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Abstract. Agroecosystem models, regional and global climate models, and numerical weather prediction mod-
els require adequate parameterization of soil hydraulic properties. These properties are fundamental for describ-
ing and predicting water and energy exchange processes at the transition zone between solid earth and atmo-
sphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the
soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via
pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed
by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil
classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spa-
tial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a
method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the
mentioned problems. The approach is based on Miller–Miller scaling in the relaxed form by Warrick, that fits
the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell
at model resolution; at the same time it preserves the information of sub-grid variability of the water retention
curve by deriving local scaling parameters. Based on the Mualem–van Genuchten approach we also derive the
unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters
are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid
scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models
or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the
ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example
data set is provided at a global resolution of 0.25◦ at https://doi.org/10.1594/PANGAEA.870605.

1 Introduction

Hydraulic properties have fundamental importance in the de-
scription of water, energy and carbon exchange processes
between the land surface and the atmosphere (e.g. Ek and
Cuenca, 1994; Xue et al., 1996). Therefore, agroecosystem
models (e.g. SWAP; van Dam et al., 2008) and land surface
models (LSMs; see below) require adequate parameteriza-
tion of soil hydraulic properties – i.e. more specifically, the

water retention curve (WRC) and the hydraulic conductivity
curve (HCC). These properties regulate the relative magni-
tude of water balance fluxes such as evapotranspiration, in-
filtration and surface and sub-surface runoff (Vereecken et
al., 2016), and thus the amount of water held in the soil at
any one time. As well as affecting the water balance compo-
nents, they also play a role in the land surface energy balance
– directly via their effect on latent heat flux (evapotranspi-
ration, e.g. via available soil water influencing plant water
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stress; see Verhoef and Egea, 2014), and indirectly because
the size of the evapotranspiration co-determines land surface
temperature, that in turn affects net radiation, sensible heat
flux and soil heat flux (the latter is also affected via soil mois-
ture dependency of soil thermal properties). With regard to
the carbon balance, photosynthesis and soil respiration both
strongly depend on soil moisture content and hence implic-
itly on choice of soil hydraulic models and their parameters.

State-of-the-art LSMs, e.g. NOAH (Niu et al., 2011), CLM
(Oleson et al., 2008), VIC (Liang et al., 1994), JULES
(Best et al., 2011) and ORCHIDEE (Ngo-Duc et al., 2007),
are key components of regional and global climate mod-
els (RCMs/GCMs) and numerical weather prediction models
(NWPMs). They form important components of reanalyses
(e.g. ERA-Interim/Land; Balsamo et al., 2015) and model–
data assimilation systems, such as the NASA Land Infor-
mation System (LIS) or the Global Land Data Assimilation
System (GLDAS; Rodell et al., 2004). LSMs solve Richard’s
equation for the water flow in the saturated/unsaturated zone.
A fundamental problem is the adequate parameterization of
the water retention and hydraulic conductivity function to
solve Richard’s equation. At point scale, a broad suite of
experimental methods are available that allow measuring
the WRC and HCC. These measurements are, however, ex-
pensive and time consuming, and often comprise intensive
field sampling campaigns. Alternatively, parameters of the
WRC and HCC can be estimated from in situ or remotely
sensed data in combination with parameter estimation tech-
niques (Scharnagl et al., 2011; Bauer et al., 2012; Dimitrov et
al., 2014; Jadoon et al., 2012; Montzka et al., 2011). At larger
scales, such as those where RCMS and GCMs are employed,
the WRC and HCC are impossible to estimate (because un-
derlying soil properties vary widely within grid cells) and are
unobtainable by direct measurements.

To overcome this problem, the estimation of the required
soil hydraulic properties is usually based on pedotransfer
functions (PTFs) that use simple soil properties such as tex-
ture, organic matter and bulk density to derive the param-
eters of mathematical equations that describe the HCC and
the WRC (Vereecken et al., 2010). The idea behind PTFs is
that more easily available soil data such as soil texture, soil
organic carbon content or bulk density can be used to predict
the hydraulic parameters for the WRC and HCC. In the last
three decades, soil scientists have developed a broad suite of
PTFs that differ with respect to the parameterizations of soil
hydraulic properties for which they are used, the type of soil
properties needed as inputs to derive the model-dependent
parameters, and their spatial patterns. PTFs were developed
for the prediction of parameters used in the Campbell (1974)
family of hydraulic functions (e.g. Clapp and Hornberger,
1978), Brooks and Corey (1964) (e.g. Rawls and Brakensiek,
1985), and Mualem–van Genuchten equations (e.g. Rawls
and Brakensiek, 1985; Vereecken et al., 1989; Scheinost et
al., 1997; Wösten et al., 1999; Weynants et al., 2009; Toth
et al., 2015). Bouma (1989) distinguished between two types

of PTFs, namely continuous and class type PTFs. Continuous
PTFs use information on textural properties, bulk density and
soil organic matter amongst others, whereas class type PTFs
do not estimate the parameters based on continuous textural
and other soil properties but estimate the parameters for de-
fined textural classes – e.g. 12 USDA textural classes (Clapp
and Hornberger, 1978; Toth et al., 2013). The disadvantage
of the latter is that only the class average can be predicted
and inner-class variability is neglected.

