celis, Dennis and Tapia (1985), Celis (1985) and Celis, Dennis, Mar-
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tinez, Tapia, and Williamson (1989), we believe that the implementation of the 

algorithm must be refined. In particular, an efficient algorithm for solving the 

CDT subproblem is needed. This will require a closer look at the CDT subprob­

lem and the characteristics of its solution. Currently, this is a topic of 

research, e.g. Yuan (1987) and Zhang (1988), but the problem has not been 

solved. 

A related important question is how to use a secant approximation of the 

Hessian of the Lagrangian in order to produce a more efficient algorithm. We 

believe that Tapia (1988) will be of considerable value here. 

Another important topic that we expect to consider is how to incorporate ine­

quality constraints into the formulation of the algorithm. 
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