Another issue with the soil hydraulic parametrization in
LSMs is caused by the spatial resolution of the model appli-
cation under consideration (e.g. GCM runs for reanalyses or
NWP model runs for weather forecasts), which is currently
several (tens of) kilometres. This means that the soil input
parameters to be provided at this scale have to be derived
from existing data sources. Unfortunately, intrinsic soil prop-
erties are highly variable in space; in most cases several soil
types can be found within a single grid cell of GCMs, for ex-
ample. These soil types often differ strongly in soil texture,
soil organic carbon content and bulk density, and soil depth
and layering. Consequently, the fine-scale soil information,
available from state-of-the-art soil maps such as the Euro-
pean LUCAS (Land Use/Land Cover Area Frame Survey)
(Toth et al., 2013; Ballabio et al., 2016) at 500 m resolution
or the global SoilGrid database at 1 km resolution (Hengl et
al., 2014), has to be up-scaled to the scale at which the LSMs
are being employed. The general problem of up-scaling, or
change in spatial resolution of the input data by aggregating
small-scale input data, and the resulting output uncertainty
for various model states was reported, for example, by Cale et
al. (1983), Rastetter et al. (1992), Pierce and Running (1995),
Hoffmann et al. (2016), and Kuhnert et al. (2016). A practi-
cal example is GLDAS2-NOAH, where the porosity and the
percentages of sand, silt and clay at the original scale of the
input data from Reynolds et al. (2000) were horizontally re-
sampled, i.e. spatially averaged, to the 0.25◦ GLDAS grid
(Rodell et al., 2004). Despite their importance, only a few
studies investigating the implications of the above-mentioned
issues (up-scaling, aggregation or resampling) on the model
results have been conducted in the past.

The most straightforward method to aggregate input pa-
rameters from small-scale soil maps to larger-scale grid cells
of a GCM would be spatial averaging. For some soil prop-
erties such as soil organic carbon, bulk density, or soil depth
this kind of approach seems reasonable, whereas for soil tex-
ture averaging it is associated with considerable problems.
For example, a GCM grid cell containing a pure sand soil for
half of its area with the other half a pure clay would provide a
sandy clay on average, which neither adequately reflects the
sand nor the clay soil physical properties. Additionally, av-
eraging percentages may cause artefacts in closing the mass
balance. A second method would be the averaging of soil
hydraulic parameters (e.g. the van Genuchten parameters),
whereby Zhu and Mohanty (2002) clearly showed that aver-
aging of especially the shape parameters (a and n) is associ-
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ated with considerable uncertainty. A third and most widely
used aggregation technique for soil inputs at coarse model
resolution is the one based on dominant soil types, where the
dominant soil type within a coarse grid cell is derived from
the fine-scale soil map. However, in using this approach some
information will get lost in the GCM outputs because non-
dominant, but physically very differently behaving soils will
not be taken into account during the model runs. In conse-
quence, fluxes from non-dominant areas of the grid cell will
not be reproduced at large scale.

The theory introduced by Miller and Miller (1956) pro-
vided a technique to scale the relationships of pressure head
and hydraulic conductivity by considering microscopic laws
for capillary pressure forces and viscous flow in porous me-
dia based on a similarity assumption of the pore space struc-
ture (Warrick et al., 1977). Similarity scaling allows convert-
ing hydraulic characteristics (e.g. pressure head or conduc-
tivity) of one system (e.g. a soil sample) or location (e.g.
a point scale measurement of WRC at field scale) towards
corresponding characteristics of another system or location
(Tillotson and Nielsen, 1984) under the condition that the
internal geometry of the system only differs by size. Miller–
Miller scaling therefore allows capturing the spatial variabil-
ity of soil hydraulic properties in one single scaling parame-
ter rather than having to specify the statistics for each sin-
gle hydraulic parameter (Warrick et al., 1977). The set of
scaling factors (i.e. each location or sample has one scaling
factor) follow approximately a log-normal distribution (Sim-
mons et al., 1979). Tuli et al. (2001) analysed a physically
based scaling approach of unsaturated hydraulic conductiv-
ity and soil water retention functions from pore size dis-
tribution. They assumed that the relationship between both
characteristics is log-normally distributed and that pores are
geometrically similar, and showed that in this case scaling
factors computed from median pore size or capillary pres-
sure head can be used to describe the variability of unsatu-
rated hydraulic conductivity functions. Using a fractal model,
Pachepsky et al. (1995) showed that the spatial variability
of water retention functions could be described by the spa-
tial variability of a single dimensionless parameter. Ahuja et
al. (1984) found that scaling factors for different soil depths
are also related, and Clausnitzer et al. (1992) investigated
the potential to simultaneously scale the WRC and HCC and
found evidence that the results do not necessarily require in-
dependent scaling. In more detail, Hendrayanto et al. (2000)
showed that separate scaling resulted in large estimation er-
rors in either effective saturation or hydraulic conductivity.
Further scaling methods have been developed based on the
fractal method, e.g. the piecewise fractal approach proposed
by Millan and Gonzalez-Posada (2005) or the wavelet trans-
form modulus maxima introduced by Zeleke and Si (2007).
Wang et al. (2009), as well as Fallico et al. (2010), anal-
ysed the multifractal distribution of scaling parameters for
soil water retention characteristics. Shu et al. (2008) stressed
the need for location-dependent scale analyses to improve

the performance for soil water retention characteristic pre-
dictions. Jana and Mohanty (2011) showed that a Bayesian
neural network can be applied across spatial scales to approx-
imate fine-scale soil hydraulic properties. With this approach
ground-, air-, and space-based remotely sensed geophysical
parameters directly contribute to a PTF in a single process-
ing step instead of aggregating/scaling the estimated param-
eters to other scales in an independent second step. Recently,
Fang et al. (2016) established an amplification factor for soil
hydraulic conductivity to compensate for the resulting retar-
dation of water flow due to the loss of information content
as a consequence of spatial aggregation. Liao et al. (2014)
pointed out that uncertainty in the soil water retention pa-
rameters mainly results from the limited number of samples
used for deriving PTFs and the spatial interpolation of basic
soil properties. However, the latter error contribution domi-
nates the potential to correctly determine spatial parameters,
which leads to the assumption for our study that existing
PTFs provide adequate parameters for global model appli-
cations. Nevertheless, the scaling uncertainty still needs to
be considered.

The objectives of this study are therefore as follows: (i) to
apply the Miller–Miller scaling approach to the state-of-the-
art soil data set SoilGrids1km to provide a global consistent
soil hydraulic parameterization for GCMs based on first prin-
ciples; these soil hydraulic parameterizations can be used in
models of the terrestrial system to predict soil water fluxes
based on solving Richard’s equation from local to global
scale; (ii) to present a method to identify the sub-grid vari-
ability of WRC and HCC with reference to the 1 km reso-
lution SoilGrids1km soil texture database – this scaling in-
formation can be used to perturb hydraulic parameters to
generate ensemble runs with GCMs or to improve GCM
downscaling; (iii) to evaluate the performance of the scal-
ing approach for the calculation of the WRCs and HCCs
against standard aggregation procedures based on two exem-
plary grid cells with varying variability in textural properties;
and finally (iv) to demonstrate the importance of the scaling
variance at different spatial resolutions for three larger re-
gions in North America, Africa and Asia. We provide the
corresponding aggregated global data set for the ROSETTA
PTF (Schaap et al., 2001) at 0.25◦ regular grid spacing at
https://doi.org/10.1594/PANGAEA.870605.

2 Material and methods

In this section the database and the approach to generate
the global data set of soil hydraulic parameters is presented
(see also Fig. 1). In the following, all analyses are based on
the SoilGrids1km database in combination with ROSETTA
(Schaap et al., 2001). Other soil databases and PTFs can be
used similarly. The PTF will be applied to the high-resolution
soil texture maps to predict high-resolution Mualem–van
Genuchten (MvG) parameters. These are then scaled to cal-
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Figure 1. Proposed method to aggregate soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity
curves.

culate soil hydraulic properties for the WRCs and HCCs em-
ployed at a coarser scale. In Sect. 2.3, the scaling approach
is explained, and additionally the treatment of the sub-grid
variance will be presented. In Sect. 2.4 details about the ap-
plication to generate the global data set are given.

2.1 SoilGrids1km

The SoilGrids1km database (Hengl et al., 2014) is a consis-
tent, coherent and global data set created by automated map-
ping (Vereecken et al., 2016). The main inputs are publicly
available soil profile data, such as the USA National Coop-
erative Soil Survey Soil Characterization database (NCSS),
the Land Use/Cover Area frame Statistical Survey LU-
CAS (Toth et al., 2013), and the Soil and Terrain Database
(SOTER) (Van Engelen and Dijkshoorn, 2012). Moreover,
additional information, derived from moderate-resolution
imaging spectroradiometer (MODIS) satellite imagery and
the Shuttle Radar Topography Mission (SRTM) digital el-
evation model, has been used. Artificial surfaces as well
as bare rock areas, water bodies, shifting sands, permanent
snow and ice were neglected. The resulting soil properties at
seven predefined depths (0, 5, 15, 30, 60, 100 and 200 cm)
are soil organic carbon (gkg−1), soil pH, sand, silt, and clay
fractions (%), coarse fragments (gravel) (%), bulk density
(kgm−3), cation-exchange capacity (cmol+ kg−1), soil or-
ganic carbon stock (tha−1), depth to bedrock (cm), World
Reference Base soil groups and USDA Soil Taxonomy sub-

orders. SoilGrids1km implements model-based geostatistics
and multiple linear regressions for predicting sand, silt and
clay percentages, and bulk density, as well as general linear
models with log-link function for predicting organic carbon
content. Lower and upper confidence limits at 90 % prob-
ability of the predictions are also provided. In theory, the
full prediction uncertainty could be used to estimate soil hy-
draulic property uncertainty but in our study we restricted
the analysis on the mean predicted values. The findings of
Hengl et al. (2014) indicate that the distribution of soil or-
ganic carbon content in horizontal direction is mainly con-
trolled by climatic conditions (temperatures and precipita-
tion), while the distribution of texture is mainly controlled
by topography and lithology. The advantage of SoilGrids1km
over other soil databases is that it provides pixel-based in-
formation rather than gridded vector information from class-
based vector polygons. It should be noted that SoilGrids1km
is stored in a World Geodetic System 84 (WGS84) regular
grid with 1 km resolution at the equator. The resolution at
other latitudes is therefore higher.

2.2 Pedotransfer functions, water retention and

hydraulic conductivity functions

A global high-resolution hydraulic parameters data set is
needed to infer the scaling characteristics for large-scale cli-
mate models. Based on the textural information stored in
the SoilGrids1km database, PTFs can directly estimate the
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required hydraulic parameters (Fig. 1). Several PTFs have
been developed; here, we focus on the widely used PTF
ROSETTA model H3 by Schaap et al. (2001), which is
based on neural network predictions for the estimation of the
Mualem–van Genuchten (MvG) parameters θs, θr, α, n, Ks

and L (van Genuchten, 1980), whereby the WRC to describe
the effective volumetric saturation Se is calculated according
to

Se(h) =
θ − θr

θs − θr
{

1 h ≥ 0
[

1 + (α |h|)n
]−m

h < 0, α,m > 0, n > 1,
(1)

where θr (cm3 cm−3) and θs (cm3 cm−3) are the residual
and saturated volumetric water content, respectively, and α

(cm−1), n (–) and m (–) (m = n − 1
n

) are shape parameters.
Finally, the MvG approach to describe the HCC is given by

K (h) = KsS
L
e

[

1 −
(

1 − S
1/m
e

)m]2
, (2)

where K (–) is the unsaturated hydraulic conductivity, Ks

(cmd−1) is the saturated hydraulic conductivity and L is the
pore connectivity parameter (–).

In a first step, ROSETTA was used to predict the MvG
parameters based on the textural information of the SoilGrid
map for each 1 km cell. In a next step, the water retention
pairs (Se versus h) were calculated for predefined pressure
heads h (cm) using the pressure head vector h:

h = [−1, −5,−10, −20, 30, −40, −50, −60, −70, −90, −110,

−130, −150, −170, −210, −300, −345, −690, −1020,

−5100, −15300, −20000, −100 000, −1 000 000] . (3)

The pressure heads in h were chosen to reflect pressure
steps commonly used in laboratory analysis. We assumed
−300 cm to reflect field capacity whereas wilting point
(h ∼ −1500 cm) is generally found between −1020 and
−5100. In pF terms (log10(h)) the h vector went up to 6.

2.3 Scaling approach and sub-grid variability estimation

In this study, the Warrick et al. (1977) scaling approach is ap-
plied to the parameters derived from the SoilGrids1km data
for each soil depth separately. The procedure characterizes
scaling factors to relate the hydraulic properties at a specific
location to the mean hydraulic properties at a reference point
or a point representative for a larger region.

In a first step we need to find adequate parameters for the
retention function at the coarse scale (Fig. 1). This approach
has been reported in Clausnitzer et al. (1992). For each sub-
pixel i the relative saturation Sei

is calculated by

Sei
(h) = f (h,αi,ni) =

[

1 + (αi |h|)ni
]−mi . (4)

Next, the coarse-scale parameters α̂ and n̂ of the water re-
tention curve f (h,αini) need to be found that minimize the
sum of squares of the deviations for all respective subpixels
i = 1. . .N , with N being the number of subpixels within the
coarse grid cell:

(

α̂, n̂
)

=
∑N

i=1

[

Sei
− f (h,αi,ni)

]2
. (5)

The parameter fitting algorithm used in this study was
the damped least-squares method of Levenberg–Marquardt
(LM) (Marquardt, 1963) to find a global minimum. As ini-
tial values for LM fitting, the grid-specific spatial average of
α (α) and n (n) was used.

Russo and Bresler (1980), as well as Warrick et al. (1977),
showed that scale factors for soil water retention and unsat-
urated hydraulic conductivity are not necessarily identical.
However, Clausnitzer et al. (1992) reported that an indepen-
dent fitting would lead to inconsistencies in the parameter
space, and that a single scaling factor is well suited to de-
scribe the distribution and correlation structure of HCC and
WRC. In this study we use the relationship between Kr and
Se in Eq. (2). Therefore, the scaling of the WRC can be di-
rectly transferred to the HCC, by using α̂n̂ from Eq. (5), even
though these scaling parameters might not be the optimum
choice for the HCC. However, this approach was chosen for
simplicity – to allow for easy handling of hydraulic parame-
ters via a single scaling parameter for global Earth system
model applications. For the coarse grid cell representative
HCC the missing parameters Ks and L are spatially averaged
from the sub-grid parameters – in the case of Ks in logarith-
mic space. Similarly, θs and θr were also spatially averaged,
i.e. for the coarse resolution θs and θr were calculated.

In a second step, the sub-grid variability is estimated by
introducing the scale parameter λ to the hydraulic head vec-
tor to simplify the description of the statistical variation of
soil properties (Fig. 1). This is done by

h
∗ =

h

λ
. (6)

After substituting h by h
∗ in the van Genuchten (1980) water

retention function (Eq. 4), while using previously estimated
α̂ and n̂, only the scaling factor is fitted for each individual
subpixel. Equation (5) can then be rewritten as
(

λ̂i

)

=
∑N

i=1

[

Sei
− f

(

h, α̂, n̂,λi

)]2
. (7)

Equation (7) is subject to the constraint that the
coarse grid mean of the set of scaling factors is unity
( 1
N

∑N
i=1 log10(λ̂i) = 0). This constraint is already approx-

imated by adequately fitting of α̂ and n̂ in the first step.
Again, similar to the first step, the unsaturated HCC is scaled
based on the parameters estimated for the WRC.

We recommend calculating the variance of the logarithmic
λ̂i as a parameter of sub-grid variability for further use. The
sub-grid variability information var(log10λ̂i) can be used in
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further research to perturb the soil hydraulic parameteriza-
tion in ensemble runs of climate or weather prediction mod-
els.

2.4 Global application

The scaling method proposed here is applied to the param-
eters derived from the whole SoilGrids1km data set. In this
study, every terrestrial coarse grid cell is identified with a
unique ID, where the SoilGrids1km attribution to the coarse
cell was performed within a GIS system. This ensures flex-
ibility to predict parameters for any type of grid, no matter
whether it is approximately isotropic, such as in the MetOf-
fice Global Atmosphere 4.0 and Global Land 4.0 model
(Walters et al., 2014), or an unstructured mesh of hexag-
onal/triangular grid cells in the Ocean–Land–Atmosphere
Model (OLAM) (Walko and Avissar, 2008). We chose a spa-
tial resolution of 0.25◦, as used, for example, in GLDAS-
NOAH (Rodell et al., 2004). One coarse grid cell contains
exactly 30 × 30 = 900 fine-resolution pixels. The number of
fine-resolution pixels used for calculating the scaling statis-
tics is also provided with the data set, because lakes and
broad rivers reduce the number of relevant pixels. In addi-
tion, for global application a land–sea mask has been estab-
lished to omit irrelevant pixels. The final data set is delivered
for latitudes ranging from −60 to 90◦, omitting Antarctica.

2.5 Analysis procedure

In this section the procedure is explained concerning how
the final data set of hydraulic parameters and scaling infor-
mation was evaluated. This was done by selecting sample
regions for a detailed presentation of the data set perfor-
mance. Two coarse grid cells of different sub-grid hetero-
geneity were selected and the scaling results for the WRCs
and HCCs compared discussed. The importance of consider-
ing sub-grid variability is stressed for different spatial reso-
lutions by means of three larger regions.

2.5.1 Detailed grid cells analysis

In order to investigate the performance of the scaling ap-
proach in more detail, two coarse grid cells within Germany
were selected based on an initial analysis of the sub-grid sand
standard deviation (Fig. 2).

The focus on German sites is motivated by the large varia-
tion in soil texture, from a heterogeneous region in the north
of Germany to a relatively homogeneous region in the Ger-
man central lowlands. Moreover, the quantity of soil profile
information contribution to the SoilGrids1km neural network
approach is quite high in these regions. The first grid cell
was selected in the south of Lower Saxony where Pleistocene
morainal plains turn into Jurassic and Triassic rocks. This re-
gion exhibits small-scale differences in rocks and sediments
where the soils developed from. The second region selected

Figure 2. Location of the 0.25◦ test pixels in Germany, and their
sand fraction based on SoilGrids1km.

is located in the southeast of North Rhine-Westphalia where
the soil developed from Devonian weathered rocks as well
as fluviatile sediments from the Rhine River system. This re-
gion can be regarded to be relatively homogeneous in soil
texture. See also the soil texture diagrams in Fig. 3.

In order to compare our results to other commonly ap-
plied aggregation schemes, we also calculated the WRCs
and HCCs (i) by averaging soil texture information and then
using the ROSETTA equations; (ii) by averaging MvG pa-
rameters directly; (iii) by identifying the dominant USDA
soil class for each coarse grid cell and then utilizing class-
representative MvG parameters; and (iv) by identifying the
dominant USDA soil class for each coarse grid cell and then
utilizing the Clapp and Hornberger (1978) approach to cal-
culate the hydraulic properties, which requires dedicated hy-
draulic parameters. The Clapp and Hornberger (1978) pa-
rameterization is based on the Campbell approach (Camp-
bell, 1974) for calculation of water retention and unsatu-
rated hydraulic conductivity. This approach has been added
to illustrate the differences between the MvG and Campbell
(1974) approach that is still often used in GCM. SeCamp after
Campbell (1974) is given by

SeCamp (h) =
θ

θs











1 h ≥ hB
(

1

hB
|h|

)− 1
b

h < hB,
(8)

where hB is the air entry value and b is the pore size distri-
bution index (–). The related hydraulic conductivity function
for Campbell (1974) is given by

Kr, Camp (h) = Ks

(

θ (h)

θs

)(3+2b)

. (9)
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Figure 3. Soil texture triangles, illustrating the difference in soil textural variability of the Lower Saxony pixel (left) and the North Rhine-
Westphalia pixel (right), according to USDA classification.

Figure 4. Example regions selected to evaluate the scaling variance loss from Warrick scaling at different spatial resolutions when neglecting
the scaling variance. The background shows the sand fraction from SoilGrids1km.

Note that the Campbell approach is similar to the Brooks and
Corey (1964) approach – the only difference is that the latter
did not set θr = 0 in the WRC. Also, Clapp and Hornberger
(1978) did not consider θr in their equations.

2.5.2 Analysis of scaling variability for different spatial

resolutions

In order to stress the importance of considering the sub-
grid scaling information provided by the proposed method,
the mean var(log10λ̂i) is quantified for different spatial
resolutions. Three regions were analysed in more detail
– namely regions in North America, central Africa and
China/Mongolia consisting of 2048 × 2048 fine pixels from
the SoilGrids1km database (see Fig. 4). For each of these
larger regions a single parameter set of α̂ and n̂ is estimated
by using Eq. (5). For each fine 1 km pixel the scaling parame-
ter λ̂i is calculated according to Eq. (7). Different resolutions
of 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 km were applied
to the resulting map of λ̂i . For each spatial resolution the
cell-specific scaling parameter is averaged (mean(log10λ̂i)).

Finally, the variance of these averaged scaling parameters is
calculated for the large regions. Herein we hypothesize that
the variance of the scaling parameter is a function of spatial
resolution.

This analysis uses the original SoilGrids1km spatial reso-
lution as a reference. However, it has to be mentioned that the
calculated scaling variability only refers to the information
content of the SoilGrid 1 km reference, and does not neces-
sarily provide the real soil scaling variability.

3 Results and discussion

For brevity in this paper the results for the top soil layer are
discussed only. After a description of the global data set, this
section discusses the results for the two example pixels in
Germany and the influence of different spatial resolutions on
the variability of three larger regions. This discussion is fol-
lowed by an analysis of the uncertainties related to the data
set.
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Figure 5. Global map of α̂ (a), n̂ (b), θs (c) and mean(log10(Ks)) (d), as derived when using the SoilGrids1km data set as input to the Rosetta
PTF (Schaap et al., 2001), at 0.25◦ spatial resolution.

3.1 Global analysis

The resulting global hydraulic parameters α̂, n̂, θs as well as
mean(log10Ks) are presented in Fig. 5. Parameter α̂ ranges
between 0.0036 and 0.045 cm−1 with a global average of
0.0143 cm−1 and shows a clear biogeographical or climatic
related distribution. Relatively low values can be found
mainly under boreal forests, but also in the North China

Plain, central Europe, US Midwest and the Cordoba province
in Argentina. Especially the low bulk density of boreal top
soils in the SoilGrids1km database, and their widespread oc-
currence, reduce the global average of α̂ to that low value.
Relatively high values of α̂ were found at locations with high
sand fractions, such as the desert regions of the Sahara, the
Namib, and the Arabian Peninsula, and to a lesser extent also

Earth Syst. Sci. Data, 9, 529–543, 2017 www.earth-syst-sci-data.net/9/529/2017/



C. Montzka et al.: A global data set of soil hydraulic properties 537

Figure 6. Global map of var(log10λ̂i ) calculated from SoilGrids1km data set and the Rosetta PTF (Schaap et al., 2001) for 0.25◦ resolution.

Table 1. Variables stored in the final data set. The variable z indicates the soil depth, i.e. z ∈ [0,5,15,30,60,100,200] cm.

Variable Units Explanation Variable name

Latitude Decimal degree Latitude in degrees north, Southern Hemisphere in negative numbers Latitude
Longitude Decimal degree Longitude in degrees east, west of Greenwich in negative numbers Longitude
α̂ cm−1 Fitted α at z cm depth for MvG parameterization alpha_fit_zcm
n̂ – Fitted n at z cm depth for MvG parameterization n_fit_zcm
θs m3 m−3 Mean θs at z cm depth for MvG parameterization mean_theta_s_zcm
θr m3 m−3 Mean θr at z cm depth for MvG parameterization mean_theta_r_zcm
L – Mean pore connectivity parameter at z cm depth for MvG parameterization mean_L_zcm
(mean(log10Ks)) cmd−1 Mean saturated hydraulic conductivity at z cm depth mean_Ks_zcm
var(log10λ̂i ) – Scaling parameter variance at z cm depth var_scaling_zcm
Valid subpixels – Number of valid subpixels for calculating scaling statistics for the z cm soil depth valid_subpixels_zcm

in Australia. Smaller regions with high α̂ could be traced in
Florida and the morainal plains of northern Europe and the
Rocky Mountains. The global average of n̂ is 1.547, with a
range between 1.174 and 4.33 (–). The extreme high n̂ val-
ues are found only in the non-alluvial regions of the Sahara
and Rub’ al Khali (“Empty Quarter”, Arab Peninsula). The
relatively high global average of n̂ is caused by the same ef-
fect that caused the low α̂ average in the low bulk density
of boreal top soils. Those soils typically are characterized
by high organic carbon contents, behave quite differently in
hydraulic sense compared to more mineral-dominated soils,
and are rarely used to develop classical PTFs. Therefore, in-
dependent of the aggregation or up-scaling approaches, more
research is needed to adequately parameterize boreal soils by
appropriate PTFs.

The global map of mean saturated hydraulic conductiv-
ity (mean(log10Ks)) in Fig. 5 ranges between 0.174 and
3.105 with a global average of 1.784 (cmd−1). Low soil-
saturated hydraulic conductivities are located in India, the
Sahel, the Mediterranean, central Asia, the Levant and Iran,
Texas, the US prairie regions, California and south-central
Canada. Highest mean(log10Ks) are found in the Sahara and
Rub’ al Khali, where sandy soils dominate, but also in the
upper Amazon Basin (Marthews et al., 2014) and in cold cli-
mates.

Figure 6 shows the global map of sub-grid scaling variance
calculated from SoilGrids1km data set with a 0.25◦ grid ref-
erence. Global var(log10λ̂i) ranges between ∼ 0 and 1.574,
with an average value of 0.229. This shows that large re-
gions, e.g. Siberia, East China, southern coastal provinces
of Brazil and Mexico, are relatively homogeneous within in-
dividual grid cells. The regions with particularly high sub-
grid variability are typically transition zones of soils evolved
from young sediments. Examples are the holocene morainal
plains in northern Europe and Canada, as well as the slopes
of high mountains areas of the Andes and Himalayas. Simi-
larly, young deposits of large rivers such as the Amazon and
the inner Congo Basin are characterized by high variability.
These are the regions where the consideration of the sub-grid
variability may have strong impacts on weather prediction
and climate simulations.

The final data set is stored in netcdf format in WGS84
projection and contains the information given in Ta-
ble 1. The file naming convention follows the scheme
“Hydraul_Param_BasicSoilMap_PTF_slX”, where Basic-

SoilMap indicates the soil map used for development of the
data set (here SoilGrids1km), PTF indicates the pedotransfer
function used (here Schaap) and X indicates the soil layer (sl;
in the case of SoilGrids1km the layers 1–7 are available).
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Figure 7. PF curve after applying typical scaling or aggregation methods: by dominant USDA soil class and Clapp and Hornberger param-
eters for the Brooks and Corey equation, by dominant USDA soil class and MvG equation, by averaging soil texture parameters and then
applying ROSETTA PTFs, and by averaging MvG soil hydraulic parameters directly, for Lower Saxony (left) and North Rhine-Westphalia
(right).

Figure 8. Retention curves for Lower Saxony (left) and North Rhine-Westphalia (right) calculated using different approaches. The coarse
pixel fit is the result of the Warrick scaling approach, where (log10λ̂i ) was also estimated. Therefore, ±1 SD(log10λ̂i ) could also be provided
to identify the sub-grid uncertainty. Further retention curves were calculated by dominant USDA class (both for Brooks and Corey with
Clapp and Hornberger and for MvG equation), by averaging texture and by averaging MvG parameters. Blue points indicate Se at standard
hydraulic heads for each individual subpixel.

3.2 Example pixels

The detailed analysis of the WRC of two example model grid
cells after applying a range of typical aggregation methods is
shown in Fig. 7. This includes aggregation by averaging soil
texture information, averaging MvG soil hydraulic parame-
ters, and by selecting the dominant USDA soil class (both
with MvG and Campbell equations). Averaging soil texture
and averaging MvG parameters to a coarser grid caused dif-
ferences in the WRC for Lower Saxony but showed nearly
the same curve for North Rhine-Westphalia. The reasons why
textural and MvG parameter averaging yielded the same ag-
gregated WRC in North Rhine-Westphalia are unclear but

as Zhu and Mohanty (2002) pointed out, the reliability of
MvG averaging greatly depends on the fine-scale (here 1 km)
heterogeneity (textural differences), but also on the textural
class. Therefore, in the heterogeneous region of Lower Sax-
ony the difference is large which leads to 0.04 higher Se at
2.5 log10(h) when averaging texture as opposed to averaging
MvG parameters. However, more drastic differences occur
when using the dominant USDA soil class to predict coarse-
scale WRCs, where the Clapp and Hornberger parameteriza-
tion for the Campbell model results in wetter conditions for
all pressure heads than when using the class-representative
MvG parameters and the MvG model.
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Figure 9. Hydraulic conductivity curves for Lower Saxony (left) and North Rhine-Westphalia (right). The coarse pixel fit is the result of the
Warrick scaling approach, where (log10λ̂i ) was also estimated. Therefore, ±1 SD(log10λ̂i ) could also be provided to identify the sub-grid
uncertainty. Further hydraulic conductivity curves were calculated by dominant USDA class (both for Brooks and Corey with Clapp and
Hornberger and for MvG equation), by averaging texture and by averaging MvG parameters. Blue points indicate log10(Kr) at standard
hydraulic heads for each individual subpixel.

Figure 10. Histograms of the retention scaling parameter (log10λ̂i ) for Lower Saxony (left) and North Rhine-Westphalia (right).

Finally, the WRCs based on the different aggregation ap-
proaches (dominant soil class, texture averaging, Warrick
scaling) are presented in Fig. 8 for the two example regions.
As can be seen, the effective saturation (Sei

) calculated for
the 1 km sub-pixels at the standard heads of the head vector
h (Eq. 3) (blue dots) reflects the natural variability in soil
texture and corresponding soil hydraulic properties of the
two example regions. This subscale variability is also cap-
tured by the standard deviation of the Warrick scaling ap-
proach, which is larger for Lower Saxony as compared to
North Rhine-Westphalia. This indicates nicely that Warrick
scaling is an appropriate approach to capture fine-scale vari-
ability and to propagate the fine-scale uncertainty into the
larger scale of interest.

A similar pattern of the different scaling methods can be
also found for the HCCs presented in Fig. 9. By this Warrick

scaling approach, not only can large-scale modelling capture
the right aggregated “mean” WRCs and HCCs but also the
uncertainty can be taken into account by running the mod-
els for the retention/hydraulic characteristics spanned by the
variance of the scaling factor.

Finally, we plotted the histograms of the calculated sub-
grid scaling parameters (Fig. 10). Here it has to be noted that
the scaling parameter λ was log-transformed with zero mean.
Again, the differences in sub-grid heterogeneity of the two
example regions become obvious with larger variability in
λ for Lower Saxony and lower variability for North Rhine-
Westphalia.
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Figure 11. Retention scaling parameter variance var(log10λ̂i ) for different grid resolutions and regions of interest (North America, Africa
and China; see also Fig. 4). (Left) absolute variance and (right) variance normalized as percentage of the maximum variance at 1 km original
SoilGrids1km resolution.

3.3 Analysing scaling variability for different spatial

resolutions

For the analysis of the scaling variability for different spa-
tial resolutions the mean variance (var(log10λ̂i)) was calcu-
lated for different grid resolutions and plotted in Fig. 11. For
all three case sites (North America, Africa and China; see
also Fig. 3) var(log10λ̂i) decreased with decreasing spatial
resolution; the absolute scaling parameter variability of the
Africa region is largest. This can be explained by the fact that
the Sahel is prone to strong seasonal dry–wet cycles, which
induces large variability in soil development (Da Costa et
al., 2015). On the other hand, the relative decrease of vari-
ance with coarser resolution for this region is comparable to
the other ones (Fig. 11, right panel).

Interestingly, ∼ 90 % of the variance is still maintained at
16 km grid size, ∼ 80% at 64 km, and ∼ 70 % at 128 km.
Even at 256 km spatial resolution, more than 50 % of the
variability is accounted for, but a diverging trend between
the regions is detectable.

3.4 Inherent uncertainties

The use of PTFs and the practice of up-scaling of parame-
ters from 1 km to grid scales where LSMs or related mod-
els such as GCMs are applied; both introduce uncertainty
which needs to be discussed. Here it is important to men-
tion that the scaling variance var(log10λ̂i) calculated with the
proposed approach denotes only the spatial sub-grid vari-
ance from 1 km resolution of SoilGrids1km towards 0.25◦

resolution, but this implies no information about the specific
uncertainties mentioned above. Moreover, we restricted the
analysis to the mean predicted values of SoilGrids1km vari-
ables such as texture and bulk density, but the full predic-
tion uncertainty within a confidence interval could be used
in an extended approach to estimate the soil hydraulic prop-

erty uncertainty. Another source of uncertainty is the use of
the log-transform for scaling multiplier in Warrick scaling
and averaging the saturated hydraulic conductivity using log
transform. The applicability of a PFT to global scale may
be limited for specific conditions, because the soil database
used to estimate the transfer functions is often regionally lim-
ited, so that the extrapolation to soils not included in the sta-
tistical analysis introduces large uncertainty (e.g. for boreal
soils). Finally, we aimed to provide a consistent data set and
therefore derived the HCC from WRC rather than calculat-
ing them independently. The new data set was developed and
all calculations were made under the hypothesis that spatial
variance of WRC and HCC scales with spatial resolution.

4 Data availability

The SoilGrids1km data set can be accessed at www.soilgrids.
org.

5 Conclusions and outlook

Reliable soil hydraulic parameterization is important for
global climate model predictions, including climate reanal-
yses and weather forecast models. State-of-the-art global
soil maps can provide basic soil properties at sub-kilometre
scale resolution. The transfer of these data towards coarser-
resolution hydraulic properties has been a topic in soil/land
surface up-scaling or aggregation research for several
decades. In this paper we present a scaling method based
on Miller–Miller similarity theory in the relaxed form of
Warrick which was applied to the SoilGrids1km data set
to provide parameters for the van Genuchten model of wa-
ter retention curve (WRC) and the Mualem–van Genuchten
model of hydraulic conductivity curve (HCC). These curves
are required to solve variably saturated flow in soils us-
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ing Richards’ equation. In addition, the sub-grid variabil-
ity of both WRC and HCC is assessed, which can be of
use for model ensemble generation in climate and weather
forecast models, or for down-/up-scaling approaches. The fi-
nal global data set at 0.25◦ spatial resolution is available at
https://doi.org/10.1594/PANGAEA.870605.

The new data set is presented and analysed at the global
scale and in more detail by two different individual pixels
differing strongly in textural composition. In comparison to
aggregation by using dominant USDA soil classes, averag-
ing soil texture and averaging soil hydraulic parameters, the
curve fitting approach provides better estimates of coarse-
scale water retention and conductivity curves and related pa-
rameters. Moreover, the Warrick scaling provides an indica-
tor of sub-grid variability, which is not available from the
other methods mentioned above. For three regions different
spatial resolutions were analysed according to their ability to
represent the soil hydraulic variability of the original Soil-
Grids database at 1 km resolution. For all regions a com-
mon general loss of variability was observed, with losing
∼ 10 % of the variance at 16 km grid size, ∼ 20 % at 64 km,
and ∼ 30 % at 128 km. This has large implications for the
application of global climate models. Process descriptions
which are directly influenced by the hydraulic parameteriza-
tion such as evaporation and infiltration may lose important
information about extreme conditions when applying models
at too coarse spatial resolution.

The presented analysis has been conducted on two-
dimensional soil maps, without consideration of vertical re-
lationships between soil layers or horizons. This approach
can be easily extended towards a three-dimensional scaling
that honours the vertical spatial dependency. A follow-up pa-
per will assess the impact of this data set on water and energy
fluxes at the soil surface for global simulations. Similarly, the
effect of using other PTFs than Schaap et al. (2001) needs to
be evaluated on the global scale as well as the uncertainties
introduced during pedotransfer on the scaling parameteriza-
tion. We plan to provide similar data sets for other PTFs, e.g.
of Rawls and Brakensiek (1985), Wösten et al. (1999), Wey-
nants et al. (2009) and Vereecken et al. (1989). A similar ap-
proach is planned to provide parameters for the Brooks and
Corey equation.
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